
Conjunctive Queries with Negation over DL-Lite:
A Closer Look

Vı́ctor Gutiérrez-Basulto1, Yazmı́n Ibañez-Garcı́a2, Roman Kontchakov3, and
Egor V. Kostylev4

1 Fachbereich Mathematik und Informatik, Universität Bremen, Germany
victor@informatik.uni-bremen.de

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
ibanezgarcia@inf.unibz.it

3 Dept. of Computer Science and Inf. Systems, Birkbeck, University of London, UK
roman@dcs.bbk.ac.uk

4 School of Informatics, University of Edinburgh, UK
ekostyle@inf.ed.ac.uk

Abstract. While conjunctive query (CQ) answering over DL-Lite has been stud-
ied extensively, there have been few attempts to analyse CQs with negated atoms.
This paper deepens the study of the problem. Answering CQs with safe negation
and CQs with a single inequality over DL-Lite with role inclusions is shown to be
undecidable, even for a fixed TBox and query. Without role inclusions, answering
CQs with one inequality is P-hard and with two inequalities CONP-hard in data
complexity.

1 Introduction

The ontology-based data access (OBDA) paradigm of enriching instance data with
background knowledge, provided by means of a description logic (DL) ontology, has
become one of the most prominent approaches to management of incomplete data on
the Web. In the past decade, a vast investigation of answering (unions of) conjunc-
tive queries in the OBDA paradigm has been conducted, so that now a fairly clear
landscape of the computational complexity has emerged and a number of algorithmic
approaches have been presented and implemented in OBDA systems. Notably, special
effort has been invested into developing DL languages that, on the one hand, are expres-
sive enough to capture interesting aspects of the application domain and, on the other
hand, allow OBDA systems to scale to large amounts of data, in particular, by delegat-
ing query evaluation to relational database management systems. Among the different
proposed DLs fulfilling these requirements we find members of the DL-Lite family [1,
2], which form the basis of OWL 2 QL, one of the three profiles of the Web Ontology
Language OWL 2, and where answering (unions of) CQs is in AC0 in data complexity.

In recent years, the problem of answering more expressive queries over DL-Lite has
been investigated [3–6]; in particular, following the tradition of relational databases,
Rosati [3] and Gutiérrez-Basulto et al. [5] investigated extensions of CQs with two
restricted forms of negated atoms: (1) inequality (CQ!=) and (2) safe negation (CQ¬s).
It is well-known in databases and other areas related to management of incomplete

data that answering CQs with these types of negation becomes harder than answering
(positive) CQs. Rosati [3] and Gutiérrez-Basulto et al. [5] showed that this is even
worse in the OBDA paradigm: the problems of answering unions of CQs!= and unions
of CQs¬s were shown to be undecidable over the simplest language of DL-Litecore (in
striking contrast to the highly tractable AC0 upper bound for data complexity in case of
unions of CQs).

Finding decision algorithms and analysing complexity of answering CQs!= and
CQs¬s over DL-Litecore and its extension with role inclusions, DL-LiteH

core, has proven
remarkably challenging. First, the weak expressive power of these ontology languages
makes it difficult to show undecidability using encodings similar to those for unions of
CQs!= and CQs¬s. Second, in contrast to positive atoms of CQs, the negated atoms are
not preserved under homomorphisms [7], hence query answering techniques based on
the canonical model construction [1, 8] cannot be directly applied. In fact, up to now,
the only known result is CONP-hardness for CQs != and CQs¬s over DL-Litecore [3, 5];
Gutiérrez-Basulto et al. [5] claimed a matching upper bound for CQ!= answering over
DL-LiteH

core, alas, the presented algorithm is incorrect.
The purpose of this paper is to sharpen the panorama of answering CQs extended

with inequalities and safe negation over DL-Litecore and DL-LiteH
core. In Section 2, we

define the two DLs and conjunctive queries with negated atoms. In the first part of
the paper, we study the problem of answering CQs!= and CQs¬s over DL-LiteH

core. In
Section 3, we provide a general reduction of answering unions of (acyclic) CQs to
answering single CQs over ontologies with role inclusions; this, in particular, results
in undecidability of answering CQs¬s over DL-LiteH

core. In Section 4, instead of using
the method of Section 3 to obtain undecidability of answering CQs !=, we provide a
more elaborate proof of the result for a CQ != with a single inequality (a proof along the
lines of Section 3 would require many inequalities). We mention in passing that CQ!=

answering over light-weight description logic EL is also undecidable [9]; however, CQ
answering in EL is P-complete rather than in AC0 (in data complexity).

In the second part of the paper, we consider the problem of answering CQs!= over
DL-Litecore, the language without role inclusions. While decidability is still an open
problem, we analyse how far the CONP-hardness of this problem can be pushed down
by restricting the number of inequalities in a query. In Section 5, we sharpen the lower
bounds for data complexity: P-hardness with one inequality and CONP-hardness with
two inequalities.

2 Preliminaries

The language of DL-LiteH
core (and DL-Litecore) [2] contains individual names c1, c2, . . .,

concept names A1, A2, . . ., and role names P1, P2, Roles R and basic concepts B
are defined by the following grammar:

R ::= Pi | P−
i , B ::= ⊥ | Ai | ∃R.

A DL-LiteH
core TBox T is a finite set of concept and role inclusions of the form:

B1 # B2, B1 $B2 # ⊥, R1 # R2, R1 $R2 # ⊥.

A DL-Litecore TBox contains only concept inclusions. We will use conjunction on the
right-hand side and disjunction on the left-hand side of inclusions (which is syntactic
sugar). An ABox A is a finite set of assertions of the form Ai(cj) and Pi(cj , ck). A
knowledge base (KB) K is a pair (T ,A), where T is a TBox and A an ABox.

An interpretation I = (∆I , ·I) is a nonempty domain ∆I with an interpretation
function ·I that assigns an element cIi ∈ ∆I to each individual name ci, a subset
AI

i ⊆ ∆I to each concept name Ai, and a binary relation P I
i ⊆ ∆I ×∆I to each role

name Pi. As usual for DL-Lite, we adopt the unique name assumption (UNA): cIi (= cIj ,
for all distinct individuals ci, cj . Our results, however, do not depend on UNA. The
interpretation function ·I is extended to roles and basic concepts in the standard way:

(P−
i)I = {(d′, d) ∈ ∆I ×∆I | (d, d′) ∈ P I

i }, (inverse role)

⊥I = ∅, (empty set)

(∃R)I =
{
d ∈ ∆I | there is d′ ∈ ∆I with (d, d′) ∈ RI}. (role domain/range)

The satisfaction relation |= is also standard:

I |= B1 # B2 iff BI
1 ⊆ BI

2 , I |= B1 $B2 # ⊥ iff BI
1 ∩BI

2 = ∅,
I |= R1 # R2 iff RI

1 ⊆ RI
2 , I |= R1 $R2 # ⊥ iff RI

1 ∩RI
2 = ∅,

I |= Ai(cj) iff cIj ∈ AI
i , I |= Pi(cj , ck) iff (cIj , c

I
k) ∈ P I

i .

A KB K = (T ,A) is satisfiable if there is an interpretation I satisfying all inclusions
of T and assertions of A. In this case we write I |= K (as well as I |= T and I |= A)
and say that I is a model of K (and of T and A).

A conjunctive query (CQ) q(x) is a formula of the form ∃y ϕ(x,y), where x and
y are tuples of variables and ϕ is a conjunction of concept atoms Ai(t) and role atoms
Pi(t, t′) with t and t′ terms, i.e., individual names or variables from x,y. We call
variables in x answer variables and those in y (existentially) quantified variables. A
conjunctive query with safe negation (CQ¬s) is an expression of the form ∃y ϕ(x,y),
where ϕ is a conjunction of literals, that is, (positive) atoms and negated atoms, such
that each variable occurs in at least one positive atom. A conjunctive query with in-
equalities (CQ!=) is an expression of the form ∃y ϕ(x,y), where each conjunct of ϕ
is a positive atom or an inequality t (= t′, for terms t and t′. A union of conjunctive
queries (UCQ) is a disjunction of CQs; UCQ¬s and UCQ!= are defined accordingly. We
assume a CQ contains P−(z1, z2) if it contains P (z2, z1). We write q instead of q(x)
if x is clear from the context or empty—in the latter case the query is called Boolean.

Let q(x) = ∃y ϕ(x,y) be a query with x = (x1, . . . , xk), I an interpretation and
π a map from the set of terms of q to ∆I with π(c) = cI , for all individual names
c in q. We call π a match for q in I if I (as a first-order model) satisfies ϕ under
the variable assignment mapping each variable z of ϕ to π(z). A k-tuple of individual
names c = (c1, . . . , ck) is an answer to q in I if there is a match for q in I with
π(xi) = cIi (such a π is called a match for q(c) in I). We say that c is a certain answer
to q over a KB K and write K |= q(c) if c is an answer to q in all models of K.

In OBDA scenarios the size of the query and the TBox is much smaller than the size
of the ABox. This is why we explore the data complexity [10] of the query answering

problem, that is, we assume that only the ABox is considered as part of the input. For-
mally, let T be a DL-LiteH

core or DL-Litecore TBox and q(x) a (U)CQ¬s or a (U)CQ !=.
We are interested in the following family of problems.

CERTAIN ANSWERS (q, T) Input: An ABox A and a tuple of individuals c.
Question: Is c a certain answer to q over (T ,A)?

3 Answering CQs with Safe Negation is Undecidable

It is known [3] that computing certain answers to a union of CQs with safe negation
(UCQ¬s) over DL-Litecore is undecidable if the TBox and the query are part of the
problem input (which corresponds to the combined complexity [10]). We first show
that the problem remains undecidable even if the TBox and the query are fixed. Then we
proceed to show how the UCQ¬s can be transformed into a single CQ¬s, thus obtaining
the main result of this section. We note that the transformation is rather general (and
also works with inequalities) and may be of general interest.

Theorem 1. There is a Boolean UCQ¬s q and a DL-Litecore TBox T such that the
problem CERTAIN ANSWERS (q, T) is undecidable.

Proof. The proof is by reduction of the halting problem for deterministic Turing ma-
chines. In particular, given a Turing machine M , we construct a TBox T and a query q
such that M does not accept an input w encoded as an ABox Aw iff (T ,Aw) (|= q (T
and q depend on M but not on w). Applying this construction to a fixed deterministic
universal Turing machine, i.e., a machine that accepts its input w iff the Turing machine
encoded by w accepts the empty input, we obtain the required undecidability result.

Let M = (Γ,Q, q0, q1, δ) be a deterministic Turing machine, where Γ is an alpha-
bet (containing the blank symbol), Q a set of states, q0 ∈ Q and q1 ∈ Q are an initial
and an accepting state, respectively, and δ : Q× Γ → Q× Γ × {−1, 1} is a transition
function. Computations of M can be thought of as sequences of configurations, with
each configuration determined by the contents of all (infinitely many) cells of the tape,
the state and the head position. We are going to encode a computation by domain el-
ements arranged, roughly speaking, into a two-dimensional grid: one dimension is the
tape and the other is time (see the picture below, where the nodes are domain elements
and the grey rectangle illustrates an initial configuration, in which the tape contains
a1a2a3 . . . and the head is positioned over the first cell in state q).

co
nfi

gu
ra

tio
n

T

T

T

S S S SHq

Ca1

Ca2

Ca3

More precisely, we use a role T to point to the representation of the next cell on the
tape (within the same configuration) and a role S to point to the representation of the
same cell in a successive configuration. Concepts Ca, for a ∈ Γ , encode the contents

of cells in the sense that a domain element belongs to Ca if the respective cell contains
the symbol a. We use concepts Hq , for q ∈ Q, to indicate both the position of the head
and the current state: a domain element belongs to Hq if the respective cell is under the
head and the machine is in state q. We also use a concept H∅ to mark all other cells on
the tape (that is, cells that are not under the head of the machine). Finally, roles Pqa,
for q ∈ Q and a ∈ Γ , are used to encode transitions; concepts Dσ and roles T∅σ , for
σ ∈ {−1,+1}, to propagate the no-head marker backwards and forwards along the
tape; and role T0 to make sure the tape is initially blank beyond the input word.

Consider a Boolean UCQ¬s q that is a union of the existential closures of the nega-
tions of the following first-order formulas:

S(x, y) ∧ T (x, z) ∧ S(z, u) → T (y, u), (1)
Hq(x) ∧ Ca(x) ∧ S(x, y) ∧ T σ(y, z) → Pq′a′(y, z), for δ(q, a) = (q′, a′, σ), (2)

H∅(x) ∧ Ca(x) ∧ S(x, y) → Ca(y), for a ∈ Γ, (3)
Dσ(y) ∧ T σ(y, z) → T∅σ(y, z), for σ ∈ {−1,+1}, (4)

T0(x, y) → T (x, y), (5)

where T σ(y, z) stands for T (y, z) if σ = +1 and T (z, y) if σ = −1, and a TBox T
containing the following concept inclusions:

∃T # ∃S, ∃T−
0 # ∃T0 $ C , (6)

∃P−
qa # Hq, ∃Pqa # Ca, for q ∈ Q and a ∈ Γ, (7)

Hq # Dσ, ∃T−
∅σ # Dσ $H∅, for q ∈ Q and σ ∈ {−1,+1}, (8)

Hq1 # ⊥. (9)

For every input w = a1 . . . an ∈ Γ ∗, we take the following ABox Aw:

Hq0(c1), Cai(ci) and T (ci, ci+1), for 1 ≤ i ≤ n, T0(cn, cn+1).

It can be shown that (T ,Aw) (|= q iff M does not accept w. Indeed, consider a model
I of (T ,Aw) with I (|= q. Then, by the definition of the ABox, (5) and (6), there
exists an infinite sequence of (not necessarily distinct) domain elements d1, d2, . . . that
encode the initial configuration in a sense that (di, di+1) ∈ T I for all i ≥ 1, d1 ∈ HI

q0 ,
di ∈ HI

∅ for all i > 1, di ∈ CI
ai

, for each 1 ≤ i ≤ n, and di ∈ CI for all i > n. By (6)
and (1), there exists another sequence of T -connected domain elements d′1, d′2, . . . , such
that (di, d′i) ∈ SI . This sequence represents the second configuration of M . Indeed,
by (2) and (7), the head position and the state are changed according to the transition
function δ of M . By (8) and (4), the domain element representing the head, say, dk,
belongs to DI

+1, whereas all di with i > k belong to DI
+1 and HI

∅ . Similarly, di ∈ HI
∅ ,

for all i < k. Therefore, all cells but the one under the head belong to HI
∅ , whence,

by (3), their contents is preserved by the transition. By the same reasoning, there exists
a respective sequence of elements for each configuration of the computation of M .
Finally, (9) guarantees that the accepting state never occurs in the computation, i.e.,
M does not accept w. The converse direction is straightforward: the non-accepting
computation of M , if it exists, can be encoded by an infinite two-dimensional grid
satisfying (T ,Aw) and the negation of q. !

We remark that the number of CQs (and safe negations) in the UCQ¬s q in the
proof of Theorem 1 depends on the number of states and symbols of the universal
Turing machine we encode (more precisely, it is 4 + (|Q|+ 1) · |Γ |).

We now proceed to show that under rather mild restrictions (satisfied by the query
in Theorem 1), a UCQ¬s q can be transformed into a single CQ¬s q′ with the same
number of safe negations although at a price of introducing role inclusions in the TBox
(Theorem 1 holds for DL-Litecore). Intuitively, q′ is a conjunction of all disjuncts qi of
q, each with an atom Gi(x, xi) attached to it, where x is a common fresh existentially
quantified variable and xi is some (existentially quantified) variable of qi. Then, we ex-
tend the TBox to ensure that on every domain element of a model of the original TBox,
the extended TBox ‘generates’, for each i, an incoming Gi-arrow from a constellation
matching all disjuncts of q but qi. So, if a part of the model for the original TBox
matches some qi then it matches q′ as well, because the rest of the match is provided
by the generated constellations. We now present a more formal treatment. A Boolean
CQ¬s q is tree-shaped if it is connected, does not have individuals as terms and the pri-
mal graph of its positive part contains no cycles (the primal graph has an edge between
variables z and z′ just in case the query contains an atom P (z, z′)).

Lemma 1. Let T be a DL-LiteHcore TBox and q a Boolean UCQ¬s such that each dis-
junct qi of q is tree-shaped and contains

neither A(x) with T |= A # ∃R nor S(x, z) with T |= ∃S # ∃R, (10)

for every ¬R(x, v) in qi. Then there exist a CQ¬s q′ and a DL-LiteHcore TBox T ′ such
that (T ,A) |= q iff (T ′,A) |= q′, for every ABox A.

Proof. Let q be the union of qi = ∃xi ϕi(xi), for 1 ≤ i ≤ n. Without loss of generality,
we can assume that the xi are pairwise disjoint and that each xi contains at least one
variable, say, xi. Let x be a fresh variable and, for each 1 ≤ i ≤ n, let Gi be a fresh
role name and define ϕ′

i(x,xi) = Gi(x, xi) ∧ ϕi(xi). Consider

q′ = ∃xx1 . . .xn

(
ϕ′
1(x,x1) ∧ . . . ∧ ϕ′

n(x,xn)
)
.

Let D be a fresh concept name. Denote by TD be the result of attaching the subscript 0
to each concept and role name in T and extending the TBox by A0 # A $D, for each
concept name A, and by P0 # P and ∃P0 0 ∃P−

0 # D, for each role name P in T
(the interpretation of D will contain the interpretations of all concepts of TD including
domains and ranges of its roles).

Since the positive part of each ϕ′
i(x,xi) is tree-shaped, it has a spanning tree with

root x; moreover, that root has a single successor, xi. We will write y ≺ z if y is a
(unique) predecessor of z in the spanning trees. For each edge (y, z) with y ≺ z, we
take a fresh role Eyz . Let TG contain the following inclusions, for all 1 ≤ i ≤ n:

D # ∃(G0
i)

−, (11)

∃G0
i # ∃G1

j , for all 1 ≤ j ≤ n with j (= i, (12)

Gk
i # Gi, for k = 0, 1, (13)

G1
i # Exxi , (14)

∃E−
yz # ∃Ezv, for each y ≺ z ≺ v, (15)

∃E−
yz # A, for each A(z) in ϕ′

i with y ≺ z, (16)

Eyz # R, for each R(y, z) in ϕ′
i with y ≺ z, (17)

∃E−
yz $ ∃R # ⊥, for each ¬R(z, v) in ϕ′

i with y ≺ z. (18)

Let T ′ = TD ∪ TG. We claim that (T ,A) |= q iff (T ′,A) |= q′, for every A.
Indeed, suppose that (T ,A) |= q and let I be a model of (T ′,A). Then I |= TD,
whence, by construction, I |= (T ,A). Thus, I |= q and so, for some 1 ≤ i ≤ n,
there exists a match π for qi in I. By construction, π(xi) belongs to AI , for a concept
name A of T , or to (∃R)I , for a role R of T ; whence, π(xi) ∈ DI . Let q∗ consist of
all atoms of q′ not in ϕi(xi). Since I |= TG, there exists a match π′ for q∗ in I with
π′(xi) = π(xi). Indeed, by (14)–(16), the tree of positive atoms of q∗ is matched by
the (G0

i)
−-successor of π(xi); by (18), the negative atoms are satisfied by π′. Hence,

π ∪ π′ is a match for q′ in I.
Conversely, let I be a model of (T ,A) with I (|= q. Denote by I0 an interpretation

that coincides with I on all individuals and concept and role names of T and, addition-
ally, interprets D by ∆I , each A0 by AI , for a concept name A in T , and each P0 by
P I , for a role name P in T . Clearly, I0 |= (TD,A) and I0 (|= q. Let I ′ be the (finite)
chase of I0 with TG, which exists by (10). By definition, I ′ |= (T ′,A). The chase part,
however, ensures that I ′ (|= q′. !

The UCQ¬s q in the proof of Theorem 1 satisfies the conditions of Lemma 1, thus
solving the open problem of decidability of CQ¬s answering over DL-LiteH

core [3, 5].

Theorem 2. There exist a CQ¬s q and a DL-LiteHcore TBox T such that the problem
CERTAIN ANSWERS (q, T) is undecidable.

4 Answering CQs with One Inequality is Undecidable

In this section we prove that CQ!= answering over DL-LiteH
core is undecidable. In princi-

ple, the technique of Lemma 1 can be adapted to queries with inequalities and by using,
e.g., a modification of the proof of Theorem 1 [5], this would prove the claim. The
resulting CQ!= would, however, contain many inequalities. Instead, we substantially re-
work some ideas of the undecidability proof for CQ!= answering over EL [9] and show
that even one inequality suffices for DL-LiteH

core.

Theorem 3. There exist a Boolean CQ!= q with one inequality and a DL-LiteHcore TBox
T , such that the problem CERTAIN ANSWERS (q, T) is undecidable.

Proof. The proof is by reduction of the halting problem for deterministic Turing ma-
chines (see Theorem 1). In this proof we use a two-dimensional grid of similar structure.
The grid is established (along with functionality of certain roles) by means of a CQ!= q,
which is the existential closure of the negation of the following first-order formula:

S(x, y) ∧ T (x, z) ∧ S(z, v) ∧ T (y, u) ∧
T (u,w) ∧ T (u′, w) ∧R(t, v) ∧R(t, v′)

→ (u′ = v′).

Note that this formula, in fact, implies v = v′ = u′ = u;
see the dotted shape in the picture on the right.

x y

z v

t

v′

u

w

u′

S
T T

S

T
T

RR

We present the construction of the TBox T in a series of smaller TBoxes. As an aid
to our explanations, we assume that an interpretation I with I (|= q is given; for each of
the building blocks of T we then show that if I is a model of the TBox then I enjoys
certain structural properties. So, let TBox TG contain the following concept inclusions:

∃S− # ∃T, ∃T− # ∃T, ∃S− # ∃R−.

If I |= TG and I |= ∃T # ∃S then the fragment of I rooted in d00 ∈ (∃T)I has
a grid-like structure depicted below (each domain element in (∃S−)I also has an RI-
predecessor, which is not shown).

T

T

T

T

T

T

T

T

S S S

S S S

S S S

S

T

S

T

S

TT

S

T

S

T

S

S

T

d00

d11

Observe that SI and T I are functional in all domain elements in the shaded area (we
say that, e.g., SI is functional in d if d′ = d′′ whenever (d, d′), (d, d′′) ∈ SI). Let ◦
denote composition: e.g., SI ◦ T I = {(d, d′′) | (d, d′) ∈ SI , (d′, d′′) ∈ T I}. Then the
domain elements in the shaded area enjoy the following property.
Claim 3.1. If I |= TG and I (|= q then, for every d with an (S−)I ◦T I ◦SI-predecessor,

– both SI and T I are functional in d,
– the SI ◦ T I- and T I ◦ SI-successors of d coincide,
– (T−)I is functional in the T I-successor of d,
– RI is functional in any RI-predecessor of d.

Note that SI does not have to be functional in the bottom row and T I in the left
column (see the picture above); (T−)I does not have to be functional outside the shaded
area and in the first row of the shaded area; RI does not have to be functional anywhere
but in RI-predecessors of the domain elements in the shaded area; (S−)I and (R−)I

do not have to be functional anywhere. For our purposes, however, it suffices that I has
a grid structure starting from d11; moreover, as we shall see, the non-functionality of
(S−)I plays a crucial role in the construction.

In addition to the grid-like structure of SI and T I , we also need functionality of
SI in points outside the grid. To this end, we use a technique similar to the proof of
Lemma 1. Let TBox TS contain the following concept and role inclusions, for a fresh
concept name E and a fresh role name V (similar to the ‘edge’ roles Eyz in Lemma 1):

E # ∃S, E # ∃V, V # T−, ∃V − # ∃S.

Claim 3.2. If I |= TG ∪ TS and I (|= q then SI is functional in every d ∈ EI .
We also require role R to be functional not only in RI-predecessors of the grid

points but also in the grid points themselves. Let TBox TR contain the following inclu-
sions, for a fresh concept name D and fresh role names U0, U1 and U2, with i = 1, 2:

D # ∃U0, U0 # R, ∃U−
i−1 # ∃Ui, U1 # S−, U2 # T−, ∃U−

2 # ∃S.

Claim 3.3. If I |= TG ∪ TR and I (|= q then RI is functional in every d ∈ DI .

We now describe a TBox that encodes computations of a given Turing machine.
Let M = (Γ,Q, q0, q1, δ) be a deterministic Turing machine, where Γ = {1, } is a
two-symbol tape alphabet, Q a set of states, q0 ∈ Q an initial and q1 ∈ Q an accepting
state, and δ : Q× Γ → Q× Γ × {−1,+1} a deterministic transition function.

We use concept Hq , for q ∈ Q, that contains the representations of all tape cells
observed by the head of M (in state q); concept H∅ represents the cells not observed by
the head of M . Role S has two sub-roles, S and S1, for the two symbols of the alphabet
Γ to encode cell contents: all cells represented by the range of Sa contain a ∈ Γ .

The most natural way of encoding a transition δ(q, a) = (q′, a′, σ) of M would be
to use a concept inclusion of the form ∃Hq $ S−

a # ∃Sa′ $ ∃Sq′σ , where Sq′σ is also
a sub-role of role S, which is functional in the grid. Alas, DL-LiteH

core does not have
conjunction on the left-hand side of concept inclusions. The following construction
allows us to simulate the required inclusions by using functionality of just two roles,
R and S. Let TF be the union of TS , TR and the following concept and role inclusions
with fresh role names Pq , Qa and Pqa, for each q ∈ Q ∪ {∅} and a ∈ Γ :

Hq # ∃Pq $D, ∃S−
a # ∃Qa, Pq 0Qa # R,

∃P−
q # ∃Pq $ ∃Pq1 $ E, Pq 0Q− # R, Pq1 0Q−

1 # S.

Claim 3.4. If I |= TG ∪ TF and I (|= q then d ∈ (∃P−
qa)

I whenever d ∈ HI
q ∩ (∃S−

a)I ,
for each d with an (S−)I ◦ T I ◦ SI-predecessor, each q ∈ Q ∪ {∅} and a ∈ Γ .
Proof of claim. Let d ∈ HI

q ∩ (∃S−
1)I . Then d has a P I

q - and a QI
1 -successor, which

coincide since RI is functional in d ∈ DI . Let d′ be the RI-successor of d. The inverse
of Q1 is also a sub-role of S, and thus, (d, d′) ∈ SI . On the other hand, d′ has a P I

q1-
successor d′′, whence (d′′, d′) ∈ SI . By Claim 3.3, SI is functional in d′, whence
d = d′′. Thus, d ∈ (∃P−

q1)
I . For d ∈ HI

q ∩ (∃S−)I , the argument is similar with R

replacing S as a super-role of both Pq and Q− (RI is functional in any RI-predecessor
of d by Claim 3.1). !

We are now in a position to define the encoding of Turing machine computations.
Using the roles Pqa from TF , we can encode transitions:

∃P−
qa # ∃Sa′ $ ∃Sq′σ, for q ∈ Q and a ∈ Γ with δ(q, a) = (q′, a′, σ), (19)

Sa 0 Sqσ # S, for a ∈ Γ, q ∈ Q and σ ∈ {−1,+1}, (20)

where Sq,−1 and Sq,+1 are fresh role names used to propagate the new state to the next
configuration. Recall now that roles P∅a identify cells that are not observed by the head
of M ; the contents of such cells is then preserved with the help of concept inclusions

∃P−
∅a # ∃Sa, for a ∈ Γ. (21)

The location of the head in the next configuration is ensured by the following inclusions:

∃S−
qσ # ∃Tqσ, ∃T−

qσ # Hq, for q ∈ Q and σ ∈ {−1,+1}, (22)

Tq,+1 # T, Tq,−1 # T−, for q ∈ Q ∪ {∅}, (23)

where the Tq,+1 and Tq,−1 are used to propagate the head in the state q along the tape
(both T and T− are functional in the grid); finally, the following concept inclusions
with (23) for q = ∅ are required to propagate the no-head marker H∅:

Hq # ∃T∅σ ∃T−
∅σ # ∃T∅σ $H∅, for q ∈ Q and σ ∈ {−1,+1}. (24)

Next, we define the ABox Aw that encodes an input w = a1, . . . , an ∈ Γ ∗ of M :

Z(c00, c10), T (c10, c11), Hq0(c11),

T (c0(i−1), c0i) and Sai(c0i, c1i), for 1 ≤ i ≤ n, T0(c0n, c0(n+1)),

where Z is a fresh role name to create the bottom row of the grid and T0 is a fresh role
name to fill the rest of the tape by blanks:

∃Z− # ∃Z, Z # S, ∃T−
0 # ∃S $ ∃T0, T0 # T. (25)

Finally, the following ensures that the accepting state q1 never occurs in a computation:

Hq1 # ⊥. (26)

Let TM contain (19)–(26) encoding computations of M and T = TG ∪TF ∪TM . If
(T ,Aw) (|= q then there is a model I of (T ,Aw) with I (|= q. It should then be clear
that in this case we can extract a computation of M encoded by I and that computation
does not accept w. Conversely, if M does not accept w then we can construct a model
I of (T ,Aw) such that I (|= q. First, it is routine to construct a model J of TG with

∆J = {dij | i, j ≥ 0} ∪ {d′ij , d′′ij | i > 0 and j ≥ 0} ∪ {bi | i > 0}

such that the dij form a grid structure on roles S and T , each d′ij is an RJ -predecessor
of dij and each d′′ij is an SJ -predecessor of dij (note that dij has another SJ -predeces-
sor, d(i−1)j). Next, we choose the interpretation of concepts and roles in TM on the

domain of J in such a way that the part of J rooted in d11 encodes a unique compu-
tation of M on w and J |= (TM ,Aw). In particular, the computation determines the
interpretation of Hq , Sa and Sqσ, for q ∈ Q, a ∈ Γ and σ ∈ {−1,+1}. It then should
be clear how to interpret H∅ and Tqσ, for q ∈ Q∪{∅} and σ ∈ {−1,+1}: the only non-
trivial case is T∅,−1, where, in order to satisfy (24), we take bi to be a TJ

∅,−1-successor
(and so, a TJ -predecessor) of both di1 and bi, for each i > 0 (as we noted, (T−)J does
not have to be functional in any di1; TJ , however, must be functional in each di0 and
cannot have a TJ -loop). As the final step of the construction of J , we set

(d′ij , dij) ∈ PJ
q and (dij , d

′
ij) ∈ RJ if dij ∈ HJ

q ∩ (∃S−)J ,

(d′′ij , dij) ∈ PJ
q1 and (dij , d

′′
ij) ∈ RJ if dij ∈ HJ

q ∩ (∃S−
1)J .

It remains to show that J can be extended to satisfy TF . Observe that only concept
names Hq and role names R, S, T , Sa and Pqa, for q ∈ Q∪ {∅} and a ∈ Γ , are shared
between TF and TG ∪ TM ; all other concept and roles names in TF are fresh in TF .
We show that J can be extended (by fresh domain elements) to a model of TF without
changing concepts and roles on grid, i.e., the domain elements of J .
Claim 3.5. If J |= TG and J (|= q then J can be extended to a model I of TF so that
(a) d ∈ HI

q ∩ (∃S−
a)I whenever d ∈ (∃P−

qa)
I , for every d ∈ ∆J with an (S−)J ◦

TJ ◦ SJ -predecessor, an RJ -predecessor d′ and another SJ -predecessor d′′, and
(b) AI ∩∆J = AJ and P I ∩ (∆J ×∆J) = PJ , for all concept names A and role
names P that are not fresh in TF .
Proof of claim. The cases of Pq and Pq1 are illustrated below on the left and right, re-
spectively; some edges are not shown to avoid clutter: each domain element in (∃S−)I

also has an incoming RI-edge and each T I-edge starts an infinite chain of T I-edges.

d : D,Hq

S1

T

d′′:Ed′
R

Q
1 , Pq , R, U

0

P
q1 , S

U−
1 , S

U
−2
, T

S

T

T

Pq , R

V
−
,
T

S

T

d : D,Hq

d′: E

d′′S

Q ,Pq , R, U0

P
q , R

U−
1 , S

U
−2
, T

S

T

T

V
−
,
T

S

T

Pq1, SR

T

S

T T

S

T

The three black (solid, dashed and dotted) patterns of edges on the left correspond to
the three sets of positive atoms of q so that the inequality atom, (u′ = v′), ‘identifies’
certain domain elements of the pattern; similarly, for the two patterns on the right. Black
nodes are in the domain of J , while white nodes are in the domain of I proper. It can
be seen that d is added only to D, and (d, d′) or (d, d′′), depending on the (∃S−

a)J , are
added only to roles Pq , Qa and U0 (which are all fresh in TF). !

So, (T ,Aw) (|= q iff M does not accept w. Take M to be a fixed deterministic
universal Turing machine, i.e., a machine that accepts w iff the empty input is accepted
by the Turing machine encoded by w. This finishes the proof of Theorem 3. !

5 Lower Bounds for CQ!= Answering without Role Inclusions

In the previous sections we established undecidability of CQ¬s and CQ!= answering
over DL-LiteH

core. The reductions, however, essentially use role inclusions. Leaving the
problems of decidability of CQ¬s and CQ != answering over DL-Litecore open, we es-
tablish lower complexity bounds for the second case.

Theorem 4. There exist a Boolean CQ!= q with one inequality and a DL-Litecore TBox
T such that the problem CERTAIN ANSWERS (q, T) is P-hard.

Proof. The proof is by reduction of the complement of HORN-3SAT, the satisfiability
problem for Horn clauses with at most 3 literals, which is known to be P-complete (see
e.g., [11]). Suppose we are given a conjunction ψ of clauses of the form p, ¬p, and
p1 ∧ p2 → p. Fix a TBox T containing the following concept inclusions:

VT $ VF # ⊥, G # ∃T, ∃T− # ∃T, ∃T− # VT ,

and a Boolean CQ!= q which is the existential closure of the negation of the following:

VT (x) ∧ S(x, y) ∧R(y, z1) ∧ T (y, z2) → (z1 = z2).

Note that T and q do not depend on ψ. Next, we construct an ABox Aψ such that ψ is
satisfiable iff (T ,Aψ) (|= q. The ABox Aψ uses an individual name cp, for each variable
p in ψ, and individual names cγ1 and cγ2 for each clause γ of the form p1 ∧ p2 → p in
ψ. For each clause γ, the ABox Aψ contains the following assertions:

VT (cp), if γ = p, VF (cp), if γ = ¬p,
S(cp1 , cγ1), G(cγ1), R(cγ1, cγ2), S(cp2 , cγ2), R(cγ2, cp), if γ = p1 ∧ p2 → p.

Suppose first there is a model I of (T ,Aψ) with I (|= q. We show that ψ is satisfi-
able. For each clause γ of ψ of the form p1 ∧ p2 → p (the other two cases are trivial),
I contains a configuration depicted below (the black nodes represent ABox individuals
and the white ones—anonymous individuals generated by the TBox).

cp2

cγ2

cγ1 : G

cp1

SS R

VT
T

VTT

cpR

If cIp1
∈ V I

T then the T I- and RI-successors of cIγ1 coincide, whence cIγ2 ∈ (∃T)I ,
which triggers the second ‘application’ of the query to identify cIp with the T I-successor
of cIγ2 resulting in cIp ∈ V I

T but only if cIp2
∈ V I

T . So, as follows from the argument
above, we can define a satisfying assignment a for ψ by taking a(p) true iff cIp ∈ V I

T .
Conversely, if ψ is satisfiable then we can construct a model I of (T ,Aψ) with

I (|= q. !

Theorem 5. There exist a Boolean CQ!= q with two inequalities and a DL-Litecore TBox
T such that the problem CERTAIN ANSWERS (q, T) is CONP-hard.

Proof. The proof is by reduction of the complement of 3SAT, which is known to be
CONP-complete (see e.g., [11]). Suppose we are given a conjunction ψ of clauses of the
form)1∨)2∨)3, where the)k are literals, i.e., propositional variables or their negations
(we can assume that all literals in each clause are distinct). Fix a TBox T containing
the following concept inclusions:

VT # ∃T $ ∃F, ∃T− # VT , ∃T− $ ∃F− # ⊥, A1 $A2 # ⊥,

and a Boolean CQ!= q which is the existential closure of the negation of the following:

VT (x) ∧ P (x, y) ∧ T (x, y1) ∧ F (x, y2) → (y = y1) ∨ (y = y2).

Claim 5.1. Let I be a model of T with I (|= q. If d ∈ V I
T and (d, dk) ∈ P I , dk ∈ AI

k ,
k = 1, 2, then either (d, d1) ∈ F I and (d, d2) ∈ T I or (d, d1) ∈ T I and (d, d2) ∈ F I .
Proof of claim. Clearly, each pair (d, dk) belongs either to T I or F I . Suppose to the
contrary that (d, dk) ∈ T I , k = 1, 2. Consider q with x 5→ d, y 5→ d1, y1 5→ d2 and
any F I-successor of d as y2. By disjointness of the Ak, d1 (= d2, and so, we can only
choose y = y2, whence (d, d1) ∈ F I contrary to disjointness of ∃T− and ∃F−. !

Again, T and q do not depend on ψ. The ABox Aψ is constructed as follows. Let t
and f be two individuals with A1(t) and A1(f) in Aψ . For each propositional variable
p of ψ, take the following assertions, for k = 1, 2, with 5 individuals vp, ck¬p and ckp:

A2(vp), P (ckp, vp), P (ckp, f), F (ckp, f), Ak(c
k
p),

P (ck¬p, vp), P (ck¬p, t), T (ck¬p, t), Ak(c
k
¬p),

where the ckp and ck¬p represent the literals p and ¬p, respectively, see the picture below.

ckp Ak

f : A1 vp: A2

ck¬p Ak

t : A1

P, F P P, T
P

T F

Observe that, by Claim 5.1, if (ck¬p)
I ∈ V I

T in a model I of (T ,Aψ) with I (|= q then
vIp ∈ (∃F−)I , that is, if the literal ¬p is chosen (by means of VT) then p must be false;
on the other hand, if ¬p is not chosen (that is, (ck¬p)

I /∈ V I
T) then vIp does not have to

be in (∃F−)I and p can be anything; and similarly for (ckp)I with vIp ∈ (∃T−)I .
Next, Aψ contains, for each clause γ of the form)1 ∨)2 ∨)3 in ψ, the following

assertions, where cγ1 and cγ2 are two fresh individuals:

VT (cγ1), P (cγ1, c
1
$1), P (cγ1, cγ2), A2(cγ2), P (cγ2, c

1
$2), P (cγ2, c

2
$3).

It should be clear that ψ is satisfiable iff (T ,Aψ) (|= q. Indeed, if there is a model I of
(T ,Aψ) with I (|= q then, by Claim 5.1 and the observation above, we can construct a
satisfying assignment a for ψ by taking a(p) true iff vIp ∈ V I

T . The converse direction
is straightforward and omitted due to space restrictions. !

6 Conclusions

Our investigation made further steps towards a clearer understanding of the impact of
extending CQs with safe negation or inequalities on the complexity of the query an-
swering problem in the OBDA paradigm. We showed that over DL-LiteH

core ontologies
these extensions lead to a surprisingly big increase, going from AC0 for answering (pos-
itive) CQs to undecidability for answering CQs¬s and CQs != with a single inequality.
Furthermore, we showed that over the simpler DL-Litecore the problem for CQs != is
also harder than for CQs: P-hard for queries with one inequality and CONP-hard for
queries with at least two inequalities. Two important problems are left as future work:
decidability of answering CQ¬s and CQs!= over DL-Litecore ontologies.
Acknowledgements. The fourth author was supported by the UK EPSRC grant
EP/J017728/1 (SOCIAM project).

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning
39(3) (2007) 385–429

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and
relations. J. Artif. Intell. Res. (JAIR) 36 (2009) 1–69

3. Rosati, R.: The limits of querying ontologies. In: Proc. of the 11th Int. Conf. on Database
Theory (ICDT). Volume 4353 of LNCS., Springer (2007) 164–178

4. Bienvenu, M., Ortiz, M., Simkus, M.: Answering expressive path queries over lightweight
DL knowledge bases. In: Proc. of the 2012 Int. Workshop on Description Logics (DL).
Volume 846 of CEUR-WS. (2012)

5. Gutiérrez-Basulto, V., Ibáñez-Garcı́a, Y., Kontchakov, R.: An update on query answering
with restricted forms of negation. In: Proc. of the 6th Int. Conf. on Web Reasoning and Rule
Systems (RR). Volume 7497 of LNCS., Springer (2012) 75–89

6. Kostylev, E.V., Reutter, J.L.: Answering counting aggregate queries over ontologies of the
DL-Lite family. In: Proc. of the 27th AAAI Conf. on Artificial Intelligence (AAAI). (2013)

7. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. of the 27th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), ACM
Press (2008) 149–158

8. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR), AAAI Press (2010)

9. Klenke, T.: Über die Entscheidbarkeit von konjunktiv Anfragen mit Ungleichheit in der
Beschreibungslogik EL. Master’s thesis, Universität Bremen (2010)

10. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. of
14th Annual ACM Symposium on Theory of Computing (STOC), ACM (1982) 137–146

11. Papadimitriou, C.H.: Computational complexity. Academic Internet Publ. (2007)

