Skip to main content

A Novel Method for Identifying Optimal Number of Clusters with Marginal Differential Entropy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7901))

Abstract

Clustering evaluation plays an important role in clustering algorithms. Most of recent approaches about clustering that evaluate and identify the optimal number of clusters need to calculate the distances between data points pair-wisely or evaluate the entropy in the entire dimension space and have high computational complexity. In this paper, we propose an entropy-based clustering evaluation method for identifying the optimal number of clusters which first projects the clusters centroids to each of its individual dimensions, then accumulates the marginal differential entropy in each dimension. With the sum of marginal entropies we can analyze the performance and identify the optimal number of clusters. This method can dramatically reduce the computational complexity without losing accuracy. Experiment results show that the proposed method has high stability under various situations and can apply to massive high-dimensional data points.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wernick, M., Yang, Y., Brankov, J., Yourganov, G., Strother, S.: Machine learning in medical imaging. IEEE Signal Processing Magazine 27(4), 25–38 (2010)

    Article  Google Scholar 

  2. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  3. Foroutan, I., Sklansky, J.: Feature selection for automatic classification of non-gaussian data. IEEE Transactions on Systems, Man and Cybernetics 17(2), 187–198 (1987)

    Article  Google Scholar 

  4. Wang, J., Wu, X., Zhang, C.: Support vector machines based on k-means clustering for real-time business intelligence systems. International Journal of Business Intelligence and Data Mining 1(1), 54–64 (2005)

    Article  MathSciNet  Google Scholar 

  5. Richards, J.A.: Remote sensing digital image analysis. Springer (2012)

    Google Scholar 

  6. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  7. Singhal, A.: Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin 24(4), 35–43 (2001)

    Google Scholar 

  8. Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)

    Article  Google Scholar 

  9. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence (2), 224–227 (1979)

    Google Scholar 

  10. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4(1), 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  12. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2), 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, K., Liu, L.: The” best k” for entropy-based categorical data clustering. In: Proceedings of the 17th International Conference on Scientific and Statistical Database Management, pp. 253–262. Lawrence Berkeley Laboratory (2005)

    Google Scholar 

  14. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  15. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very large databases. ACM SIGMOD Record 25, 103–114 (1996)

    Article  Google Scholar 

  16. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications, vol. 27. ACM (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shu, B., Chen, W., Niu, Z., Zhang, C., Jiang, X. (2013). A Novel Method for Identifying Optimal Number of Clusters with Marginal Differential Entropy. In: Gao, Y., et al. Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39527-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39527-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39526-0

  • Online ISBN: 978-3-642-39527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics