Skip to main content

Relation Decomposition: The Theory

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7988))

Abstract

Data Mining explanatory models must deal with relevance: how values of different data items are relevant to the values of other data items. But to be able to construct explanatory models, and in particular causal explanatory models, we must do so by first understanding irrelevance and exactly how irrelevance plays a role in explanatory models. The reason is that the conditional irrelevance or conditional no influence relation defines the boundaries of the ballpark within which an explanatory model lives.

This paper reviews the theory of no influence in the mathematical relation data structure. We discuss the relationship this theory has to graphical models and we define a coefficient of no influence and give a method for the estimation of its p-value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phillip Dawid, A.: Conditional independence in statistical theory. Journal of the Royal Statistical Society Serial B 41, 1–31 (1979)

    Google Scholar 

  2. Fagin, R.: A new normal form for relational databases. ACM Transactions on Database Systems 2(3), 262–278 (1977)

    Article  MathSciNet  Google Scholar 

  3. Fagin, R., Vardi, M.: The theory of data dependencies - a survey. Proceedings of Symposia in Applied Mathematics 34, 19–71 (1986)

    Article  MathSciNet  Google Scholar 

  4. Galles, D., Pearl, J.: Axioms of causal relevance. Artificial Intelligence 97, 9–43 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hausman, D., Woodward, J.: Independence, invariance, and the causal markov condition. British Journal of Philosophy 50, 521–583 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lauritzen, S.: Graphical Models. Oxford University Press, New York (1996)

    Google Scholar 

  7. Pearl, J., Paz, A.: On the logic of representing dependencies by graphs. In: Proceedings 1986 Canadian AI Conference, Montreal, Canada, pp. 94–98 (1986)

    Google Scholar 

  8. Shafer, G., Shenoy, P., Mellouli, K.: Propagating belief functions in qualitative markov trees. International Journal of Approximate Reasoning, 349–400 (1987)

    Google Scholar 

  9. Spohn, W.: Stochastic independence, causal independence, and shieldability. Journal of Philosophical Logic 9, 73–99 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haralick, R.M., Liu, L., Misshula, E. (2013). Relation Decomposition: The Theory. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2013. Lecture Notes in Computer Science(), vol 7988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39712-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39712-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39711-0

  • Online ISBN: 978-3-642-39712-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics