Skip to main content

Airborne Lidar in Archaeology: Overview and a Case Study

  • Conference paper
Book cover Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7972))

Included in the following conference series:

Abstract

Airborne laser scanning (ALS) is an optical measurement technique for obtaining high-precision information about the Earth’s surface including basic terrain mapping (Digital terrain model, bathymetry, corridor mapping), vegetation cover (forest assessment and inventory), coastal and urban areas. Recent studies examined the possibility of using ALS in archaeological investigations to identify features of cultural interest, although the ability of this technology in this context has not yet been studied in detail. In this paper we provide an overview of past and present applications of ALS, as tool for detecting archaeological and palaeo-environmental features on bare surface as well as on vegetated and wooded areas. Moreover, a case study, related to an Etruscan site in Northern Latium, is showed. The LiDAR data were used for the first time, to our best knowledge, to identify looted tombs covered by vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doneus, M., Briese, C., Fera, M., Janner, M.: Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science 35(4), 882–893 (2008)

    Article  Google Scholar 

  2. Holden, N., Horne, P., Bewley, R.: High-resolution digital airborne mapping and archaeology. In: Bewley, R.H., Raczkowski, W. (eds.) Aerial Archaeology: developing future practice, NATO Science Series, sub-series I: Life and Behavioural Sciences, pp. 173–180. IOS Press, Netherlands (2002)

    Google Scholar 

  3. Van Zijverden, W.K., Laan, W.N.H.: Landscape reconstructions and predictive modeling in archaeological research, using a LIDAR based DEM and digital boring databases. In: Archeologie und Computer, Workshop 7, Vienna, Austria (2003), http://www.archeologie.leidenuniv.nl/content_docs/research/vanzijverden_laan_2005_landscape__reconstructions.pdf

  4. Sittler, B.: Revealing Historical Landscapes by Using Airborne Laser Scanning. A 3-D Modell of Ridge and Furrow in Forests near Rastatt (Germany). In: Thies, M., Koch, B., Spiecker, H., Weinacker, H. (eds.) Proceedings of Natscan, Laser-Scanners for Forest and Landscape Assessment - Instruments, Processing Methods and Applications. International Archives of Photogrammetry and Remote Sensing, vol. XXXVI, pp. 258–261, Part 8/W2 (2004)

    Google Scholar 

  5. Barnes, I.: Aerial remote-sensing techniques used in the management of archaeological monuments on the British Army’s Salisbury Plain Training Area, Wiltshire, UK. Archaeological Prospection 10, 83–91 (2003)

    Article  Google Scholar 

  6. Pfeifer, N., Gorte, B., Elberink, S.O.: Influences of vegetation on laser altimetry e analysis and correction approaches. In: Thies, M., Koch, B., Spiecker, H., Weinacker, H. (eds.) Proceedings of Natscan, Laser-Scanners for Forest and Landscape Assessment - Instruments, Processing Methods and Applications. International Archives of Photogrammetry and Remote Sensing, vol. XXXVI, pp. 283–287, Part 8/W2 (2004)

    Google Scholar 

  7. Bewley, R.H., Crutchley, S.P., Shell, C.: New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. Antiquity 79, 636–647 (2005)

    Google Scholar 

  8. Devereux, B.J., Amable, G.S., Crow, P., Cliff, A.D.: The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity 79, 648–660 (2005)

    Google Scholar 

  9. Coren, F., Visintini, D., Fales, F.M., Sterzai, P., Preparo, G., Rubinich, M.: Integrazione di dati laser scanning ed iperspettrali per applicazioni archeologiche. In: Atti 9a Conferenza Nazionale ASITA, Catania, Novembre 15-18 (2005)

    Google Scholar 

  10. Humme, A., Lindenbergh, R., Sueur, C.: Revealing Celtic fields from lidar data using kriging based filtering. In: Proceedings of the ISPRS Commission V Symposium, Dresden, September 25-27, vol. XXXVI, part 5, pp. 25–27 (2006)

    Google Scholar 

  11. Harmon, J.M., Leone, M.P., Prince, S.D., Snyder, M.: Lidar for archaeological landscape analysis: a case study of two eighteenth-century Maryland plantation sites. American Antiquity 71(4), 649–670 (2006)

    Article  Google Scholar 

  12. Corns, A., Shaw, R.: High resolution LiDAR for the recording of archaeological monuments & landscapes. In: Lasaponara, R., Masini, N. (eds.) Advances in Remote Sensing for Archaeology and Cultural Heritage Management, Aracne, Roma, pp. 99–102 (2008)

    Google Scholar 

  13. Rowlands, A., Sarris, A.: Detection of Exposed and Subsurface Archaeological Structures Using Multi-sensor Remote Sensing. Journal of Archaeological Sciences 34(5), 795–803 (2007)

    Article  Google Scholar 

  14. Gallagher, J.M., Josephs, R.L.: Using LiDAR to Detect Cultural Resources in a Forested Environment: an Example from Isle Royale National Park, Michigan, USA. Archaeological Prospection 15, 187–206 (2008)

    Article  Google Scholar 

  15. Challis, K., Kokalj, Z., Kincey, M., Moscrop, D., Howard, A.J.: Airborne lidar and historic environment records. Antiquity 82(318), 1055–1064 (2008)

    Google Scholar 

  16. Hesse, R.: LiDAR-derived Local Relief Models (LRM) – a new tool for archaeological prospection. Archaeological Prospection 17, 67–72 (2010)

    Google Scholar 

  17. Danese, M., Biscione, M., Coluzzi, R., Lasaponara, R., Murgante, B., Masini, N.: An Integrated Methodology for Medieval Landscape Reconstruction: The Case Study of Monte Serico. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 328–340. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Chase, A.F., Chase, D.Z., Weishampel, J.F., Drake, J.B., Shrestha, R.L., Slatton, K.C., Awe, J.J., Carter, W.E.: Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. Journal of Archaeological Science 38, 387–398 (2010)

    Article  Google Scholar 

  19. Stal, C., Bourgeois, J., De Maeyer, P., De Mulder, G., De Wulf, A., Goossens, R., Nuttens, T., Stichelbaut, B.: Kemmelberg (Belgium) case study: comparison of DTM analysis methods for the detection of relicts from the First World War. In: Proc. 30th EARSeL Symposium: Remote Sensing for Science, Education and Culture (2010)

    Google Scholar 

  20. Lasaponara, R., Masini, N.: Full-waveform Airborne Laser Scanning for the detection of medieval archaeological microtopographic relief. Journal of Cultural Heritage 10S, e78–e82 (2009)

    Google Scholar 

  21. Lasaponara, R., Coluzzi, R., Gizzi, F.T., Masini, N.: On the LiDAR contribution for the archaeological and geomorphological study of a deserted medieval village in Southern Italy. Journal Geophysics Engineering 7, 155–163 (2010)

    Article  Google Scholar 

  22. Lasaponara, R., Masini, N., Holmgren, R., Backe Forsberg, Y.: Integration of aerial and satellite remote sensing for archaeological investigations: a case study of the Etruscan site San Giovenale. Journal of Geophysics and Engineering 9, S26–S39 (2012)

    Google Scholar 

  23. Chase, A.F., Chase, D.Z., Fisher, C.T., Leisz, S.J., Weishampel, J.F.: Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. PNAS 109(32), 12916–12921 (2012), http://www.pnas.org/cgi/doi/10.1073/pnas.1205198109

    Article  Google Scholar 

  24. Vosselman, G.: Slope based filtering of laser altimetry data. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences XXXIII (pt. B3), 935–942 (2000)

    Google Scholar 

  25. Sithole, G.: Filtering of laser altimetry data using a slope adaptive filter. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV(pt. 3/W4), 203–210 (2001)

    Google Scholar 

  26. Roggero, M.: Airborne laser scanning: clustering in raw data. International Archives of Photogrammetry and Remote Sensing XXXIV(B3/W4), 227–232 (2001)

    Google Scholar 

  27. Lohmann, P.: Segmentation and filtering of laser scanner digital surface models. In: IAPRS, Xi’an, China, August 22-23, vol. 34(2), WG II/2, pp. 311–315 (2000)

    Google Scholar 

  28. Axelsson, P.: DEM generation from laser scanner data using adaptive TIN models. In: IAPRS, Amsterdam, Netherlands, vol. XXXIII, B4, pp. 111–118 (2000)

    Google Scholar 

  29. Kraus, K., Pfeifer, N.: Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS JPRS 53, 193–203 (1998)

    Article  Google Scholar 

  30. Elmqvist, M.: Ground estimation of laser radar data using active shape models. In: Proc. OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, March 1-3, p. 8. OEEPE Publication no. 40 (on CD-ROM) (2001)

    Google Scholar 

  31. Sithole, G., Vosselman, G.: Experimental comparison of filtering algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 59(1-2), 85–101 (2004)

    Article  Google Scholar 

  32. Tovari, D., Pfeifer, N.: Segmentation based robust interpolation - a new approach to laser data filtering. In: ISPRS Workshop Laser Scanning 2005 (2005)

    Google Scholar 

  33. Brovelli, M.A., Reguzzoni, M., Sansò, F., Venuti, G.: Modelli matematici del terreno permezzo di interpolatori a spline. Bollettino SIFET, Supplemento Speciale 2, 55–80 (2001)

    Google Scholar 

  34. Masini, N., Coluzzi, R., Lasaponara, R.: On the Airborne Lidar Contribution in Archaeology: from Site Identification to Landscape Investigation. In: Wang, C.-C. (ed.) Laser Scanning, Theory and Applications, pp. 263–290. Intech (2011) ISBN 978-953-307-205-0

    Google Scholar 

  35. Kokalj, Z., Zaksek, K., Ostir, K.: Visualizations of lidar derived relief models. In: Opitz, R.S., Cowley, D.C. (eds.) Interpreting Archaeological Topography. 3d Data, Visualization and Observation, pp. 100–114. Oxbow Books, Oxford (2012)

    Google Scholar 

  36. Richards, J.A.: Remote Sensing Digital Image Analysis. Springer (1986)

    Google Scholar 

  37. Boethius, A., Fries, C., Gjerstad, E., Hanell, K., Östenberg, C.E., Thordeman, B., Welin, E., Wetter, E.: Etruscan Culture: Land and People: Archaeological Research and Studies Conducted in San Giovenale and its Environs by Members of the Swedish Institute. Columbia University Press, New York (1962)

    Google Scholar 

  38. Thomasson, B.: San Giovenale 1:1. General introduction (ActaRom-4o, 26:1:1), Stockholm (1972)

    Google Scholar 

  39. Pohl, I.: Nuovi contributi alla storia dell’abitato Etrusco di San Giovenale nel periodo fra il 500–200 a.C. Parola Passato 40, 43–63 (1985)

    Google Scholar 

  40. Karlsson, L.: San Giovenale, 4:1. Area F East. Huts and houses on the Acropolis (ActaRom-4o, 26:4:1), Stockholm (2006)

    Google Scholar 

  41. Lasaponara, R., Masini, N., Holmgren, R., Backe Forsberg, Y.: Integration of aerial and satellite remote sensing for archaeological investigations: a case study of the Etruscan site San Giovenale. Journal of Geophysics and Engineering 9, 26–39 (2012), doi:10.1088/1742-2132

    Article  Google Scholar 

  42. Backe Forsberg, Y., Holmgren, L.A., Lasaponara, R., Masini, N.: Airborne and satellite multispectral imagery at the Etruscan site of San Giovenale, Blera (Lazio)—preliminary results Advances. In: Lasaponara, R., Masini, N. (eds.) Remote Sensing for Archaeology and Cultural Heritage Management, pp. 225–228. Aracne, Roma (2008)

    Google Scholar 

  43. van Velzen, D.T.: The world of Tuscan tomb robbers: Living with the local community and the ancestors. International Journal of Cultural Property 5, 111–126 (1996)

    Article  Google Scholar 

  44. Elia, R.J.: Looting, Collecting, and the Destruction of Archaeological Resources. Non Renewable Resources 6(2) (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masini, N., Lasaponara, R. (2013). Airborne Lidar in Archaeology: Overview and a Case Study. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics