Skip to main content

A Multiphase Convection-Diffusion Model for the Simulation of Interacting Pedestrian Flows

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7975))

Included in the following conference series:

Abstract

The simulation of pedestrian flow has become an important tool in the fields of planning and operation of public spaces like airports or shopping malls. While evacuation situations have been deeply investigated in numerous publications, the interaction of distinct pedestrian flows still needs more consideration. In this paper, we develop a macroscopic model for the simulation of interacting, more precisely intersecting pedestrian flows by a multiphase convection-diffusion approach. The convection corresponds to a movement towards a strategic direction whereas the diffusion corresponds to a tactical movement that avoids jams. Different populations moving in different directions are represented by different phases. Numerical experiments demonstrate the qualitative behaviour of the simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berres, S., Ruiz-Baier, R., Schwandt, H., Tory, E.M.: An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media 6, 401–423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruno, L., Tosin, A., Tricerri, P., Venuti, F.: Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications. Appl. Math. Model. 35, 426–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Stat. Mech. Appl. 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  4. Chen, M., Bärwolff, G., Schwandt, H.: A derived grid-based model for simulation of pedestrian flow. J. Zhejiang Univ.: Science A10, 209–220 (2009)

    Article  Google Scholar 

  5. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modelling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9, 155–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daamen, W., Bovy, P.H.L., Hoogendoorn, S.P.: Modelling pedestrians in transfer stations. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 59–73. Springer, Heidelberg (2002)

    Google Scholar 

  7. Esser, J., Schreckenberg, M.: Microscopic simulation of urban traffic based on cellular automata. Int. J. Mod. Phys. C 8, 1025–1036 (1997)

    Article  Google Scholar 

  8. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  9. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transportation Science 39, 1–24 (2005)

    Article  Google Scholar 

  10. Helbing, D., Farkas, I., Vicsek, T.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73, 1067–1141 (2001)

    Article  Google Scholar 

  11. Hoogendoorn, S.P., Daamen, W.: Self-organization in pedestrian flow. Traff. Granul. Flow 3, 373–382 (2005)

    Article  Google Scholar 

  12. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. B 36, 507–535 (2002)

    Article  Google Scholar 

  13. Jiang, Y., Zhang, P., Wong, S.C., Liu, R.: A higher-order macroscopic model for pedestrian flows. Physica A 389, 4623–4635 (2010)

    Article  Google Scholar 

  14. Kerner, B.S., Konhäuser, P.: Structure and parameters of clusters in traffic flow. Physical Review E 50, 54–83 (1994)

    Article  Google Scholar 

  15. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London Ser. A 229, 317–345 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piccoli, B., Tosin, A.: Time-evolving measures and macroscopic modelling of pedestrian flow. Arch. Ration. Mech. Anal. 199, 707–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Slawig, T., Bärwolff, G., Schwandt, H.: Simulation of pedestrian flows for traffic control systems. In: Li, E.Y. (ed.) Proc. of the 7th International Conference on Information and Management Sciences (IMS 2008) (Urumtschi, 12. 8. - 19. 8. 08). Series on Information and Management Sciences, vol. 7, pp. 360–374. California Polytechnic State University, California (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwandt, H., Huth, F., Bärwolff, G., Berres, S. (2013). A Multiphase Convection-Diffusion Model for the Simulation of Interacting Pedestrian Flows. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39640-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39640-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39639-7

  • Online ISBN: 978-3-642-39640-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics