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EVIDENTIAL GRAMMARS FOR IMAGE
INTERPRETATION. APPLICATION TO MULTIMODAL
TRAFFIC SCENE UNDERSTANDING

Jean-Baptiste Bordes', Franck Davoine?, Philippe Xu', and Thierry Denceux!

! UMR CNRS 7253, Heudiasyc, Université de Technologie de Compiégne, BP 20529, 60205 Compiégne
Cedex France
2 LIAMA, CNRS, Peking University, Beijing, P.R. China

Abstract. In this paper, an original framework for grammar-based image understanding
handling uncertainty is presented. The method takes as input an over-segmented image, every
segment of which has been annotated during a first stage of image classification. Moreover,
we assume that for every segment, the output class may be uncertain and represented by a
belief function over all the possible classes. Production rules are also supposed to be provided
by experts to define the decomposition of a scene into objects, as well as the decomposition
of every object into its components. The originality of our framework is to make it possible
to deal with uncertainty in the decomposition, which is particularly useful when the relative
frequencies of the production rules cannot be estimated properly. As in traditional visual
grammar approaches; the goal is to build the “parse graph” of a test image, which is its
hierarchical decomposition from the scene, to objects and parts of objects while taking into
account the spatial layout. In this paper, we show that the parse graph of an image can be
modelled as an evidential network, and we detail a method to apply a bottom-up inference
in this network. A consistency criterion is defined for any parse tree, and the search of the
optimal interpretation of an image formulated as an optimization problem. The work was
validated on real and publicly available urban driving scene data.

Keywords: Visual grammars; Belief functions; Image understanding

1 Introduction

Automatic understanding of the traffic scene in front of a car is an essential task for autonomous
driving, as well as for safety systems. Generally speaking, by “understanding” we mean detecting
the objects in the image and eventually describing some spatial or functional relationships between
them. However, detecting even a single kind of object can be very challenging since the varying
lighting conditions, the highly cluttered environment, the dynamically changing backgrounds among
many others contribute to the difficulty of the task. Many algorithms have been developed which
are specialized for one of these detection subtasks and each of them can use different kinds of
sensors. However, even the most competitive state-of-the-art detection modules are sources of false
detections, as well as misdetections (pedestrian detection for example). By modelling the consistency
of the relative positions of the objects with respect to the scene, it is possible to strengthen weak
detection while pruning some false detections. For better results, these post-processing methods
should take into account the uncertainty of classification outputs provided by different independent
modules, which is possible using the Dempster-Shafer theory [9]. Indeed, this theory provides an



elegant formalization of uncertainty and the Dempster’s combination rule is an efficient way to fuse
information in a multi-sensor context. The critical goal which is addressed in this paper is thus to
define a precise framework to model the consistency of a scene while handling the uncertainty on
the class of detected objects.

1.1 Related Work

Scene understanding is one of the main goals in computer vision and robotics. In the last decade,
the accuracy of object detection methods has increased substantially. On urban scenes, Ess et al.
[3] and Gavrila et al. [5] have successfully combined a set of visual cues extracted from a stereo
camera for pedestrian detection in real time. More recent approaches try to annotate every pixels
of the image with semantic categories: Ess et al [4] use textural features as well as some geometric
information to train a set of classifiers in one versus all on small patches of the image. Some temporal
smoothing is then applied as a post-processing but the annotation is purely local. Wojek et al [10]
exploit the scene layout information at a further extent using joint object detection to perform the
segmentation; the model includes some consistency clues about the spatial relationships between
the objects (the distance between pedestrians and the ground for example).

More generally, an efficient way to take into account spatial and functional relationships between
the objects is the use of ontologies [1], which is the formal representation of concepts for a partic-
ular domain and their semantic relationships. The Literature on computer vision provides several
references about ontology application on various types of databases, e.g., on the PASCAL challenge
database using WordNet semantic network [8] or on traffic scenes [1] where Brehar uses the openCyc
ontology. The semantic hierarchy provided by ontologies like WordNet or openCyc is useful to shed
light on inter-class relations between visual elements. However, we believe it is not sufficient for
modelling symbolic representation of a visual system since it does not account for some important
aspects of semantic relations such as spatial and functional relationships. In [13], and/or graphs
are used to represent the decomposition of scenes into objects, parts and low-level patterns called
“primitives”. This graph is set in relation with a visual grammar, which is a set of derivation rules.
By augmenting these rules with probabilities, a stochastic model is defined which is trained and
then used to compute the parsing graph of a test image under the Bayesian posterior. Impressive
results have been achieved on various datasets containing a large number of object categories [12].
The strong advantage of visual grammars over discriminative machine learning methods is their
generalization capability: parts of objects can be learnt with a relatively small amount of training
data and can be used to recognize a large number of configurations, they also provide elegant and
efficient ways to solve problems like occlusions and scale.

1.2 Contributions

Visual grammars take as input a set of visual primitives (texture, corners, color histograms ...)
extracted from the image during a first step of image processing. Each one of these primitives
provides by itself rather poor information about the class of the area it covers, but there is no doubt
about its value. In this paper, we will show how it is possible to extend the visual grammar approach
to the case where the input information is uncertain. The belief function theory makes it possible to
deal with this situation: every input of information associated to a part of the image which will be
defined as a belief function. This approach can be especially interesting in the multimodal case where
modules using information incoming from several sensors can extract “higher-level” information than



traditional visual primitives: parts of objects can indeed be detected, or even objects themselves.
This classification result can be taken as input to our visual grammar method, but the uncertainty
of this information has to be taken into account as a module may detect an object with a given
confidence degree, or may not be able to discriminate between different classes (a general obstacle
detector cannot distinguish a vehicle from a pedestrian). We also propose a way to deal with another
kind of uncertainty, which is uncertainty in the production rules. When the relative frequencies of
occurrence of different production rules are unknown, rewriting the production rules as conditional
belief function allows us not to add artificial information in the model. In brief, our work is at the
intersection of two promising approaches: visual grammars and belief functions. To our knowledge,
no work has yet focused on the possibility to match these two theories.

1.3 Overview

The system considered here consists of several sensors, like mono or stereo cameras and laser sensors,
observing an urban driving scene. Images are over-segmented and then processed at the level of
entire segments rather than single pixels. Each sensor provides data to one or more modules which
will run totally or partially in parallel and assign a belief function about the class label of the image
segments. The output belief functions from different modules are then fused on every segment using
the Dempster’s rule of combination [11] (cf Fig 1). In this article, we augment this “local” fusion
process with a “global” fusion step by merging the segments into larger regions using predefined
combination rules. This can achieve two main goals: disambiguate the belief one has on the segments
by adding context information, and infer complex objects by combining small regions corresponding
to parts of these objects.

We will show in Section 4 how to propagate the belief functions from the segment level to
the region and scene levels. We will then define a criterion which makes it possible to rank all
the possible parse trees for a given input image. The understanding process is thus defined as the
search for the parse tree minimizing this criterion. We will then present a fast optimization algorithm
implementation of this research. We call this approach a “framework” since it can be used for any
set of derivation rules, spatial relationships and labels. To apply the evidential grammar, they have
to be instantiated. Experimental validation is presented in Section 6, using the publicly available
KITTI Vision Benchmark Suite [6].
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Fig.1. (a) Global architecture of the system. The approach presented in this article corresponds to the
“global fusion module” at the top of this structure. (b) Example of an oversegmented image




2 Evidential grammars

2.1 Formal grammars and stochastic grammars

The modern formalization of grammars can be attributed to Chomsky [2]. A grammar is defined as
a 4-tuple {Vy, Vr, S, "} where Vy is a finite set of non-terminal nodes, Vr a finite set of terminal
nodes, S a start symbol at the root, and I" is a set of production (or derivation) rules. A production
rule v € I" changes a string of symbols (containing at least one non-terminal symbol) into another
string of symbols. The production process starts with the S symbol and stops when the string is
composed only of terminal symbols. The set of all the possible strings which can be produced by
a grammar is called a language. The strength of language grammars lies in the fact the language
generated by a grammar can be large even when the vocabulary, that is to say Vr and Vi contain
few elements.

To deal with real data, which may include a large amount of irregular patterns, a grammar should
contain a substantial amount of derivation rules to ensure that at least one sequence generates
the terminal symbols which are extracted in the data. When several possible sequences of rules
can generate the terminal symbols, the grammar is said to be ambiguous. To rank alternative
interpretations of a given image, the grammar is augmented with a set of probabilities P as a fifth
component to form a stochastic grammar {Vy,Vr, S, T, P}. A set of nodes can then be derived in
other sets of nodes with given probabilities, taking into account the spatial relationships between
the nodes. They are an essential component of the model and are estimated during the training
process.

2.2 Visual grammars

The most important, problem when dealing with image grammars is the loss of the natural left-to-
right ordering in textual data. In language, every production rule is assumed to generate a linearly
ordered sequence of nodes and, following this down to the leaves, a linearly ordered sequence of
terminal symbols is obtained. In images, the implicit links between neighbouring words have to
be replaced by more complex links between the nodes. Indeed, the spatial links that can combine
parts of objects into an object are numerous such as “hinge”, “border”, “butting”, “surround” as well
as various alignments. 3D information can also be used to determine that an object is “occluding”
another one or that an object is “supporting” another object. In image grammars, pixels seem
natural candidates to be terminal symbols, but a single pixel carries very little information and
usually some sets of local structures are preferred. Several works have focused on proposing visual
primitives, sometimes called also teztons [7] as terminal nodes for visual grammars. These terminal
nodes usually correspond to corners or patches of texture; they are computed deterministically
during a step of feature extraction.

In this article, a framework is proposed to deal with terminal nodes containing uncertainty. This
can be used to combine outputs of a set of modules detecting various objects, parts of objects and
areas but which are not perfectly reliable such as, for example in driving scenes, road extraction,
wheel or pedestrian detectors, etc. The main idea is to use as terminal nodes a higher-level vocabu-
lary taking into account uncertainty instead of low-level primitives with no uncertainty. We believe
this to be especially a good choice in multimodal situation like ours: the extraction of information
incoming from various sensors makes it relevant to reason from a higher level than image primitives.
However, pedestrian detectors, for example, are well-known to provide many false positives and han-
dling precisely the uncertainty is a matter of highest importance. To this end, the Dempster-Shafer



theory will be used and the set of probabilities augmenting the production rules will be replaced
by a set of belief functions to constitute what we will call here evidential grammars.

2.3 Formalization of evidential grammars:

An evidential grammar is defined as a 5-tuple {Vy, Vr, S, I, u} where the first four elements cor-
respond to the traditional 4-tuple defining a formal grammar. The fifth component p replaces the
set of probabilities of a stochastic grammar. The set of non-terminal elements Vx and the set of
terminal elements Vi contain the classes that are used to label the images. The elements of Vi cor-
respond to the classes of objects which can be decomposed into a set of other elements belonging to
VN UVr. The starting element S of the grammar will be interpreted here as the “Scene” annotating
every image. I" contains the production rules of the grammar. Every rule defines a decomposition
of a class of object into a set of classes of objects with a defined spatial layout, and every element
of Viy has at least one production rule.

More formally, let A € Vi be a class with ny ¢(A) production rules into £ components under
spatial relation £ (A may have production rules in more or less than k components and these
components may have other spatial layouts than &):

— Iy A AMAL. AL
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where the Aj- stand for classes of objects belonging to Vy UVr. Let us define the precise meaning
of these production rules.

Let R be a region of an image and Y an evidential variable describing the class contained inside
this region. R is supposed to be segmented in k regions R, Ro, ..., Ry and the class contained in
each region R; is defined by the evidential variable X; (see Fig 2). The use of evidential variables
makes it possible to deal with the uncertainty about the class of the regions. However, even though
one might have uncertainty on the value of the class inside these regions, the (strong) assumption
is made that every region contains one and only one instance of a class. For example, if it is certain
that Y € {car, pedestrian} (that is to say, my ({car, pedestrian}) = 1), this means that the region
contains either one (full) car or one (full) pedestrian, but this does not mean the region can contain
a pedestrian and a car.

The spatial relationship between the regions R;, Rs, ... Ry is described by a deterministic
variable = (since this spatial layout in an image between a set of regions is always observable). =
can describe a global layout between the regions (the regions are “aligned” or “radial”) as well as a
set of pairwise relationships.

The production process defined by the production rules I',...,I5,  (a) is associated to a con-
ditional mass function mx, . x,|y=a,z=¢. To be consistent ‘With the production rules, the only
possible focal sets of the latter mass function are the £2; = {47, A}, ..., A} } and the sets defined as
unions of (2;. Let us emphasize two particular cases:

1. The case when the focal elements are the (2; is equivalent to the production process of a

stochastic grammar.

2. The case when mth,xk‘y:A,EZS(U?:’“’f(A)Qi) = 1 is an assumption of complete ignorance

about the relative frequencies of output of the production process.



Fig. 2. Illustration of the derivation process: the class of the region R (the whole rectangular area) is
described by an evidential variable Y. The region R is then segmented in k regions Ri, Ra, ... Ry the
classes of which are also decribed by evidential variables.

The conditional mass my, . x,|y=4,z—¢ describes the derivation process of A into k components
with spatial relation . Consequently, conditional mass has to be defined for every possible number
of components and every spatial layout in which the class of object A can be derived.

3 Model of an image interpretation

Parse hypergraphs will be introduced in this section as the structure for image interpretation. Given
an evidential grammar {Vi,Vr, S, I, u}, we define £2 = Viy U Vi as the set of labels which will be
used to annotate the image.

3.1 Parse hypergraphs

Let us consider a test image I which is supposed to be parsed hierarchically in [ layers (I > 2) of a
parse hypergraph. A given layer ¢ € {1,...,1} is composed of a set of n; regions which are denoted
{Ri1,..-,Rin, }- The layer I, at the top of the hierarchy, contains a single region which is the image
itself I, we can thus write R;; = I. If the layer is not the bottom one (ie, i > 1) a region R;; can
be partitioned in a set of regions of the lower layer (see Fig 3).

Moreover, an evidential variable denoted X;; taking its value in {2 is introduced to describe the
content of every region R;; and is associated to the belief function mx, ;.

The evidential variable X; is constrained to a single value which is the “Scene” label. “Scene”
corresponds to the S symbol of any formal grammar, which is the starting symbol from which
all the sentence is derived up to the leaves. The higher-level labels are expected to correspond to
more complex objects, like “car” or “pedestrian”, than the lower-level labels, which are expected to
correspond to parts of objects like “wheel”, or “pedestrian head”. However, the scale issue implies
that it is possible for any object to be located in a small region of an image, making it impossible to
parse into its components. Consequently,it must be possible for any symbol (except S) to terminate



at any level of the labels hierarchy. Thus, the evidential grammar {Vx, Vr, S, I, u} is defined with
Vv = Vr.

A Node N;; is defined as the pair (R;;, X;;), that is to say a region and the description of
its content. The nodes will be used to represent the oriented hypergraph structure of the image
interpretation with two kinds of edges being considered:

1. An edge “is part-of/is composed-of”: {N1,..., N, } are part-of N, or reciprocally N is composed-
of {Ni,...,N,} if the regions covered by {Ny, ..., N,} define a partition of the region covered
by N.

2. An edge describing the spatial relationship between a set of nodes at the same level.

The first type of edge defines a parse tree since it represents the decomposition of the scene into
objects and parts of objects. By adding the second type of edge between nodes of the same layer,
the parse tree is augmented to a parse hypergraph. Indeed, to describe complex relations between a
set of nodes (radial rays of a bicycle), edges linking several nodes should be considered. The set of
nodes and edges defining an image interpretation is called a parse hypergraph of the image I and
is denoted Py, (1)

3.2 Evidential network corresponding to an image interpretation

Let U = {X11, X12,...,X;} be the set of all the variables used for the image interpretation and
p the number of edges in a given parse hypergraph Py (I). A set of masses M = {mq,...,m,} is
introduced where every mass m; is defined on the discernment frame U; C U where U; is a set of
variables whose corresponding nodes consist in one node which is linked to several nodes with the
“part-of” link (cf Fig 3). Let O = {Ux,...,Up} be the set of all the discernment frames. The 3-tuple
E = {U, O,M} defines an evidential network and matches the structure of the image interpretation
P (I).

As for the Bayesian network where the graphical model corresponds to a set of conditional
independences between random variables, the evidential network facilitates the inference of the
unknown belief functions since the masses included in M provide an expression of the joint mass
of the subsets of variables U; independently of the rest of the evidential variables of U. The global
joint mass function can be computed as:

p
my = @ MyU
i=1

where my,1y stands for the vacuous extension in the product space of U.

The belief function of the leave nodes of the parse tree are assumed to be known as an input
data and we wish to marginalize U to compute the belief functions on all the other variables. At
this point, two questions clearly stand out:

1. Given the hierarchy of regions, how to propagate the belief function from the leaves to the upper
nodes?
2. What could be a criterion which could lead us the most realistic interpretation of an image?

These questions will be addressed in the two next sections.
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Fig. 3. (a) Hierarchy of regions for the interpretation of a test image (b) Evidential network corresponding
to this hierarchy. A joint mass is defined for all the sets of nodes linked by a “part-of” edge (the sets are
surrounded by green circles.)

4 Belief propagation

4.1 Bottom-up inference

Given an interpretation P, (I) of a test image I and the corresponding evidential network E =
{U,O,M}, every mass m; is defined on a set of variables U;, the corresponding nodes of which are
composed k nodes of a layer j € {1,...,1—1} linked together by a spatial relationship &, and linked
to one node in the layer j + 1 by a “part-of” link. The belief functions of the leaves are assumed
to be known as the input of the present algorithm. The scheme which is proposed here consists in
computing the belief functions iteratively from layer 2 to layer [: the nodes of layer 1 are used to
compute the belief functions of the nodes of layer 2, and so on up to the root.

In a first step, the vacuous extension is applied to the functions mx,, mx,, ..., mx,. The
resulting functions are denoted MX11X1,X2,..,Xp, Vs MXo1 X1, X0y, Xp, Y -0+ XX, X000, X, Y - These
belief functions characterize the contents of disjoint regions and are thus supposed to be independent
pieces of evidence. These belief functions are then combined using Dempster’s rule:

P
m%(th,...,X,”Y = @mXiTX17X27“-7Xp7Y'
i=1
In a second step, all the N conditional belief functions corresponding to grammar rules involving
the rewriting of a symbol into p symbols under relation £ are deconditioned and a set of N func-
tions defined on the product space {X7i,...,X,,Y}. These belief functions correspond to distinct
production rules which themselves encode different semantic information about the decomposition
of the objects and the scene. They are thus supposed to be independent pieces of information and
Dempster’s rule of combination is consequently applied. We have:

N

2 _ k
MY, sy = DK, X, X, viE=e
k=1



where = is the observable variable defining the spatial relation between the regions. This function
is then combined with the previous one, to get a belief function taking into account all the available
information:

1 2
MY, X2, XpY = MX, Xo, X, Y DX, X, X,V

The joint mass mx, x,, .. x, vy is finally marginalized to extract my-.

4.2 Top-down propagation

Once all the mass functions have been computed through the previous inference mechanism, a
top-down scheme can be performed to disambiguate the mass functions at the lower layers of the
hierarchy. For every subset of variables U; = {Xi,Xs,...,X,,Y} and after the joint mass has
been computed, k¥ marginalizations are applied to compute mx,,mx,,...,mx,. This process is
performed from the root down to the leaves for every subset of variables. This scheme results in a
disambiguation of the variables by re-injecting the information gathered through the combinations
performed during the inference down to the variables corresponding to the segment level of the
image.

5 Search for the optimal interpretation

The groupings of nodes with the “part-of” links define a hierarchy of regions and this hierarchy define
an evidential network. By using the scheme detailed in the previous section, the belief functions are
computed from the lower levels up to the root to get an interpretation of an image. However, a large
number of possible parse trees can be considered and consequently as many possible interpretations
of a same image. Using traditional stochastic visual grammars, we build the parse tree of a test
image with maximal posterior probability. For evidential visual grammars, we propose to use the
minimal conflict accumulated at the root node as the optimization criterion to select the parse
hypergraph.

5.1 Optimization criterion

The key value that will be used to measure how relevant it is to group a set of nodes is the conflict
located in the newly constructed node. By conflict, we mean here the value of the mass function of
this node on the empty set.

Comnsistency measure of an interpretation The dependencies between the variables induced
by the grouping of nodes with the “part-of” link imply two remarks:

1. If several nodes Ny, N, ...N, are linked to an upper node M by a “part-of” edge in the
parse tree, and if their mass functions don’t match any derivation rule, the upper node M will
contain a conflict equals to 1. More generally, a node containing a high conflict indicates high
inconsistency in the subtree.

2. When several nodes Ny, Na, ... N, are linked to an upper node M by a “part-of” edge in the
parse tree, the combination formula implies that the conflict of M is bigger than the maximum
conflict of N1, Na,... N,. Thus, any conflict appearing during the bottom-up belief propagation
process in the evidential network will appear on the root node.



These two remarks drive us to consider the conflict in the node N;; as the main optimization
criterion, since as the root node of the evidential network, it aggregates all the conflict contained in
the evidential network and it gives a measure of the quality of the hierarchy. The lower is mx,, (0)
(or the higher is mx,, (S) since mx,, (S) =1 —mx,, (0)), the more consistent is the hierarchy.

Remarks on the number of optimal interpretations The principle of consistency maximiza-
tion does not ensure that only one optimal interpretation exists. In some cases, many alternative
interpretations of an image can be found which have no conflict at the root node. Actually, two
factors impact the number of interpretations that can be expected:

1. The quantity of information carried by the belief functions of the input nodes.
2. The number of production rules in the model.

The less informative the input belief functions are and the more numerous are the production
rules, the more possible combinations there are to form different consistent interpretations. The
production rules being a part of the model, they have to fit correctly the database: too restrictive
rules will lead to no available interpretation since any interpretation will have a high level of conflict.
On the contrary, defining too many configurations or allowing too many possible decompositions of
the objects will lead to an output containing many unsatisfactory interpretations.

5.2 Optimization algorithm

The number of possible parse hypergraphs is very large and exploing the whole space is untractable.
A greedy algorithm is thus introduced here to obtain a relevant interpretation of a test image in
reasonable computation time. The main idea of this algorithm is to initiate a complex configuration
which is simplified step by step as long as the consistency measure of the parse tree decreases:

— A parse tree is first initialized by linking all the nodes corresponding to the segments of the image
directly to the root node. This is equivalent to considering that every segment is interpreted as
one object.

— As long as the consistency measure of the parse tree decreases:

e The consistency measure is computed for a set of alternative hypergraphs, each one being
obtained by applying one single elementary modification to the current parse hypergraph.
The elementary modifications that we consider are the merging of every pair of nodes of
the same level of the hierarchy of the parse graph. If the nodes are terminal nodes, a new
node is created which is linked by the “part of” relationship with this pair of nodes. If the
nodes are not terminal nodes, a new node is created which is composed of all the children
of this pair of nodes.

e The parse hypergraph minimizing the consistency measure is kept for the next iteration.

— The last parse hypergraph is kept as the output of the method.

6 Experiments

The KITTI dataset [6] was used to validate our approach. The stereo color camera system and
Velodyne LIDAR, were used as sensors. Using the algorithms presented in [11], the images of the
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Fig. 4. Three classes 2 = {Ground, Sky, Obstacle} classification result. The deep blue color indicates that
the image segment has not been classified by the system.

dataset were first oversegmented and a combination of modules was used and merged locally at the
segment level to provide a belief function for every segment of the image.

Three classes of objects were considered for the definition of the grammar: “Ground”, “Obstacle”
and “Sky”. The pairwise links “occlude”, “is occluded by”, “bordering” and “disjoint” were used
to describe the spatial relationships between the regions. The starting node S can produce an
arbitrary combination of these objects under a few basic spatial constraints (for example, the sky
cannot occlude the other types of objects). At the part of object level, three classes were considered:
“Patch of ground”, “Patch of obstacle”, and “Patch of sky”. The pairwise links “neighbouring” and
“disjoint” were considered. Each object can be decomposed in an arbitrary combination of the
corresponding patches of object under a spatial constraint of neighbourhood. It should be noticed
that this model takes only little advantage of the potential of the grammars to decompose complex
objects in structured and reusable components. Indeed, no input data for parts-of-objects were
available for that purpose. We plan to apply a model at the object part level in future work.

Fig 5 shows the classification results before and after processing of the evidential grammar. Since
our system allows us to represent ignorance, it can happen that no decision can be made about
some segments, which explains why the recall rate is different from the diagonal of the confusion
matrix. A result image is shown in Fig 4. As it can be seen on these results, there is little difference
in precision but the evidential grammar provides an important improvement in recall. This comes
from the disambiguation provided by the top-down propagation of the belief, which transfers the
fusioned information at the region level back to the segment level.

7 Conclusion

We have introduced an original framework for image understanding based on visual grammars and
Dempster-Shafer theory. Our method makes it possible to introduce uncertainty in the production



Ground|Obstacle| Sky |Recall Ground|Obstacle| Sky |Recall
Ground | 96,4 3,6 0 | 86,1 Ground | 97,0 3,0 0 | 95,7
Obstacle| 5,9 940 |0,1| 81,3 Obstacle| 6,2 93,7 |0,1]| 85,8
Sky 0 33,2 (66,8| 66,5 Sky 0 33,2 (66,8| 66,5
(a) (b)

Fig. 5. Confusion matrices, values are given in percentage. (a) Results without processing of evidential
grammar (b) Results after processing of evidential grammar

rules of the grammar, which allows us to bypass artificial knowledge when the relative frequencies
of the output of some derivation rules cannot be estimated reliably. Moreover, our method can
handle input data tainted with uncertainty. We demonstrated the efficiency of our method by post-
processing the classification result of an oversegmented image with uncertainty on the class of the
segments. We showed that our method provides significant improvement on the recall rate. Future
work will take into account information at the part-of-object level in order to fully exploit the
strength of the grammars, which lies in their ability to combine visual elements to detect complex
structured objects even in highly cluttered environment.
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