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Abstract. Efficient ontology debugging is a cornerstone for many activities in
the context of the Semantic Web, especially when automatic tools produce (parts
of) ontologies such as in the field of ontology matching. The best currently known
interactive debugging systems rely upon some meta information in terms of fault
probabilities, which can speed up the debugging procedure in the good case, but
can also have negative impact on the performance in the bad case. The problem
is that assessment of the meta information is only possible a-posteriori. Conse-
quently, as long as the actual fault is unknown, there is always some risk of sub-
optimal interactive diagnoses discrimination. As an alternative, one might prefer
to rely on a tool which pursues a no-risk strategy. In this case, however, possi-
bly well-chosen meta information cannot be exploited, resulting again in ineffi-
cient debugging actions. In this work we present a reinforcement learning strategy
that continuously adapts its behavior depending on the performance achieved and
minimizes the risk of using low-quality meta information. Therefore, this method
is suitable for application scenarios where reliable a-priori fault estimates are
difficult to obtain. Using problematic ontologies in the field of ontology match-
ing, we show that the proposed risk-aware query strategy outperforms both active
learning approaches and no-risk strategies on average in terms of required amount
of user interaction.

1 Introduction

The foundation for widespread adoption of Semantic Web technologies is a broad com-
munity of ontology developers which is not restricted to experienced knowledge engi-
neers. Instead, domain experts from diverse fields should be able to create ontologies
incorporating their knowledge as autonomously as possible. The resulting ontologies
are required to fulfill some minimal quality criteria, usually consistency, coherency and
no undesired entailments, in order to grant successful deployment. However, the correct
formulation of logical descriptions in ontologies is an error-prone task which accounts
for a need for assistance in ontology development in terms of ontology debugging tools.
Usually, such tools [14,7,2,4] use model-based diagnosis [13] to identify sets of faulty
axioms, called diagnoses, that need to be modified or deleted in order to meet the im-
posed quality requirements. The major challenge inherent in the debugging task is often
a substantial number of alternative diagnoses. This problem has been addressed in [15]
by proposing a debugging method based on active learning which exploits additional
information in terms of queries to a user about the intended ontology. Thereby, the se-
lection of queries is guided by the specification of some meta information, i.e. prior
knowledge about fault probabilities of a user w.r.t. particular logical operators. When
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chosen appropriately, this meta information proved to be very useful in that the interac-
tion with the domain expert can be drastically reduced. However, given that only poor
prior knowledge is available, the amount of interaction increased compared to methods
which manifest constant performance without taking into account any meta informa-
tion.

A similar interactive technique can be found in [11], where queries to a user are
incorporated to revise an ontology. Ontology revision aims at partitioning a given on-
tology into a set of correct axioms and a set of incorrect ones. The system can deal with
inconsistent/incoherent ontologies only after a union of all axioms causing these prob-
lems is identified and added to the initial set of incorrect axioms. Computation of these
axioms, however, requires ontology debugging, which is not addressed in the paper.

In a debugging scenario involving a faulty ontology developed by one expert, the
meta information might be extracted from the logs of previous sessions, if available, or
specified by the expert based on their experience w.r.t. own faults. However, in scenarios
involving automatized systems producing (parts of) ontologies, e.g. ontology alignment
and ontology learning, or numerous users collaborating in modeling an ontology, the
choice of reasonable meta information is rather unclear. If, on the one hand, an active
learning method is used relying on a guess of the meta information, this might result
in an overhead w.r.t. user interaction of more than 2000%. If one wants to play it safe,
on the other hand, by deciding not to exploit any meta information at all, this might
also result in substantial extra time and effort for the user. So, thitherto one is spoilt for
choice between strategies with high potential but also high risk, or methods with no risk
but also no potential.

In this work we present an ontology debugging approach with high potential and
low risk, which allows to minimize user interaction throughout a debugging session
on average, without depending on high-quality meta information. By virtue of its re-
inforcement learning capability, our approach is optimally suited for debugging on-
tologies where only vague or no meta information is available. On the one hand, our
method takes advantage of the given meta information as long as good performance is
achieved. On the other hand, it gradually gets more independent of meta information if
suboptimal behavior is measured. Moreover, our strategy can take into account an ex-
pert’s subjective quality estimation of the meta information. In this way an expert may
decide to take influence on the algorithm’s behavior by limiting the range of admissi-
ble values the learning parameter may take. Alternatively, the algorithm acts freely and
finds a profitable strategy on its own. This is accomplished by constantly improving the
quality of meta information and adapting a risk parameter based on the new informa-
tion obtained by queries answered by the user. This means that, in case of good meta
information, the performance of our method will be close to the performance of the
active learning method, whereas, in case of bad meta information, the achieved perfor-
mance will approach the performance of the risk-free strategy. So, our approach can be
seen as a risk optimization strategy (RIO) which combines the benefits of active learn-
ing and risk-free strategies. Experiments on two datasets of faulty ontologies show the
feasibility, efficiency and scalability of RIO. The evaluation of these experiments will
manifest that, on average, RIO is the best choice of strategy for both good and bad meta
information with savings in terms of user interaction of up to 80%.



The problem specification, basic concepts and a motivating example are provided in
Section 2. Section 3 explains the suggested approach and gives implementation details.
Evaluation results are described in Section 4. Section 5 concludes.

2 Basic Concepts and Motivation

Ontology debugging deals with the following problem: Given is an ontology O which
does not meet postulated requirements R, e.g. R = {coherency, consistency}. O is a
set of axioms formulated in some monotonic knowledge representation language, e.g.
OWL. The task is to find a subset of axioms in O, called diagnosis, that needs to be
altered or eliminated from the ontology in order to meet the given requirements. To this
end, our approach to ontology debugging presumes sound and complete procedures for
deciding logical consistency and for calculating logical entailments, which are used as a
black box. For OWL, e.g., both functionalities are provided by a standard DL-reasoner.

Generally, there are many diagnoses for one and the same faulty ontology O. The
problem is then to figure out the single diagnosis, called target diagnosis Dt, that com-
plies with the knowledge to be modeled by the intended ontology. In interactive ontol-
ogy debugging we assume a user, e.g. the author of the faulty ontology or a domain
expert, interacting with an ontology debugging system by answering queries about en-
tailments of the desired ontology, called the target ontology Ot. The target ontology
can be understood as O minus the axioms of Dt plus additional axioms EXDt

which
can be added in order to regain desired entailments which might have been eliminated
together with axioms in Dt. Note that the user is not expected to know Ot explicitly
(in which case there would be no need to consult an ontology debugger), but implic-
itly in that they are able to answer queries about Ot. Roughly speaking, each query is
a set of logical descriptions and the user is queried whether the conjunction of these
descriptions is entailed byOt. Every positively (negatively) answered query constitutes
a positive (negative) test case fulfilled byOt. The set of positive (entailed) and negative
(non-entailed) test cases is denoted by P and N , respectively. So, P and N are sets of
sets of axioms, which can be, but do not need to be, initially empty. Test cases can be
seen as constraintsOt must satisfy and are therefore used to gradually reduce the search
space for valid diagnoses. Simply put, the overall procedure consists of (1) computing
a predefined number of diagnoses, (2) gathering additional information by querying the
user, (3) incorporating this information to cut irrelevant areas off the search space, and
so forth, until the search space is reduced to a single (target) diagnosis Dt.

The general debugging setting we consider also envisions the opportunity for the
user to specify some background knowledge B, i.e. a set of axioms which are known to
be correct. B is then incorporated in the calculations throughout the ontology debugging
procedure. For example, in case the user knows that a subset of axioms inO is definitely
sound, all axioms in this subset are added to B before initiating the debugging session.
Then, B and O \ B partition the original ontology into a set of correct and possibly
incorrect axioms, respectively. In the debugging session, only O := O \ B is used to
search for diagnoses. This can reduce the search space for diagnoses substantially.

More formally, ontology debugging can be defined in terms of conditions a target
ontology must fulfill, which leads to the definition of a diagnosis problem instance, for
which we search for solutions, i.e. diagnoses:



Definition 1 (Target Ontology, Diagnosis Problem Instance). Let O = (T ,A) de-
note an ontology consisting of a set of terminological axioms T and a set of assertional
axioms A, P a set of positive test cases, N a set of negative test cases, B a set of
background knowledge axioms, and R a set of requirements to an ontology1. Then an
ontology Ot is called target ontology iff all the following conditions are fulfilled:

∀ r ∈ R : Ot ∪ B fulfills r
∀ p ∈ P : Ot ∪ B |= p

∀n ∈ N : Ot ∪ B 6|= n

The tuple 〈O,B,P ,N 〉R is called a diagnosis problem instance iff B ∪ (
⋃

p∈P p) 6|= n
for all n ∈ N andO is not a target ontology, i.e.O violates at least one of the conditions
above.

Definition 2 (Diagnosis). We call D ⊆ O a diagnosis w.r.t. a diagnosis problem in-
stance 〈O,B,P ,N 〉R iff there exists a set of axioms EXD such that (O \ D) ∪ EXD
is a target ontology. A diagnosis D is minimal iff there is no D′ ⊂ D such that D′ is
a diagnosis. A diagnosis D gives complete information about the correctness of each
axiom axk ∈ O, i.e. all axi ∈ D are assumed to be faulty and all axj ∈ O \ D are
assumed to be correct. The set of all minimal diagnoses is denoted by D.

The identification of an extension EXD, accomplished e.g. by some learning approach,
is a crucial part of the ontology repair process. However, the formulation of a complete
extension is outside the scope of this work where we focus on computing diagnoses.
Following the approach suggested in [15], we approximate EXD by the set

⋃
p∈P p.

An immediate consequence of Definition 2 is: The more test cases are specified, the
fewer minimal diagnoses D exist for a diagnosis problem instance. So, the uncertainty
about the target diagnosis Dt ∈ D is gradually reduced by specifying test cases.
Example: Consider the OWL ontology O encompassing the following terminology T :

ax 1 : PhD v Researcher
ax 2 : Researcher v DeptEmployee
ax 3 : PhDStudent v Student
ax 4 : Student v ¬DeptMember
ax 5 : PhDStudent v PhD
ax 6 : DeptEmployee v DeptMember

and an assertional axiom A = {PhDStudent(s)}. Then O is inconsistent since it
describes a PhD student as both a department member and not.

Let us assume that the assertion PhDStudent(s) is considered as correct and is
thus added to the background theory, i.e. B = A, and both sets P and N are empty.
Then, the set of minimal diagnoses D = {D1 : [ax 1],D2 : [ax 2],D3 : [ax 3],D4 :
[ax 4],D5 : [ax 5],D6 : [ax 6]} for the given problem instance 〈T ,A, ∅, ∅〉. D can be
computed by a diagnosis algorithm such as the one presented in [2].

With six diagnoses for six ontology axioms, this example might already give an
idea that in many cases the number of diagnoses D can get very large. Without any prior
knowledge, each of the diagnoses in D is equally likely to be the target diagnosisDt. So,

1 Throughout the paper we consider debugging of inconsistent and/or incoherent ontologies, i.e.
whenever not stated explicitly we assume R = {consistency, coherency}.



it depends on the specified test cases, i.e. answers to the queries asked to the user, which
diagnosis will be the target diagnosis. The test cases, however, represent properties,
i.e. entailments and non-entailments, of the target ontology Ot := (O \ Dt) ∪ EXDt

and thus allow to constrain the possibilities for Dt. In order to define a query [15],
the fact is exploited that ontologies O \ Di and O \ Dj resulting in application of
different diagnoses Di,Dj ∈ D (Di 6= Dj) entail different sets of logical descriptions.
When we speak of entailments, we address the output computed by the classification
and realization services of a reasoner. Formally, a query is defined as follows:

Definition 3 (Query). A set of logical descriptions Xj is called a query iff there ex-
ists a set of diagnoses ∅ ⊂ D′ ⊂ D such that Xj is entailed by each ontology in
{O∗i | Di ∈ D′} where O∗i := (O \ Di) ∪ B ∪

⋃
p∈P p. Asking a query Xj to a user

means asking them (Ot |= Xj?). The set of all queries w.r.t. D is denoted by XD.2

Each query Xj partitions the set of diagnoses D into 〈DP
j ,D

N
j ,D

∅
j 〉 such that:

DP
j = {Di | O∗i |= Xj}

DN
j = {Di | O∗i ∪Xj is inconsistent}

D∅j = D \ (DP
j ∪DN

j )

If the answering of queries by a user u is modeled as a function au : X → {yes, no},
then the following holds: If au(Xj) = yes, then Xj is added to the positive test cases,
i.e. P ← P ∪ {Xj}, and all diagnoses in DN

j are rejected. Given that au(Xj) = no,
then N ← N ∪ {Xj} and all diagnoses in DP

j are rejected.
This allows us to formulate the subproblem of ontology debugging addressed in this

work:
Definition 4 (Diagnosis Discrimination). Given the set of diagnoses D = {D1, . . . ,Dn}
w.r.t. 〈O,B,P ,N 〉R and a user u, find a sequence (X1, . . . , Xq) of queries Xi ∈ X
with minimal q, such that D = {Dt} after assigning Xi(i=1...,q) each to either P iff
au(Xi) = yes or N iff au(Xi) = no.3

A set of queries for a given set of diagnoses D can be generated as shown in Algo-
rithm 1. In each iteration, for a set of diagnoses DP ⊂ D, the generator gets a set of
logical descriptionsX that are entailed by each ontologyO∗i whereDi ∈ DP (function
GETENTAILMENTS). These descriptions X are then used to classify the remaining di-
agnoses in D \DP in order to obtain the partition 〈DP ,DN ,D∅〉 associated with X .
Then, together with its partition, X is added to the set of queries X. Note that in real-
world applications, investigation of all possible subsets of the set D might be infeasible.
Thus, it is common to approximate the set of all minimal diagnoses by a set of leading
diagnoses. This set comprises a predefined number n of minimal diagnoses.

The query generation algorithm returns a set of queries X that generally contains a
lot of elements. Therefore the authors in [15] suggested two query selection strategies.
Split-in-half strategy, selects the query Xj which minimizes the following scoring
function:

scsplit(Xj) =
∣∣|DP

j | − |DN
j |
∣∣+ |D∅j |

2 For the sake of simplicity, we will use X instead of XD throughout this work because the D
associated with X will be clear from the context.

3 Since the user u is assumed fixed throughout a debugging session and for brevity, we will use
ai equivalent to au(Xi) in the rest of this work.



Algorithm 1: Query Generation
Input: diagnosis problem instance 〈O,B,P,N 〉, set of diagnoses D
Output: a set of queries and associated partitions X

1 foreach DP ⊂ D do
2 X ← getEntailments(O,B,P,DP );
3 ifX 6= ∅ then
4 foreachDr ∈ D \DP do
5 if O∗r |= X then DP ← DP ∪ {Dr};
6 else ifO∗r ∪X is inconsistent then DN ← DN ∪ {Dr};
7 else D∅ ← D∅ ∪ {Dr};

8 X← X ∪
〈
X,DP ,DN ,D∅

〉
9 return X;

I.e. this strategy prefers queries which eliminate half of the diagnoses independently of
the query outcome.
Entropy-based strategy, uses information about prior probabilities pt for the user to
make a fault when using a syntactical construct of type t ∈ CT where CT is the set
of construct types available in the used logical description language. E.g., ∀, ∃, v, ¬,
t, u are some OWL DL construct types. These fault probabilities pt are assumed to
be independent and used to calculate fault probabilities of axioms axk as p(axk) =
1−

∏
t∈CT (1− pt)n(t) where n(t) is the number of occurrences of construct type t in

axk. The probabilities of axioms can in turn be used to determine fault probabilities of
diagnoses Di ∈ D as

p(Di) =
∏

axr∈Di

p(ax r)
∏

axs∈O\Di

(1− p(ax s)). (1)

The strategy is then to select the query which minimizes the expected entropy of the
set of leading diagnoses D after the query is answered. This means that the expected
uncertainty is minimized and the expected information gain is maximized. According to
[8], this is equivalent to choosing the query Xj which minimizes the following scoring
function:

scent(Xj) =
∑

aj∈{yes,no}

p(aj) log2 p(aj) + p(D∅j ) + 1

This function is minimized by queries Xj with p(DP
j ) = p(DN

j ) = 0.5. So, entropy-
based query selection favors queries whose outcome is most uncertain. After each query

Algorithm 2: Generic Diagnosis Discrimination
Input: diagnosis problem instance 〈O,B,P,N 〉, set of diagnoses D, set of prior fault probabilitiesDP
Output: target diagnosis {Dt}

1 repeat
2 X ← getBestQuery (D, DP ) ;
3 if getAnswer (X) =yes then D← D \DN ; P ← P ∪ {X} ;
4 else D← D \DP ; N ← N ∪ {X};
5 until |D| = 1;
6 return D;



Xj , the diagnosis probabilities are updated according to the Bayesian formula:

p(Di|aj) =
p(aj |Di) p(Di)

p(aj)
(2)

where aj ∈ {yes, no},

p(aj = yes) =
∑
Dr∈DP

j

p(Dr) +
1

2

∑
Dk∈D∅j

Dk

and p(aj |Dk) := 1/2 forDk ∈ D∅j , p(aj |Dk) = 0 ifDk is rejected by the query answer
aj and 1 otherwise.

A generic diagnosis discrimination algorithm (see Algorithm 2) can use either of the
strategies to identify the target diagnosis Dt. The selection strategy implemented in the
GETBESTQUERY function determines the sequence of queries. The result of the evalu-
ation in [15] shows that entropy-based query selection reveals better performance than
split-in-half in most of the cases. However, split-in-half proved to be the best strategy
in situations when only vague priors are provided, i.e. the target diagnosisDt has rather
low prior fault probability. Therefore selection of prior fault probabilities is crucial for
successful query selection and minimization of user interaction.
Example (continued): To illustrate this, let a user who wants to debug our example
ontology O set p(ax i) := 0.001 for axi(i=1,...,4) and p(ax 5) := 0.1, p(ax 6) := 0.15,
e.g. because the user doubts the correctness of ax 5, ax 6 while being quite sure that
axi(i=1,...,4) are correct. Assume thatD2 corresponds to the target diagnosisDt, i.e. the
settings provided by the user are inept. Application of entropy-based query selection
starts with computation of prior fault probabilities of diagnoses p(D1) = p(D2) =
p(D3) = p(D4) = 0.003, p(D5) = 0.393, p(D6) = 0.591 (Formula 1). Then X1, i.e.
(Ot |= {DeptEmployee(s), Student(s)}?), will be identified as the optimal query
since it has the minimal score scent(X1) = 0.02 (see Table 1). However, since the
unfavorable answer a1 = no is given, this query eliminates only two diagnoses D4

and D6 (worst case elimination rate ewc(X1) = 2
6 ). The probability update given by

Formula 2 then yields p(D2) = p(D3) = p(D4) = 0.01 and p(D5) = 0.97. As the next
query X2 with scent(X2) = 0.811 is selected and answered unfavorably (a2 = yes) as
well which results in the elimination of only one single diagnosis D5 (ewc(X2) =

1
4 ).

Since the worst case elimination rate ewc(X2) is minimal, we callX2 a high-risk query.
By querying X3 (scent(X3) = 0.082, a3 = yes) and X4 (sc(X4) = 0, a4 = yes),
the further execution of this procedure finally leads to the target diagnosis D2. So, by
applying scent, four queries are required in order to find Dt. If queries are selected by
scsplit, on the contrary, only three queries are required. The algorithm can select one
of the two queries X5 or X9 because each eliminates half of all diagnoses in any case
(). We call such a query a no-risk query. Let the strategy select X5 which is answered
positively (a5 = yes). As successive queries, X6 (a6 = no) and X1 (a1 = no) are
selected, which leads to the revelation of Dt = D2.

This example demonstrates that the no-risk strategy scsplit (three queries) is more
suitable than scent (four queries) for fault probabilities which disfavor the target di-
agnosis. Let us suppose, on the other hand, that probabilities are assigned more rea-
sonably in our example, e.g. Dt = D6. Then it will take the entropy-based strategy
only two queries (X1, X6) to find Dt while split-in-half will still require three queries,



e.g. (X5, X1, X6). The complexity of scent in terms of required queries varies between
O(1) in the best and O(|D|) in the worst case depending on the appropriateness of the
fault probabilities. In contrast, scsplit always requires O(log2 |D|) queries.

We learn from this example that the best choice of discrimination strategy depends
on the quality of the meta information in terms of prior fault probabilities. In cases
where adequate meta information is not available and hard to estimate, e.g. ontol-
ogy alignment and ontology learning, the inappropriate choice of strategy might cause
tremendous extra effort for the user interacting with the debugging system. Therefore,
we suggest to exploit additional information gathered by querying the oracle in order to
estimate the quality of given meta information. The new strategy we present incorpo-
rates the elimination rate achieved by the current query when choosing the successive
query. To this end, a parameter of maximum allowed query-risk is permanently adapted.
Our method combines the advantages of both the entropy-based approach and the split-
in-half approach. On the one hand, it exploits the given prior fault probabilities if they
are of high quality. On the other hand, it quickly loses trust in the priors and gets more
cautious if some evidence is given that the probabilities are misleading.

Query DP
i DN

i D∅
i

X1 : {DeptEmployee(s), D4,D6 D1,D2,D3,D5 ∅
Student(s)}

X2 : {PhD(s)} D1,D2,D3,D4,D6 D5 ∅
X3 : {Researcher(s)} D2,D3,D4,D6 D1,D5 ∅
X4 : {Student(s)} D1,D2,D4,D5,D6 D3 ∅
X5 : {Researcher(s), D2,D4,D6 D1,D3,D5 ∅

Student(s)}
X6 : {DeptMember(s)} D3,D4 D1,D2,D5,D6

X7 : {PhD(s), D1,D2,D4,D6 D3,D5 ∅
Student(s)}

X8 : {DeptMember(s), D2 D1,D3,D4,D5,D6 ∅
Student(s)}

X9 : {DeptEmployee(s)} D3,D4,D6 D1,D2,D5 ∅
Table 1. Nine queries computed with respect to entailed assertional axioms for diagnosesDi ∈ D
of the sample ontology O. Given that no diagnoses have been eliminated yet, X2, X4, X8 are
high-risk queries, X5, X9 are no-risk queries.

3 Risk Optimization Strategy for Query Selection

The proposed Risk Optimization Algorithm (RIO) extends entropy-based query selec-
tion strategy with a dynamic learning procedure that learns by reinforcement how to
select optimal queries. Moreover, it continually improves the prior fault probabilities
based on new knowledge obtained through queries to a user. The behavior of our al-
gorithm can be co-determined by the user. The algorithm takes into account the user’s
doubt about the priors in terms of the initial cautiousness c as well as the cautiousness
interval [c, c] where c, c, c ∈ [cmin, cmax] := [0, b|D|/2c /|D|], c ≤ c ≤ c and D con-
tains at most n leading diagnoses (see Section 2). The interval [c, c] constitutes the set
of all admissible cautiousness values the algorithm may take during the debugging ses-
sion. High trust in the prior fault probabilities is reflected by specifying a low minimum



required cautiousness c and/or a low maximum admissible cautiousness c. If the user is
unsure about the rationality of the priors this can be expressed by setting c and/or c to
a higher value. Intuitively, c− cmin and cmax − c represent the minimal desired differ-
ence in performance to a high-risk (entropy) and no-risk (split-in-half) query selection,
respectively.

The relationship between cautiousness c and queries is formalized by the following
definitions:

Definition 5 (Cautiousness of a Query). We define the cautiousness caut(Xi) of a
query Xi as follows:

caut(Xi) :=
min

{
|DP

i |, |DN
i |
}

|D|
∈

0,
⌊
|D|
2

⌋
|D|


A query Xi is called braver than query Xj iff caut(Xi) < caut(Xj). Otherwise Xi

is called more cautious than Xj . A query with highest possible cautiousness is called
no-risk query.

Definition 6 (Elimination Rate). Given a query Xi and the corresponding answer
ai ∈ {yes, no}, the elimination rate e(Xi, ai) is defined as follows:

e(Xi, ai) =


|DN

i |
|D| if ai = yes

|DP
i |
|D| if ai = no

The answer ai to a query Xi is called favorable iff it maximizes the elimination rate
e(Xi, ai). Otherwise ai is called unfavorable. The minimal or worst case elimination
rate minai∈{yes,no}(e(Xi, ai)) of Xi is denoted by ewc(Xi).

So, the cautiousness caut(Xi) of a query Xi is exactly the minimal, i.e. worst case,
elimination rate, i.e. caut(Xi) = ewc(Xi) = e(Xi, ai) given that ai is the unfavorable
query result. Intuitively, the user-defined cautiousness c is the minimum proportion of
diagnoses in D which should be eliminated by the successive query. For braver queries
the interval between minimum and maximum elimination rate is larger than for more
cautious queries. For no-risk queries it is minimal.

Definition 7 (High-Risk Query). Given a query Xi and cautiousness c, then Xi is
called a high-risk query iff caut(Xi) < c, i.e. the cautiousness of the query is lower
than the algorithm’s current cautiousness value c. Otherwise, Xi is called non-high-
risk query. By HRc(X) ⊆ X we denote the set of all high-risk queries w.r.t. c. For
given cautiousness c, the set of all queries X can be partitioned in high-risk queries
and non-high-risk queries.

Example (continued): Reconsider the example given in Section 2. Let the user specify
c = 0.3 for the set D including n = 6 diagnoses. Given these settings, X1 is a non-
high-risk query since its cautiousness caut(X1) = 2/6 ≥ 0.3 = c. The query X8 is a
high-risk query because caut(X2) = 1/6 < 0.3 = c and X5 is a no-risk query due to
caut(X5) = 3/6 = b |D|2 c/|D|.



Given a user’s answer as to a query Xs, the cautiousness c is updated depending
on the elimination rate e(Xs, as) by c← c+ cadj where cadj denotes the cautiousness
adjustment factor which is defined as follows:

cadj := 2 (c− c)adj (3)

The factor 2 (c − c) in Formula 3 is a scaling factor that simply regulates the extent of
the cautiousness adjustment depending on the interval length c − c. The more crucial
factor in the formula is adj which indicates the sign and magnitude of the cautiousness
adjustment.

adj :=

⌊
|D|
2 − ε

⌋
|D|

− e(Xs, as)

where ε ∈ (0, 12 ) is a constant which prevents the algorithm from getting stuck in a
no-risk strategy for even |D|. E.g., given c = 0.5 and ε = 0, the elimination rate of a
no-risk query e(Xs, as) =

1
2 resulting always in adj = 0. The value of ε can be set to

an arbitrary real number, e.g. ε := 1
4 . If c+ cadj is outside the user-defined cautiousness

interval [c, c], it is set to c if c < c and to c if c > c. Positive cadj is a penalty telling the
algorithm to get more cautious, whereas negative cadj is a bonus resulting in a braver
behavior of the algorithm.
Example (continued): Assume that an expert is quite unsure about the location of the
fault and thus sets c = 0.4, c = 0 and c = 0.5. In this case the algorithm selects a
no-risk query X5 just as the split-in-half strategy. Given a5 = yes and |D| = 6, the
algorithm computes the elimination rate e(X5, yes) = 0.5 and adjusts the cautiousness
by cadj = −0.17 which yields c = 0.23. This allows RIO to select a higher-risk query
in the next iteration. The algorithm finds the target diagnosis Dt = D2 by asking three
queries.

The RIO algorithm, described in Algorithm 3, starts with the computation of mini-
mal diagnoses. GETDIAGNOSES function implements a combination of hitting-set (HS-
Tree) [13] and QuickXPlain [6] algorithms as suggested in [15]. Using uniform cost
search, the algorithm extends the set of leading diagnoses D with a maximum number
of most probable minimal diagnoses such that |D| ≤ n.

Then the GETPROBABILITIES function calculates the fault probabilities p(Di) for
each diagnosis Di of the set of leading diagnoses D using Formula 1. In order to take

Algorithm 3: Risk Optimization Algorithm (RIO)
Input: diagnosis problem instance 〈O,B,P,N 〉, fault probabilities of diagnosesDP , cautiousness

C = (c, c, c), number of leading diagnoses n to be considered, acceptance threshold σ
Output: a diagnosisD

1 P ← ∅; N ← ∅; D← ∅;
2 repeat
3 D← getDiagnoses(D, n,O,B,P,N );
4 DP ← getProbabilities(DP,D,P,N );
5 X← generateQueries(O,B,P,D);
6 Xs ← getMinScoreQuery(DP,X);
7 if getQueryCautiousness(Xs,D) < c then Xs ← getAlternativeQuery(c,X, DP,D);
8 if getAnswer(Xs) = yes then P ← P ∪ {Xs};
9 else N ← N ∪ {Xs};

10 c← updateCautiousness(D,P,N , Xs, c, c, c);
11 until (aboveThreshold(DP, σ) ∨ eliminationRate(Xs) = 0);
12 return mostProbableDiag(D, DP );



into account all information gathered by querying an oracle so far the algorithm adjusts
fault probabilities p(Di) as follows: padj(Di) = (1/2)z p(Di), where z is the number
of precedent queries Xk for which Di ∈ D∅k. Afterwards the probabilities padj(Di)
are normalized. Note that z can be computed from P and N which comprise all query
answers. This way of updating probabilities is exactly in compliance with the Bayesian
theorem given by Formula 2. Based on the set of leading diagnoses D, GENERATE-
QUERIES generates all queries according to Algorithm 1. GETMINSCOREQUERY de-
termines the best query Xsc ∈ X according to scent. That is:

Xsc = argmin
Xk∈X

(scent(Xk))

If Xsc is a non-high-risk query, i.e. c ≤ caut(Xsc) (determined by GETQUERYCAU-
TIOUSNESS), Xsc is selected. In this case, Xsc is the query with maximum informa-
tion gain among all queries X and additionally guarantees the required elimination rate
specified by c.

Otherwise, GETALTERNATIVEQUERY selects the query Xalt ∈ X (Xalt 6= Xsc)
which has minimal score scent among all least cautious non-high-risk queries Lc. I.e.:

Xalt = argmin
Xk∈Lc

(scent(Xk))

where Lc = {Xr ∈ X \ HRc(X) | ∀Xt ∈ X \ HRc(X) : caut(Xr) ≤ caut(Xt)}. If
there is no such query Xalt ∈ X, then Xsc is selected.

Given the positive answer of the oracle, the selected query Xs ∈ {Xsc ,Xalt} is
added to the set of positive test cases P or, otherwise, to the set of negative test cases
N . In the last step of the main loop the algorithm updates the cautiousness value c
(function UPDATECAUTIOUSNESS) as described above.

Before the next query selection iteration starts, a stop condition test is performed.
The algorithm evaluates whether the most probable diagnosis is at least σ% more likely
than the second most probable diagnosis (ABOVETHRESHOLD) or none of the leading
diagnoses has been eliminated by the previous query, i.e.GETELIMINATIONRATE re-
turns zero for Xs. In case that one of the stop conditions is fulfilled, the presently most
likely diagnosis is returned (MOSTPROBABLEDIAG).

4 Evaluation

The main points we want to show in this evaluation are: On the one hand, independently
of the specified meta information, RIO exhibits superior average behavior compared to
entropy-based method and split-in-half w.r.t. the amount of user interaction required.
On the other hand, we want to demonstrate that RIO scales well and that the reaction
time measured is well suited for an interactive debugging approach.

As data source for the evaluation we used problematic real-world ontologies pro-
duced by ontology matching systems.4 This has the following reasons: (1) Matching
results often cause inconsistency and/or incoherency of ontologies. (2) The (fault) struc-
ture of different ontologies obtained through matching generally varies due to different
authors and matching systems involved in the genesis of these ontologies. (3) For the

4 Thanks to Christian Meilicke for the supply of the test cases used in the evaluation.



same reasons, it is hard to estimate the quality of fault probabilities, i.e. it is unclear
which of the existing query selection strategies to chose for best performance. (4) Avail-
able reference mappings can be used as correct solutions of the debugging procedure.

Note that the comparison of RIO with techniques integrated in ontology matching
systems such as CODI [12] or LogMap [5] is inappropriate, since all these systems use
greedy diagnosis techniques (e.g. [9]), whereas the method presented in this paper is
complete.

Matching of two ontologies Oi and Oj is usually understood as detection of corre-
spondences between elements of these ontologies [16]:

Definition 8 (Ontology matching). Let Q(Oi) and Q(Oj) denote the sets of match-
able elements in ontologies Oi and Oj . An ontology matching operation determines an
alignment Mij , which is a set of correspondences between matched ontologies Oi and
Oj . Each correspondence is a 4-tuple 〈xi, xj , r, v〉, such that xi ∈ Q(Oi), xj ∈ Q(Oj),
r is a semantic relation and v ∈ [0, 1] is a confidence value. We call OiM j := Oi ∪
Mij ∪ Oj the aligned ontology for Oi and Oj .

In our approach the elements of Q(O) are restricted to atomic concepts and roles and
r ∈ {v,w,≡} under the natural alignment semantics [9] that maps correspondences
one-to-one to axioms of the form xi r xj .
Example (continued): Imagine that our example ontology O evolved from matching
two standalone ontologies O1 := {ax 1, ax 2} and O2 := {ax 3, ax 4} resulting in the
alignment M12 = {ax 5, ax 6}. As a concrete use case, for instance, assume two de-
partments of a university, each developing an ontology for their homepage where O1

is an excerpt of the first ontology and O2 an excerpt of the second. In order to unite
the homepages and underlying ontologies, an ontology matching system could be con-
sulted. However, if, as in this case, an alignment M12 is generated which yields an
inconsistent aligned ontology O1M2, the output of the matching system as-is is useless
and combining the homepages is impossible without according ontology debugging
support. If we recall the set of diagnoses for O consisting of all single axioms in O, we
realize that the fault we are trying to find may be located either in O1 or in O2 or in
M12. Existing approaches to alignment debugging usually consider only the produced
alignment as problem source. Our approach, on the contrary, is designed to cope with
the most general setting: Any subset S ⊆ O1M2 of axioms of the aligned ontology
can be analyzed for faults whereas O1M2 \ S can be added to the background axioms
B, if known to be correct. In this way, the search space for diagnoses can be restricted
elegantly depending on the prior knowledge about Dt, which can greatly reduce the
complexity of the underlying diagnosis problem.

In [17] it was shown that existing debugging approaches suffer from serious prob-
lems w.r.t. both scalability and correctness of results when tested on a dataset of in-
coherent aligned OWL ontologies. Since RIO is an interactive ontology debugging
approach able to query and incorporate additional information into its computations,
it can cope with cases unsolved in [17]. In order to provide evidence for this and to
show the feasibility of RIO – simultaneously to the main goals of this evaluation –
we decided to use a superset of the dataset5 used in [17] for our tests. Each incoher-
ent aligned ontology OiM j in the dataset is the result of applying one of the ontology
matching systems COMA++, Falcon-AO, HMatch or OWL-CTXmatch to a set of six

5 http://code.google.com/p/rmbd/downloads



ontologies Ont = {CRS,PCS,CMT,CONFTOOL,SIGKDD,EKAW} in the domain
of conference organization. For a given pair of ontologiesOi 6= Oj ∈ Ont, each system
produced an alignment Mij . On the basis of a manually produced reference alignment
Rij ⊆ Mij for ontologies Oi,Oj (cf. [10]), we were able to fix a target diagnosis Dt
for each incoherent OiM j . In cases where Rij suggested a non-minimal diagnosis, we
defined Dt as the minimum cardinality diagnosis which was a subset of Mij \ Rij . In
one single case,Rij proved to be incoherent because an obviously valid correspondence
Reviewer1 ≡ reviewer2 turned out to be incorrect. We re-evaluated this ontology and
specified a coherentRij . Yet this makes evident that, in general, people are not capable
of analyzing alignments without adequate tool support.

In our experiments we set the prior fault probabilities as follows: p(axk) := 0.001
for axk ∈ Oi ∪Oj and p(axm) := 1− vm for axm ∈ Mij , where vm is the confidence
of the correspondence underlying axm. Note that this choice results in a significant bias
towards diagnoses which include axioms from Mij . Based on these settings, in the first
experiment (EXP-1), we simulated an interactive debugging session employing split-in-
half (SPL), entropy (ENT) and RIO algorithms, respectively, for each ontology OiM j .
Throughout all experiments, we performed module extraction [3] before each test run,
which is a standard preprocessing method for ontology debugging approaches. All tests
were executed on a Core-i7 (3930K) 3.2Ghz, 32GB RAM and with Ubuntu Server 11.04
and Java 6 installed. The number |D| of leading diagnoses was set to 9 and σ := 85%.
As input parameters for RIO we set c := 0.25 and [c, c] := [cmin, cmax] = [0, 49 ]. For the
tests we considered the most general setting, i.e.Dt ⊂ OiM j . So, we did not restrict the
search for Dt to Mij only, simulating the case where the user has no idea whether any
of the input ontologies Oi,Oj or the alignment Mij or a combination thereof is faulty.
In each test run we measured the number of required queries until Dt was identified. In
order to simulate the case where the fault includes at least one axiom ax ∈ OiM j \Mij ,
we implemented a second test session with altered Dt. In this experiment (EXP-2), we
precalculated a maximum of 30 most probable minimal diagnoses, and from these we
selected the diagnosis with the highest number of axioms axk ∈ OiM j \Mij as Dt
in order to simulate more unsuitable meta information. All the other settings were left
unchanged. The queries generated in the tests were answered by an automatic oracle
by means of the target ontology OiM j \ Dt. The average metrics for the set of aligned
ontologies OiM j per matching system were as follows: 312 ≤ |OiM j | ≤ 377 and
19.1 ≤ |Mij | ≤ 28.4.

In order to analyze the scalability of RIO, we used the set of ontologies from the
ANATOMY track in the Ontology Alignment Evaluation Initiative6 (OAEI) 2011.5,
which comprises two input ontologies O1 (Human, 11545 axioms) and O2 (Mouse,
4838 axioms). The size of the alignments generated by 12 different matching systems
was between 1147 and 1461 correspondences. Note that the aligned ontologies output
by five matching systems, i.e. CODI, CSA, MaasMtch, MapEVO and Aroma, could
not be analyzed in the experiments. This was due to a consistent output produced by
CODI and the problem that the reasoner was not able to find a model within acceptable
time (2 hours) in the case of CSA, MaasMtch, MapEVO and Aroma. Similar reasoning
problems were also reported in [1]. Given the ontologiesO1 andO2, the output M12 of a
matching system, and the correct reference alignmentR12, we first fixedDt as follows:
Both ontologies O1 and O2 as well as the correctly extracted alignments M12 ∩ R12

6 http://oaei.ontologymatching.org



were placed in the background knowledge B. The incorrect correspondences M12 \R12

were analyzed by the debugger. In this way, we identified a set of diagnoses, where each
diagnosis is a subset of M12\R12. From this set of diagnoses, we randomly selected one
diagnosis asDt. Then we started the actual experiments: In EXP-37, in order to simulate
reasonable prior fault probabilities, a debugging session with parameter settings as in
EXP-1 was executed. In EXP-4, we altered the settings in that we specified p(axk) :=
0.01 for axk ∈ Oi ∪Oj and p(axm) := 0.001 for axm ∈ Mij , which caused the target
diagnosis, that consisted solely of axioms in Mij , to get assigned a relatively low prior
fault probability.

Results of both experimental sessions, 〈EXP-1,EXP-2〉 and 〈EXP-3,EXP-4〉, are
summarized in Figure 2(a) and Figure 2(b), respectively. For the ontologies produced
by each of the matching systems and for the different experimental scenarios, the figures
show the (average) number of queries asked by RIO and the (average) differences to the
number of queries needed by the per-session better and worse strategy of SPL and ENT,
respectively. The results illustrate clearly that the average performance achieved by RIO
was always substantially closer to the better than to the worse strategy. In both EXP-1
and EXP-2, throughout 74% of 27 debugging sessions, RIO worked as efficiently as
the best strategy (Figure 1(a)). In more than 25% of the cases in EXP-2, RIO even
outperformed both other strategies; in these cases, RIO could save more than 20% of
user interaction on average compared to the best other strategy. In one scenario involv-
ing OWL-CTXmatch in EXP-1, it took ENT 31 and SPL 13 queries to finish, whereas
RIO required only 6 queries, which amounts to an improvement of more than 80% and
53%, respectively. In 〈EXP-3,EXP-4〉, the savings achieved by RIO were even more
substantial. RIO manifested superior behavior to both other strategies in 29% and 71%
of cases, respectively. Not less remarkable, in 100% of the tests in EXP-3 and EXP-4,
RIO was at least as efficient as the best other strategy. Table 2, which provides the av-
erage number of queries per strategy, demonstrates that, overall, RIO is the best choice
in all experiments. Consequently, RIO is suitable for both good meta information as
in EXP-1 and EXP-3, where Dt has high probability, and poor meta information as in
EXP-2 and EXP-4, where Dt is a-priori less likely. Additionally, Table 2 illustrates the
(average) overall debugging time assuming that queries are answered instantaneously
and the reaction time, i.e. the average time between two successive queries. Also w.r.t.
these aspects, RIO manifested good performance. Since the times consumed by either
of the strategies in 〈EXP-1,EXP-2〉 are almost negligible, consider the more meaningful
results obtained in 〈EXP-3,EXP-4〉. While the best reaction time in both experiments
was achieved by SPL, we can clearly see that SPL was significantly inferior to both
ENT and RIO concerning the user interaction required and the overall time. RIO re-
vealed the best debugging time in EXP-4, and needed only 2.2% more time than the
best strategy (ENT) in EXP-3. However, if we assume the user being capable of read-
ing and answering a query in, e.g., half a minute on average, which is already quite
fast, then the overall time savings of RIO compared to ENT in EXP-3 would already
account for 5%. Doing the same thought experiment for EXP-4, using RIO instead of
ENT and SPL would save 25% and 50% of debugging time on average, respectively. All
in all, the measured times confirm that RIO is well suited as an interactive debugging
approach.

7 For all details w.r.t. 〈EXP-3,EXP-4〉, see http://code.google.com/p/rmbd/wiki/ OntologyAlign-
mentAnatomy.



For SPL and ENT strategies, the difference w.r.t. the number of queries per test run
between the better and the worse strategy was absolutely significant, with a maximum
of 2300% in EXP-4 and averages of 190% to 1145% throughout all four experiments,
measured on the basis of the better strategy (Figure 1(b)). Moreover, results show that
the different quality of the prior fault probabilities in {EXP-1,EXP-3} compared to
{EXP-2,EXP-4} clearly affected the performance of the ENT and SPL strategies (see
first two rows in Figure 1(a)). This perfectly motivates the application of RIO.

EXP-1 EXP-2 EXP-3 EXP-4
qSPL < qENT 11% 37% 0% 29%
qENT < qSPL 81% 56% 100% 71%
qSPL = qENT 7% 7% 0% 0%
qRIO < min 4% 26% 29% 71%
qRIO ≤ min 74% 74% 100% 100%
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Fig. 1. (a) Percentage rates indicating which strategy performed best/better w.r.t. the required
user interaction, i.e. number of queries. EXP-1 and EXP-2 involved 27, EXP-3 and EXP-4 seven
debugging sessions each. qstr denotes the number of queries needed by strategy str and min is an
abbreviation for min(qSPL, qENT). (b) Box-Whisker Plots presenting the distribution of overhead
(qw − qb)/qb ∗ 100 (in %) per debugging session of the worse strategy qw := max(qSPL, qENT)
compared to the better strategy qb := min(qSPL, qENT). Mean values are depicted by a cross.
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Fig. 2. The bars show the avg. number of queries (q) needed by RIO, grouped by matching tools.
The distance from the bar to the lower (upper) end of the whisker indicates the avg. difference of
RIO to the queries needed by the per-session better (worse) strategy of SPL and ENT, respectively.

5 Conclusion
We have shown problems of state-of-the-art interactive ontology debugging strategies
w.r.t. the usage of unreliable meta information. To tackle this issue, we proposed a learn-
ing strategy which combines the benefits of existing approaches, i.e. high potential and
low risk. Depending on the performance of the diagnosis discrimination actions, the
trust in the a-priori information is adapted. Tested under various conditions, our algo-
rithm revealed an average performance superior to two common approaches in the field
w.r.t. required user interaction. In our evaluation we showed the utility of our approach
in the important area of ontology matching, its scalability and adequate reaction time
allowing for continuous interactivity.



EXP-1 EXP-2 EXP-3 EXP-4
debug react q debug react q debug react q debug react q

ENT 1860 262 3.67 1423 204 5.26 60928 12367 5.86 74463 5629 11.86
SPL 1427 159 5.70 1237 148 5.44 104910 4786 19.43 98647 4781 18.29
RIO 1592 286 3.00 1749 245 4.37 62289 12825 5.43 66895 8327 8.14

Table 2. Average time (ms) for the entire debugging session (debug), average time (ms) between
two successive queries (react), and average number of queries (q) required by each strategy.
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