
The Screen representation of spin networks: 2D
recurrence, eigenvalue equation for 6j symbols,

geometric interpretation and Hamiltonian
dynamics.

Roger W. Anderson1, Vincenzo Aquilanti2,3, Ana Carla P. Bitencourt4, Dimitri
Marinelli5,6, and Mirco Ragni4

1 Department of Chemistry, University of California, Santa Cruz, CA 95064, U.S.A.
anderso@ucsc.edu

2 Dipartimento di Chimica, Università di Perugia, Italy
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Abstract. This paper treats 6j symbols or their orthonormal forms as
a function of two variables spanning a square manifold which we call the
“screen”. We show that this approach gives important and interesting
insight. This two dimensional perspective provides the most natural ex-
tension to exhibit the role of these discrete functions as matrix elements
that appear at the very foundation of the modern theory of classical
discrete orthogonal polynomials. Here we present 2D and 1D recursion
relations that are useful for the direct computation of the orthonormal
6j, which we name U . We present a convention for the order of the ar-
guments of the 6j that is based on their classical and Regge symmetries,
and a detailed investigation of new geometrical aspects of the 6j symbols.
Specifically we compare the geometric recursion analysis of Schulten and
Gordon with the methods of this paper. The 1D recursion relation, writ-
ten as a matrix diagonalization problem, permits an interpretation as a
discrete Shrödinger-like equations and an asymptotic analysis illustrates
semiclassical and classical limits in terms of Hamiltonian evolution.

1 Introduction

Continuing and extending previous work [1,2,3,4] on 6j symbols, (or on the equiv-
alent Racah coefficients), of current use in quantum mechanics and recently also
of interest as the elementary building blocks of spin networks [5,6,7], in this pa-
per we (i) - adopt a representation (the “screen”) accounting for exchange and
Regge symmetries; (ii) - introduce a recurrence relationship in two variables, al-
lowing not only a computational algorithm for the generation of the 6j symbols
to be plotted on the screen, but also representing a partial difference equation
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allowing us to interpret the dynamics of the two dimensional system. (iii) - in-
troduce a recurrence relationship as an equation in one variable, extending the
known ones which are also computationally interesting; (iv) - give a formula-
tion of the difference equation as a matrix diagonalization problem, allowing its
interpretation as a discrete Schrödinger equation; (v) - discuss geometrical and
dynamical aspects from an asymptotic analysis. We do not provide here detailed
proofs of these results, but give sufficient hints for the reader to work out the
derivations. For some of the topics we refer to a recent problem recently tackled
[8]; numerical and geometrical illustrations are presented on a companion paper
[9]. A concluding section introduces aspects of relevance for the general spin
networks by sketching some features of the 9j symbols.

2 The screen: Classical and Regge symmetries, Canonical
Form

The Wigner 6j symbols

{
j1 j2 j12
j3 j j23

}
are defined as a matrix element beetween

alternative angular momentum coupling schemes [10] by the relation

〈j1j2 (j12) j3jm | j1j2j3 (j23) j′m′〉 = (−1)
j1+j2+j3+j δjj′δmm′U (j1j2jj3; j12j23) ,

where the orthonormal transformation U is

U (j1j2jj3; j12j23) =
√

(2j12 + 1) (2j23 + 1)

{
j1 j2 j12
j3 j j23

}
(1)

For given values of j1, j2, j3, and j the U will be defined over a range for both
j12 and j23. These ranges are given by

j12 min =max (| j1 − j2 |, | j − j3 |) , j12 max = min (j1 + j2, j + j3) ,

j23 min =max (| j1 − j |, | j2 − j3 |) , j23 max = min (j1 + j, j2 + j3) ,

and j12 min ≤ j12 ≤ j12 max, j23 min ≤j23 ≤ j23 max. (2)

The screen corresponds to the 6j or, as we specify below, the U values for all
possible values of j12 and j23 .

The range for j12 and j23 is determined by the values of the independent
variables: j1, j2, j3, and j. In the remainder of this paper we make this clear by
introducing new variables a, b, c, d, x and y to replace the j values. We specify
the new variables by establishing a correspondence:{

a b x
c d y

}
⇔
{
j1 j2 j12
j3 j j23

}
(3)

Assuming that x and y remain respectively in the upper and lower right side of
the 6j symbols, there are four classical and one Regge relevant symmetries:{

a b x
c d y

}
=

{
b a x
d c y

}
=

{
d c x
b a y

}
=

{
c d x
a b y

}
=

{
s− a s− b x
s− c s− d y

}
, (4)



3

where s = (a+ b+ c+ d) /2 . It can be shown [2,1] that xmax − xmin = ymax −
ymin = 2 min (a, b, c, d, s− d, s− c, s− b, s− a) = 2κ. The square screen will

contain (2κ+ 1)
2

values. The canonical ordering for 6j screens can now be spec-
ified by considering the two sets of values: a, b, c, d and its Regge transform
a′ = s− a, b′ = s− b, c′ = s− c, and d′ = s− d. Take the set with the smallest
entry and use the classical 6j symmetries to place this smallest value in the
upper left corner of the 6j symbol. The placement of the other 6j arguments are
determined by the symmetry relations. The resulting symbol has the property
that xmin = b − a ≤ x ≤ b + a = xmax and ymin = d − a ≤ y ≤ d + a = ymax.
Furthermore we require that a ≤ b ≤ d for the Canonical form. This may require
using Eq. 5 to ”orient” the screen in this way.{

a b x
c d y

}
=

{
a d y
c b x

}
(5)

It can be shown that any symbol to be studied as a function of two entries can
be reduced to the canonical form of Eq. 5 where a ≤ b ≤ d ≤ b + c − a and
cmin = d− a+ b ≤ c ≤ d+ a− b = cmax.

Regge transformation for the parameters of the screen is a linear O(4) trans-
formation:

1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



a
b
c
d

 =


s− a
s− b
s− c
s− d

 . (6)

It can be checked that several functions appearing below (caustics, ridges, etc.)
are invariant under such symmetry and also when represented on the screen (See
[9]).

3 Tetrahedra and 6j symbols

In the following when we consider 6j properties as correlated to those of the
tetrahedron of Figure 1a [3], we use the substitutions A = a+ 1/2, B = b+ 1/2,
C = c+ 1/2, D = d+ 1/2, X = x+ 1/2, Y = y+ 1/2 which greatly improves all
asymptotic formulas down to surprisingly low values of the entries. We show the
argument ranges where the correspondence with the tetrahedron breaks down
in section 5.2.

The area of each triangular face is given by the Heron formula:

F (A,B,C) =
1

4

√
(A+B + C)(−A+B + C)(A−B + C)(A+B − C) (7)

where A, B, C are the sides of the face. Upper case letters are used here to
stress that geometric lengths are used in the equation. The square of the area
can be also expressed as a Cayley-Menger determinant. Similarly, the square of
the volume of an irregular tetrahedron, can also be written as a Cayley-Menger
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determinant (Eq. 8 or as a Gramian determinant [11]. The latter determinant
embodies a clearer relationship with a vectorial picture but with partial spoiling
of the symmetry.

V 2 =
1

288

∣∣∣∣∣∣∣∣∣∣
0 C2 D2 Y 2 1
C2 0 X2 B2 1
D2 X2 0 A2 1
Y 2 B2 A2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
. (8)

An explicit formula, due to Piero della Francesca, will be used in the compan-
ion paper [9]. Additionally mirror symmetry [1], can be used to extend screens
to cover a larger range of arguments. The appearance of squares of tetrahedron
edges entails that the invariance with respect to the exchange X ↔ −X implies
formally x↔ −x− 1 with respect to entries in the 6j symbol. Although this is
physically irrelevant when the js are pseudo-vectors, such as physical spins or
orbital angular momenta, it can be of interest for other (e.g. discrete algorithms)
applications. Regarding the screen, it can be seen that actually by continuation
of X and Y to negative values, one can have replicas that can be glued by cutting
out regions shaded in Fig. in [12], allowing mapping onto the S2 manifold.

Figure 1b illustrates V 2 for values of a, b, c, and d used later in this paper.

(a) Ponzano-Regge tetra-
hedron built with the six
angular momenta in the
6j symbol.
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(b) V 2 (contours for Eq. 8), caustics Eq. 12 (gray
boundary), ridges (solid white Eq. 9, dashed Eq. 13)
for a = 30, b = 45, c = 60, and d = 55.

Fig. 1

The following equations were first introduced in Refs. [1] and [3], but they
are rewritten here with changed notation. When the values of A, B, C, D and
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X are fixed, the maximum value for the volume as a function of Y is given by
the “ridge” curve

Y Vmax =

(
(A2 −B2)(C2 −D2) + (A2 +B2 + C2 +D2)X2 −X4

2X2

)1/2

, (9)

the corresponding volume is

V max(A,B,C,D,X) =

√
ΛA,B,XΛC,D,X

24X
, (10)

where
Λα,β,γ =

(
α2 − β2

)2 − 2γ2
(
α2 + β2

)
+ γ4. (11)

Therefore the two values of Y for which the volume is zero are:

Y z =

((
Y Vmax

)2 ± √ΛA,B,XΛC,D,X
2X2

)1/2

. (12)

The values for Y z mark the boundaries between classical and nonclassical re-
gions, and therefore called “caustics”.

Also when the values of A, B, C, D and Y are fixed, the maximum value for
the volume as a function of X is given by the other “ridge” curve:

XVmax =

(
(A2 −D2)(C2 −B2) + (A2 +B2 + C2 +D2)Y 2 − Y 4

2Y 2

)1/2

. (13)

4 Recursion formulas and exact calculations

The U values that are represented on the screen must be calculated by efficient
and accurate algorithms, and we employed several methods that we have previ-
ously discussed and tested. Explicit formulas are available either as sums over
a single variable and series, and we have used such calculations with multiple
precision arithmetic in previous work [13],[3], [14], [15] . These high accuracy
calculations are entirely reliable for all U that we have considered in the past,
and the results provide a stringent test for other methods. However recourse to
recursion formulas appears most convenient for fast accurate calculations and
-as we will emphasize- also for semiclassical analysis, in order to understand
high j limit and in reverse to interpret them as discrete wavefunctions obeying
Schrödinger type of difference (rather than differential) equations.

The goal is to determine the elements of the ortho-normal transformation
matrix:

U (x, y) =
√

(2x+ 1) (2y + 1)

{
a b x
c d y

}
. (14)

Two approaches can be used to evaluate U (x, y): evaluate the 6j from recursion
formulas and then apply the normalization or to use direct calculation from
explicit formulas.



6

4.1 2D (x,y) recursion for U

In this work, we first derive and computationally implement a two variable recur-
rence that permits construction of the whole orthonormal matrix The derivation
follows our paper in [14] and is also of interest for other 3nj symbols.

By setting h = 0 in the formula 43 in section 6 , we obtain a five term
recurrence relation for U(x, y):

(−1)
2x

√
2x− 1

2y + 1

{
b x− 1 a
1 a x

}{
d x− 1 c
1 c x

}
U (x− 1, y)

+(−1)
2x

√
2x+ 1

2y + 1

{
b x a
1 a x

}{
d x c
1 c x

}
U (x, y)

+(−1)
2x

√
2x+ 3

2y + 1

{
b x+ 1 a
1 a x

}{
d x+ 1 c
1 c x

}
U (x+ 1, y)

= (−1)
2y

√
2y − 1

2x+ 1

{
b y − 1 c
1 c y

}{
d y − 1 a
1 a y

}
U (x, y − 1)

+(−1)
2y

√
2y + 1

2x+ 1

{
b y c
1 c y

}{
d y a
1 a y

}
U (x, y)

+(−1)
2y

√
2y + 3

2x+ 1

{
b y + 1 c
1 c y

}{
d y + 1 a
1 a y

}
U (x, y + 1) (15)

This recurrence relation Eq. 15 will yield the entire set of U(x, y) that con-
stitute the screen. Replacing the 6j symbols of unit argument with the algebraic
expressions in Varshalovich [10], we obtain an effective method to calculate the
screen.

5 1D (x) symmetric recursion for U

Starting with the recurrence relation in Neville [16] and Schulten and Gordon
[17] for the 6j and carefully converting it into a recurrence relation for U , we can
write a three term symmetric recursion relationship, which is here conveniently
represented as an eigenvalue equation:

p+ (x)U (x+ 1, y) + w(x)U (x, y) + p− (x)U (x− 1, y) = λ (y)U (x, y) , (16)

where

p+ (x) = {(a+ b+ x+ 2) (a+ b− x) (a− b+ x+ 1) (−a+ b+ x+ 1)}
1
2

×{(d+ c+ x+ 2) (d+ c− x) (d− c+ x+ 1) (−d+ c+ x+ 1)}
1
2

×(x+ 1)
−1

[(2x+ 1) (2x+ 3)]
− 1

2

(17)
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p− (x) = p+ (x− 1) (18)

w (x) = [b (b+ 1)− a (a+ 1) + x (x+ 1)]

× [d (d+ 1)− c (c+ 1)− x (x+ 1)] / [x (x+ 1)]
(19)

λ (y) = 2 [y (y + 1)− b (b+ 1)− c (c+ 1)] . (20)

For convenience we can also define:

wλ = w (x)− λ (y) (21)

A row of the screen may be efficiently and accurately calculated from these
equations. Diagonalization of the symmetric tridiagonal matrix given by the
p+ (x) , w(x), p− (x) provides an accurate check: the eigenvalues of the tridiago-
nal matrix precisely match those expected from Eq. 20 and eigenvectors generate
U(x, y) . Stable results are obtained with double precision arithmetic.

5.1 Potential functions and Hamiltonian dynamics

For the eigenvalue equation (Eq. 16), interpreted as discrete Schrödinger-like
equation, two potentials W+ (x) and W− (x) can be defined:

W± (x) = w(x)± 2 | p (x) |, (22)

where [18]

p (x) =
1

2
(p+ (x) + p− (x)) (23)

or [19]

p (x) =
√

(p+ (x) p− (x)). (24)

The two definitions agree well except for x near the limits xmin or xmax. With
the second choice for p̄ (x) the values for W± are the same at the limits, but
there are differences with the first choice. See the figures 2a and 2b. Compare
with Ref. [8] where Hamiltonian dynamics is developed for a similar system.
Braun’s potential functions are closely related to the caustics illustrated in [1]
and [9].

5.2 Geometric interpretation

The geometrical interpretations of the 6j symbols provide fundamental under-
standing and important semiclassical limits. This approach originates from Pon-
zano and Regge [20] and elaborated by others, notably Schulten and Gordon
[17].

The three-term recursion relationship (Eq. 16), for U admits an illustration
in terms of a geometric interpretation: with some approximations to be detailed
below one has finite difference equations (see Ref.[16], Eq.(67) for relationships
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Fig. 2: Potential functions corresponding to Eq. 23 (dashed blue and black lines)
and Eq.24 (thin solid orange and red lines)

between recursions and finite difference), Consider the Schulten-Gordon rela-
tionships Eq.(66) and Eq.(67)(Ref. [17]). Here we show new geometric represen-
tations of the recursion relationships.

By setting a = A − 1
2 , b = B − 1

2 , c = C − 1
2 , d = D − 1

2 , x = X − 1
2 , and

y = Y − 1
2 one can write Eq. 16 in terms of triangle areas, a length X ′, and the

cosine of a dihedral angle θ3. The accuracy of this approximation is excellent,
and depends slightly on the choice for X ′.

F (X − 1
2 , A,B)F (X − 1

2 , C,D)(
X − 1

2

)2 U (x− 1, y)

+
F (X + 1

2 , A,B)F (X + 1
2 , C,D)(

X + 1
2

)2 U (x+ 1, y)

−2 cos θ3
F (X ′, A,B)F (X ′, C,D)

X ′2
U (x, y) ≈ 0 (25)

and Eq.(69)[17]

cos θ3 =
2X ′2Y 2 −X ′2 (−X ′2 +D2 + C2

)
−B2

(
X ′2 +D2 − C2

)
−A2

(
X ′2 −D2 + C2

)
16F (X ′, B,A)F (X ′, D,C)

,

(26)

where F (a, b, c) is “area” of abc triangle (Eq. 7). (This recursion relation Eq. 25
must be multiplied through by 8 to compare precisely with Eq. 16.

Here we consider two choices for X ′ in Eq. 19:

X ′2 =

(
X − 1

2

)(
X +

1

2

)
= X2 − 1

4
, (27)

X ′ = X (28)
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The first choice (Eq. 27) provides an almost exact approximation to Eqns. 17,
18,19, and 20 Coefficients in Eq. 16. The second Eq. 28 uses only integer or half
integer arguments, and for most X works as well as the first. The figures 3a and
3b show the errors and their significance. In these figures wλ (approx) is specified
as:

wλ (approx) = −2 cos θ3
F (X ′, A,B)F (X ′, C,D)

X ′2
(29)

For either choice of X ′, the recursion coefficients are connected to the geom-
etry of tetrahedra [20]:

3

2
V X ′ = F (X ′, A,B)F (X ′, C,D) sin θ3 , (30)

where V is the tetrahedral volume.
Equations 25 can be recast by the geometric mean approximation:

F (X ± 1
2 , A,B)(

X ± 1
2

) '
√
F (X ± 1, A,B)F (X,A,B)√

X (X ± 1)
, (31)

where A and B can be also replaced by C and D.
With Eq. 31 Eq. 25 becomes:√

F (X − 1, A,B)F (X,A,B)F (X − 1, C,D)F (X,C,D)

X (X − 1)
U (x− 1, y)

+

√
F (X + 1, A,B)F (X,A,B)F (X + 1, C,D)F (X,C,D)

X (X + 1)
U (x+ 1, y)

−2 cos θ3
F (X,A,B)F (X,C,D)

X2
U (x, y) ≈ 0, (32)

This equation is useful, but definitely less accurate than Eq. 25 (See Figures
4a and 4b).

With cancellation of terms in X, this Eq. 32 becomes:√
F (X − 1, A,B)F (X − 1, C,D)

(X − 1)
U (x− 1, y)

+

√
F (X + 1, A,B)F (X + 1, C,D)

(X + 1)
U (x+ 1, y)

−2 cos θ3

√
F (X,A,B)F (X,C,D)

X
U (x, y) ≈ 0. (33)

This is equivalent to the recursion relation of Schulten and Gordon [17], that
they use to establish their semiclassical approximations for 6j symbols. Their
equation is accurate enough for xmin � x� xmax, but not so accurate near the
limits.

In terms of the finite difference operator, Eq. 32 becomes after using Eq. 30:
∆2(x)f(x) = f(x+ 1)− 2f(x) + f(x− 1):

[∆2(X) + 2− 2 cos θ3]f(X) ' 0 , (34)
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where

f(X) =

√
F (X,A,B)F (X,C,D)

X
U (x, y) =

√
V

X sin θ3
U (x, y) . (35)

We have, explicitly

cos θ3 = ±

√
1−

(
3V X

2F (X,A,B)F (X,C,D)

)2

. (36)

Our Eq. 35 is only slightly different from that of Schulten and Gordon, be-
cause we have an extra X in the denominator of the definition of f (X). This
occurs because we use the recursion for U instead of that for 6j.

5.3 Semiclassical approximation

The following developments parallel those in [3]. From the above formulas, and
from that of the volume, we have that

– V = 0 implies cos θ3 = ±1 and establishes the classical domain between
Xmin and Xmax

– F (X,A,B) = 0 or F (X,C,D) = 0 establish the definition limits xmin and
xmax.

For a Schrödinger type equation

d2ψ

dx2
+ p2ψ = 0 , ~2/2m = 1 , (37)

its discrete analog in a grid having one as a step,

ψn+1 + (p2 − 2)ψn + ψn−1 = 0, (38)

and we then have after comparing Eq. 38 with Eq. 34

f(X + 1)− 2 cos θ3f(X) + f(X − 1) = 0. (39)

The identification
p = ±(2− 2 cos θ3)1/2 (40)

is then evident. Here we present a x,y plot Fig. 5 of 1− cos θ3 that clearly shows
this definition of the classical region.

Evidentially, on the closed loop, we can enforce Bohr-Sommerfeld phase space
quantization: ∮

p dx = (n+ 1/2) π . (41)

The eigenvalues n obtained in this way may be easily related to the allowed
y. These formulas are illustrated in Fig. 6 and 7 of Ref [3].
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Fig. 5: x,y plot of cos θ3 for angular momenta of Fig 1(b)

The Ponzano-Regge formula for the 6j in the classical region is{
a b x
c d y

}
≈ 1√

12π|V |
cos (Φ) , (42)

where the Ponzano-Regge phase is: Φ = Aθ1+Bθ2+Xθ3+Cη1+Dη2+Y η3+ π
4 .

The angles are determined by rearranged equations: Eq. 30. The various dihedral
angles are found from the equations in [20].

To the extent that the Ponzano-Regge approximation is valid we see that the
6j symbols have a magnitude envelop given by V and a phase that is a function
of X and Y determined by Φ. Eq. 42 works quite well for X and Y well within
the classical region. However its use near the caustics is limited because of two
factors:

1. The approximate recursion relation given by Eq. 32 differs most from the
exact recursion Eqs. 17,18,19,20 near the caustics.

2. The semiclassical approximation for the 6j also breaks down near the caus-
tics.

For piece-wise extensions , see [20] and for uniformly valid formulas see [17].

6 9j and higher spin networks

In this work, we first have derived and computationally implemented a two
variable recurrence that permits construction of the whole orthonormal matrix
The derivation follows our paper in [14] and is also of interest for other 3nj
symbols.

We find in [14]; see also [10], the following 2D recurrence relationship for 9j
symbols:
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Ac+1(ab,fj)
(c+1)(2c+1)

a b c+ 1
d e f
g h j

+ Ac(ab,fj)
c(2c+1)

a b c− 1
d e f
g h j

− Ad+1(ef,ag)
(d+1)(2d+1)

 a b c
d+ 1 e f
g h j


−Ad(ef,ag)

d(2d+1)

 a b c
d− 1 e f
g h j

 =
[
Bd(ag,fe)
d(d+1) −

Bc(ab,jf)
c(c+1)

]a b c
d e f
g h j


Aq (pr, st) = [(−p+ r + q) (p− r + q) (p+ r − q + 1) (p+ r + q + 1)]

1
2

×[(−s+ t+ q) (s− t+ q) (s+ t− q + 1) (s+ t+ q + 1)]
1
2

Bq (pr, st) = [q (q + 1)− p (p+ 1) + r (r + 1)] [q (q + 1)− s (s+ 1) + t (t+ 1)]

(43)

Geometrical interpretations of A’s as proportional to products of areas of trian-
gular faces and of B’s as angular functions of associated structures, will serve for
further work on the dynamical description of general spin networks. As noted in
[14], Eq. 15 can be derived by setting h = 0 in Eq. 43, and using the property
that a 3nj symbol downgrades to a (3n− 1)j symbol when one of its entries is
zero. In conclusion, expanding the discussion of Eq. 43 in [14], we suggest that
the “screen” for the above 9j symbols is three-dimensional, and generalization
to higher spin networks should be straight forward.
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