Skip to main content

Modelling and Experimental Validation of an Optical Fiber for Solar Devices

  • Conference paper
  • 2078 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7972))

Abstract

In this paper it has been presented a numerical model of an optical fiber used in the solar applications.We discussed the overall thermo-mechanical design and the behaviour of the system, composed of the fiber and its holder. Starting from the geometrical choices and from the analyses of the selected fiber, the response of the device is computed via numerical simulations. The geometry shape and characteristics of the optical components are selected among commercially available optical fibers while the shaping of the aluminium component used as clamper is chosen in order to easily set up the laboratory measures. The calculated model has been validated by means of an experimental setup. The results are well suitable to design a device for the transmission of concentrated solar energy via an optical fiber.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hana, H., Kimb, J.T.: Application of high-density daylight for indoor illumination next term. Energy 35(6), 2654–2666 (2010)

    Article  Google Scholar 

  2. Kima, J.T., Kimb, G.: Overview and new developments in optical daylighting systems for building a healthy indoor environment. Building and Environment 45(2), 256–269 (2010)

    Article  Google Scholar 

  3. Benton, C.C.: Daylighting can improve the quality of light and save energy. Architectural Lighting, 46–48 (1986)

    Google Scholar 

  4. Han, H.J., Jeon, Y.I., Lim, S.H., Kim, W.W., Chen, K.: New developments in illumination, heating and cooling technologies for energy-efficient buildings. Energy 35(6), 2647–2653 (2010)

    Article  Google Scholar 

  5. Guoa, C.-L., Zhua, X., Liao, Q., et al.: Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresource Technology 102(18), 8507–8513 (2011)

    Article  Google Scholar 

  6. Chen, C.Y., Saratale, G.D., Lee, C.M., Lee, P.C., Chang, J.S.: Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. International Journal of Hydrogen Energy 33(23), 6886–6895 (2008)

    Article  Google Scholar 

  7. An, Y., Kim, B.W.: Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. Journal of Biotechnology 80(1), 35–44 (2000)

    Article  Google Scholar 

  8. Feuermann, D., Gordon, J.M., Huleihil, M.: Solar fiber-optic mini-dish concentrators: first experimental results and field experience. Solar Energy 72(6), 459–472 (2002)

    Article  Google Scholar 

  9. Gordon, J.M., Feuermann, D., Huleihil Laser, M.: surgical effects with concentrated solar radiation. J. Appl. Phys. 93, 4843–4851 (2003)

    Article  Google Scholar 

  10. Feuermann, D., Gordon, J.M.: Gradient-index rods as flux concentrators with applications to laser fibre optic surgery. Opt. Eng. 40, 418–425 (2001)

    Article  Google Scholar 

  11. Barlev, D., et al.: Innovation in concentrated solar power. Solar Energy Materials and Solar Cells 95(10), 2703–2725 (2011)

    Article  Google Scholar 

  12. Ciamberlini, C., Arancini, F., et al.: Solar system for exploitation of the whole collected energy. Optics and Lasers in Engineering 39(2), 233–246 (2003)

    Article  Google Scholar 

  13. Carlini, M., et al.: International Conference on applied Energy, Suzhou (2012)

    Google Scholar 

  14. Comsol chemical reaction engineering module user guide v4.2a, 275–278 (2011)

    Google Scholar 

  15. Juvinall – Marschek: Fondamenti della progettazione di macchine, p. 821, Edizioni ETS

    Google Scholar 

  16. Pope, S.B.: Turbulent Flow, pp. 264–266. Cambridge Press (2000)

    Google Scholar 

  17. Comsol Heat transfer module users guide v4.2a, 238–239 (October 2011)

    Google Scholar 

  18. Comsol Multiphysics reference guide v4.2a, 521 (October 2011)

    Google Scholar 

  19. Pope, S.B.: Turbulent Flow, pp. 373–383. Cambridge Press (2000)

    Google Scholar 

  20. Comsol Heat transfer module users guide v4.2a, 242 (October 2011)

    Google Scholar 

  21. Comsol Heat transfer module users guide v4.2a, 243–244 (October 2011)

    Google Scholar 

  22. Armalyt, B.F., Durst, F., Pereira, J.C.F., Schonung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)

    Article  Google Scholar 

  23. 1st NAFEMS Workbook of CFD Examples. Laminar and Turbulent Two-Dimensional Internal Flows, pp. 38–49. NAFEMS (2000)

    Google Scholar 

  24. Comsol Multiphysics reference guide v4.2a, 522 (October 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carlini, M., Tucci, A.O.M. (2013). Modelling and Experimental Validation of an Optical Fiber for Solar Devices. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics