
On Refinements of Boolean and Parametric
Modal Transition Systems

Jan Křet́ınský1,2 and Salomon Sickert1

1 Institut für Informatik, Technische Universität München, Germany
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We consider the extensions of modal transition systems (MTS),
namely Boolean MTS and parametric MTS and we investigate the re-
finement problems over both classes. Firstly, we reduce the problem of
modal refinement over both classes to a problem solvable by a QBF solver
and provide experimental results showing our technique scales well. Sec-
ondly, we extend the algorithm for thorough refinement of MTS provid-
ing better complexity then via reductions to previously studied problems.
Finally, we investigate the relationship between modal and thorough re-
finement on the two classes and show how the thorough refinement can
be approximated by the modal refinement.

1 Introduction

Due to the ever increasing complexity of software systems and their reuse,
component-based design and verification have become crucial. Therefore, having
a specification formalism that supports component-based development and step-
wise refinement is very useful. In such a framework, one can start from an initial
specification, proceed with a series of small and successive refinements until even-
tually a specification is reached from which an implementation can be extracted
directly. In each refinement step, we can replace a single component of the cur-
rent specification with a more concrete/implementable one. The correctness of
such a step should follow from the correctness of the refinement of the replaced
component, so that the methodology supports compositional verification.

Modal transition systems (MTS) were introduced by Larsen and Thom-
sen [LT88] in order to obtain an operational, yet expressive and manageable
specification formalism meeting the above properties. Their success resides in
natural combination of two features. Firstly, it is the simplicity of labelled tran-
sition systems, which have proved appropriate for behavioural description of
systems as well as their compositions; MTS as their extension inherit this ap-
propriateness. Secondly, as opposed to e.g. temporal logic specifications, MTS
can be easily gradually refined into implementations while preserving the de-
sired behavioural properties. In this work, we focus on checking the refinement
between MTS and also their recent extensions.

The formalism of MTS has proven to be useful in practice. Industrial ap-
plications are as old as [Bru97] where MTS have been used for an air-traffic

ar
X

iv
:1

30
4.

52
78

v1
 [

cs
.L

O
]

 1
8

A
pr

 2
01

3

system at Heathrow airport. Besides, MTS are advocated as an appropriate
base for interface theories in [RBB+09] and for product line theories in [Nym08].
Further, MTS based software engineering methodology for design via merging
partial descriptions of behaviour has been established in [UC04]. Moreover, the
tool support is quite extensive, e.g. [BLS95,DFFU07,BML11,BČK11].

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe which behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need not
be realized in the refinements. This allows for underspecification of non-critical
behaviour in the early stage of design, focusing on the main properties, verifying
them and sorting out the details of the yet unimplemented non-critical behaviour
later.

Over the years, many extensions of MTS have been proposed. While MTS
can only specify whether or not a particular transition is required, some ex-
tensions equip MTS with more general abilities to describe what combinations
of transitions are possible. Disjunctive MTS (DMTS) [LX90] can specify that
at least one of a given set of transitions is present. One selecting MTS [FS08]
allow to choose exactly one of them. Boolean MTS (BMTS) [BKL+11] cover
all Boolean combinations of transitions. The same holds for acceptance au-
tomata [Rac07] and Boolean formulae with states [BDF+], which both express
the requirement by listing all possible sets instead of a Boolean formula. Para-
metric MTS (PMTS) [BKL+11] add parameters on top of it, so that we can also
express persistent choices of transitions and relate possible choices in different
parts of a system. This way, one can model hardware dependencies of transitions
and systems with prices [BKL+12].

Our contribution In this paper, we investigate extensions of MTS with re-
spect to two notions of refinement. The modal refinement is a syntactically de-
fined notion extending on the one hand bisimulation and on the other hand
simulation. Similarly to bisimulation having a counterpart in trace equivalence,
here the counterpart of modal refinement is the thorough refinement. It is the
corresponding semantically defined notion relating (by inclusion) the sets of im-
plementations of the specifications.

We focus both on theoretical and practical complexity of the refinement prob-
lems. While modal refinement on MTS and disjunctive MTS can be decided in
polynomial time, on BMTS and PMTS it is higher in the polynomial hierarchy
(Π2 and Π4, respectively). The huge success of SAT and also QBF solvers in-
spired us to reduce these refinement problems to problems solvable by a QBF
solver. We have also performed experimental results showing that this solution
scales well in the size of the system as well as in the number of parameters, while
a direct naive solution is infeasible.

Further, we extend the decision algorithm for thorough refinement checking
over MTS [BKLS12] and DMTS [BČK10] to the setting of BMTS and PMTS. We
show how PMTS can be translated to BMTS and BMTS can then be transformed
to DMTS. As we can decide the problem on DMTS in EXPTIME, this shows
decidability for BMTS and PMTS, but each of the translations is inevitably

2

exponential. However, we show better upper bounds than doubly and triply
exponential. To this end, we give also a direct algorithm for showing the problem
is in NEXPTIME for BMTS and 2-EXPTIME for PMTS.

Since the thorough refinement is EXPTIME-hard for already MTS, it is
harder than the modal refinement, which is in P for DMTS and in Π4 for PMTS.
Therefore, we also investigate how the thorough refinement can be approximated
by the modal refinement. While underapproximation is easy, as modal refine-
ment implies thorough refinement, overapproximation is more difficult. Here we
extend our method of the deterministic hull for MTS [BKLS09] to both BMTS
and PMTS. We prove that for BMTS modal and thorough refinements coincide
if the refined system is deterministic, which then yields an overapproximation
via the deterministic hull. Finally, in the case with PMTS, we need to overap-
proximate the behaviour dependent on the parameters, because the coincidence
of the refinements on deterministic systems fails for PMTS.

Our contribution can be summarized as follows:

– We reduce the problem of modal refinement over BMTS and PMTS to a
problem solvable by a QBF solver. We provide promising experimental re-
sults showing this solution scales well.

– We extend the algorithm for thorough refinement on MTS and DMTS to
BMTS and PMTS providing better complexity then via translation of these
formalisms to DMTS. This also shows (together with results on modal re-
finement) that we can make use of the more compact representation used in
the formalisms of BMTS and PMTS.

– We investigate the relationship between modal and thorough refinement on
BMTS and PMTS. We introduce approximation methods for the thorough
refinement on BMTS and PMTS through the modal refinement.

Related work There are various other approaches to deal with component re-
finements. They range from subtyping [LW94] over Java modelling language [JP01]
to interface theories close to MTS such as interface automata [dAH01]. Similarly
to MTS, interface automata are behavioural interfaces for components. However,
their composition works very differently. Furthermore, its notion of refinement is
based on alternating simulation [AHKV98], which has been proved strictly less
expressive than MTS refinement—actually coinciding on a subclass of MTS—in
the paper [LNW07], which combines MTS and interface automata based on I/O
automata [Lyn88]. The compositionality of this combination is further investi-
gated in [RBB+11].

Further, opposite to the design of correct software where an abstract ver-
ified MTS is transformed into a concrete implementation, one can consider
checking correctness of software through abstracting a concrete implementation
into a coarser system. The use of MTS as abstractions has been advocated
e.g. in [GHJ01]. While usually overapproximations (or underapproximations) of
systems are constructed and thus only purely universal (or existential) properties
can be checked, [GHJ01] shows that using MTS one can check mixed formulae
(arbitrarily combining universal and existential properties) and, moreover, at the

3

same cost as checking universal properties using traditional conservative abstrac-
tions. This advantage has been investigated also in the context of systems equiva-
lent or closely related to MTS [HJS01,DGG97,Nam03,DN04,CGLT09,GNRT10].

MTS can also be viewed as a fragment of mu-calculus that is “graphically
representable” [BL90,BDF+]. The graphical representability of a variant of al-
ternating simulation called covariant-contravariant simulation has been recently
studied in [AFdFE+11].

Outline of the paper In Section 2, we recall the formalism of MTS and the
extensions discussed. Further, in Section 3, we recall the modal refinement prob-
lem. We reduce it to a QBF problem in Section 4. In Section 5, we give a solution
to the thorough refinement problems. Section 6 investigates the relationship of
the two refinements and how modal refinement can approximate the thorough
refinement. We conclude in Section 7.

2 Modal Transition Systems and Boolean and Parametric
Extensions

In this section, we introduce the studied formalisms of modal transition sys-
tems and their Boolean and parametric extensions. We first recall the standard
definition of MTS:

Definition 2.1. A modal transition system (MTS) over an action alphabet Σ
is a triple (S, 99K,−→), where S is a set of states and −→ ⊆ 99K ⊆ S ×Σ × S
are must and may transition relations, respectively.

The MTS are often drawn as follows. Unbroken arrows denote the must (and
underlying may) transitions while dashed arrows denote may transitions where
there is no must transition.

Example 2.2. The MTS on the right is adapted from [BKL+11] and models
traffic lights of types used e.g. in Europe and in North America. In state green

go

readygo

ready sto
p

on the left there is a must transition under ready to
state yellow from which there is must transition to
red . Here transitions to yellowRed and back to green
are may transition. Intuitively, this means that any fi-
nal implementation may have one or the other transi-
tion or both or none. In contrast, the must transitions
are present in all implementations.

Note that using MTS, we cannot express the set
of implementations with exactly one of the transitions
in red . For that, we can use Boolean MTS [BKL+11] instead, which can express
not only arbitrary conjunctions and disjunctions, but also negations and thus
also exclusive-or. However, in Boolean MTS it may still happen that at first
only transition to green is present, but in the next round of the traffic lights
cycle only the transition to yellowRed is present. To make sure the choice will

4

remain the same in the whole implementation, parametric MTS have been in-
troduced [BKL+11] extending the Boolean MTS.

Before we define the most general class of parametric MTS and derive other
classes as special cases, we first recall the standard propositional logic. A Boolean
formula over a set X of atomic propositions is given by the following abstract
syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X. The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a valuation, i.e. a set of variables with value true, then
the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ ⊕ ψ :=
(ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ := ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ :=
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS. In essence, it
is a labelled transition system where we can specify which transitions can be
present depending on values of some fixed parameters.

Definition 2.3. A parametric modal transition system (PMTS) over an action
alphabet Σ is a tuple (S, T, P, Φ) where

– S is a set of states,

– T ⊆ S ×Σ × S is a transition relation,

– P is a finite set of parameters, and

– Φ : S → B((Σ × S) ∪ P) is an obligation function over the outgoing tran-
sitions and parameters. We assume that whenever (a, t) occurs in Φ(s) then
(s, a, t) ∈ T .

A Boolean modal transition system (BMTS) is a PMTS with the set of parame-
ters P being empty. A disjunctive MTS (DMTS) is a BMTS with the obligation
function in conjunctive normal form and using no negation. An implementation
(or labelled transition system) is a BMTS with Φ(s) =

∧
(s,a,t)∈T (a, t) for each

s ∈ S.

An MTS is then a BMTS with Φ(s) being a conjunction of positive literals
(some of the outgoing transitions), for each s ∈ S. More precisely, 99K is the
same as T , and (s, a, t) ∈ −→ if and only if (a, t) is one of the conjuncts of Φ(s).

Example 2.4. An example of a PMTS which captures the traffic lights used
e.g. in Europe for cars and for pedestrians is depicted below. Depending on the
valuation of parameter reqYellow , we either always use the yellow light between
the red and green lights, or we never do. The transition relation is depicted using
unbroken arrows.

5

go

stop

readygo

ready sto
p

Parameters: P = {reqYellow}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYellow ⇔ (ready , yellow))
Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYellow ⇔ (ready , yellowRed))
Φ(yellowRed) = (go, green)

3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal
refinement that allows for a step-wise system design (see e.g. [AHL+08]). We
start with the standard definition of modal refinement for MTS and then discuss
extensions to BMTS and PMTS.

Definition 3.1 (MTS Modal Refinement). For states s0 and t0 of MTS
(S1,−→1, 99K1) and (S2,−→2, 99K2), respectively, we say that s0 modally refines
t0, written s0 ≤m t0, if (s0, t0) is contained in a relation R ⊆ S1 × S2 satisfying
for every (s, t) ∈ R and every a ∈ Σ:

1. if s
a

99K1 s′ then there is a transition t
a

99K2 t′ with (s′, t′) ∈ R, and

2. if t
a−→2 t

′ then there is a transition s
a−→1 s

′ with (s′, t′) ∈ R.

Intuitively, s ≤m t iff whatever s can do is allowed by t and whatever t requires
can be done by s. Thus s is a refinement of t, or t is an abstraction of s. Further,
an implementation of s is a state of an implementation (labelled transition
system) with i ≤m s.

In [BKL+11], the modal refinement has been extended to PMTS (and thus
BMTS) so that it coincides on MTS. We first recall the definition for BMTS. To
this end, we set the following notation. Let (S, T, P, Φ) be a PMTS and ν ⊆ P
be a valuation. For s ∈ S, we write T (s) = {(a, t) | (s, a, t) ∈ T} and denote by

Tranν(s) = {E ⊆ T (s) | E ∪ ν |= Φ(s)}

the set of all admissible sets of transitions from s under the fixed truth values
of the parameters. In the case of BMTS, we often write Tran instead of Tran∅.

Definition 3.2 (BMTS Modal Refinement). For states s0 and t0 of BMTS
(S1, T1, ∅, Φ1) and (S2, T2, ∅, Φ2), respectively, we say that s0 modally refines t0,
written s0 ≤m t0, if (s0, t0) is contained in a relation R ⊆ S1 × S2 satisfying for
every (s, t) ∈ R:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

6

For PMTS, we propose here a slightly altered definition, which corresponds
more to the intuition, is closer to the semantically defined notion of thorough
refinement, but still keeps the same complexity as established in [BKL+11]. We
use the following notation. For a PMTS M = (S, T, P, Φ), a valuation ν ⊆ P
of parameters induces a BMTS Mν = (S, T, ∅, Φ′) where each occurrence of
p ∈ ν in Φ is replaced by tt and of p /∈ ν by ¬tt, i.e. Φ′(s) = Φ(s)[tt/p for p ∈
ν,ff/p for p /∈ ν] for each s ∈ S. We extend the notation to states and let sν

denote the state of Mν corresponding to the state s of M.

Definition 3.3 (PMTS Modal Refinement). For states s0 and t0 of PMTS
(S1, T1, P1, Φ1) and (S2, T2, P2, Φ2), we say that s0 modally refines t0, written
s0 ≤m t0, if for every µ ⊆ P1 there exists ν ⊆ P2 such that sµ0 ≤m tν0 .

Before we comment on the difference to the original definition, we illustrate
the refinement on an example of [BKL+11] where both definitions coincide.

Example 3.4. Consider the rightmost PMTS below. It has two parameters, namely
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqYellow . This single parameter simply binds the two original parameters to
the same value. The PMTS in the middle can be further refined into the im-
plementations where either yellow is always used in both cases, or never at all
as discussed in the previous example. Up to bisimilarity, the green state of this
system only has the two implementations on the left.

go

stop

readygo

ready sto
p

Parameters: P = {reqYfromR, reqYfromG}

Obligation function:

Φ(yellowRed) = (go, green)

Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYfromG ⇔ (ready , yellow))

Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqYfromR ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

Parameters: P = {reqYellow}

Obligation function:

Φ(yellowRed) = (go, green)

Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYellow ⇔ (ready , yellow))

Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqYellow ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

The original version of [BKL+11] requires for s0 ≤m t0 to hold that there be
a fixed R ⊆ S1 × S2 such that for every µ ⊆ P1 there exists ν ⊆ P2 satisfying
for each (s, t) ∈ R

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

7

Clearly, the original definition is stronger: For any two PMTS states, if s0 ≤m t0
holds according to [BKL+11] it also holds according to Definition 3.3. Indeed,
the relation for any sets of parameters can be chosen to be the fixed relation R.
On the other hand, the opposite does not hold.

Example 3.5. Consider the PMTS on the left with parameter set {p} and obli-
gation Φ(s0) = (a, s1), Φ(s1) = (b, s2) ⇔ p, Φ(s2) = tt and the PMTS on the
right with parameter set {q} and obligation Φ(t0) =

(
(a, t1) ⇔ q

)
∧
(
(a, t′1) ⇔

¬q
)
, Φ(t1) = (a, t2), Φ(t2) = Φ(t′1) = tt. On the one hand, according to our

definition s0 ≤m t0. We intuitively agree it should be the case (and note they
also have the same set of implementations). On the other hand, the original
definition does not allow to conclude modal refinement between s0 and t0. The
reason is that depending on the value of p, s1 is put in the relation either with t1
(for p being true and thus choosing q true, too) or with t′1 (for p being false and
thus choosing q false, too). In contrast to the original definition, our definition
allows us to pick different relations for different parameter valuations.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

We propose our modification of the definition since it is more intuitive and for
all considered fragments of PMTS has the same complexity as the original one.
Note that both definitions coincide on BMTS. Further, on MTS they coincide
with Definition 3.1 and on labelled transition systems with bisimulation.

4 Modal Refinement Checking

In this section, we show how to solve the modal refinement problem on BMTS
and PMTS using QBF solvers. Although modal refinement is Π2-complete (the
second level of the polynomial hierarchy) on BMTS and Π4-complete on PMTS
(see [BKL+11]), this way we obtain a solution method that is practically fast. We
have implemented the approach and document its scalability on experimental
results.

As mentioned, in order to decide whether modal refinement holds between
two states, a reduction to a quantified boolean formula will be used. First, we
recall the QBF decision problems.

Definition 4.1 (QBFQn). Let Ap be a set of atomic propositions, which is parti-
tioned into n sets with Ap =

⋃n
i=0Xi, and φ ∈ B(Ap) a boolean formula over this

set of atomic propositions. Let Q ∈ {∀,∃} be a quantifier and : {∀ 7→ ∃,∃ 7→ ∀}
a function. Then a formula

QX1QX2QX3 . . . Q̃Xnφ with Q̃ =

{
Q if n is odd

Q if n is even

is an instance of QBFQn if it is satisfiable.

8

Satisfiability means that if e.g. Q = ∃ there is some partial valuation for the
atomic propositions in X1, such that for all partial valuations for the elements
of X2, there is another partial valuation for the propositions of X3 and so on up
to Xn, such that φ is satisfied by the union of all partial valuations. It is well
known that these problems are complete for the polynomial hierarchy: For each
i ≥ 1, QBF ∃i is Σi-complete and QBF ∀i is Πi-complete.

4.1 Construction for BMTS

Due to the completeness of QBF problems and the results of [BKL+11], it is
possible to polynomially reduce modal refinement on BMTS to QBF ∀2 . However,
we would then have to perform a fixpoint computation to compute the refinement
relation causing numerous invocations of the external QBF solver. Hence it is
faster to guess the relation and thus reduce the modal refinement only to QBF ∃3 .

Let s ∈ S1 and t ∈ S2 be processes of two arbitrary BMTSsM1 = (S1, T1, ∅, Φ1)
and M2 = (S2, T2, ∅, Φ2). Furthermore let

Ap = (S1 × S2)︸ ︷︷ ︸
XR

] T1︸︷︷︸
XT1

] (S1 × T2)︸ ︷︷ ︸
XT2

be a set of atomic propositions. The intended meaning is that (u, v) ∈ XR is
assigned tt if and only if it is also contained in the modal refinement relation
R. Further, XT1 and XT2 are used to talk about the transitions. The prefix
S1 is attached to the set T2 because N ∈ Tran(t) with t ∈ S2 must be chosen
independently for different states of S1. This trick enables us later to pull up the
∃ quantification in the formula.

We now construct a formula Ψs,t ∈ B(Ap) satisfying

s ≤m t iff ∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3 (1)

To this end, we shall use a macro ψu,v capturing the condition which has
to be satisfied by any element (u, v) ∈ R. Furthermore, we ensure that (s, t) is
assigned tt by every satisfying assignment for the formula by placing it directly
in the conjunction:

Ψs,t = (s, t) ∧
∧

(u,v)∈XR

(
(u, v)⇒ ψu,v

)
(2)

It remains to define the macro ψu,v. We start with the modal refinement
condition as a blueprint:

∀M ∈ Tran(u) : ∃N ∈ Tran(v) : ∀(a, u′) ∈M : ∃(a, v′) ∈ N : (u′, v′) ∈ R ∧
∀(a, v′) ∈ N : ∃(a, u′) ∈M : (u′, v′) ∈ R .

As M and N are subsets of T1(u) and T2(v), respectively, and are finite,
the inner quantifiers can be expanded causing only a polynomial growth of the

9

formula size (see Appendix A). Further, Tran sets are replaced by the original
definition and the outer quantifiers are moved in front of Ψs,t. As the state
obligations are defined over a different set of atomic propositions (Φ(v) ∈ B((Σ×
S) ∪ P) 6⊆ B(Ap)), a family of mapping functions πp is introduced.

πp : B(Σ × S)→ B(Ap)

tt 7→ tt

(a, x) 7→ (p, a, x) with a ∈ Σ, x ∈ S
¬ϕ 7→ ¬ πp(ϕ)

ϕ1 ∧ ϕ2 7→ πp(ϕ1) ∧ πp(ϕ2)

ϕ1 ∨ ϕ2 7→ πp(ϕ1) ∨ πp(ϕ2)

(3)

A applying these steps to the blueprint yields the following result:

ψu,v = πu (Φ1 (u))⇒ πu,v (Φ2 (v)) ∧ ϕu,v (4)

ϕu,v =
∧

u∗∈XT1

u∗=(u,a,u′)

(
u∗ ⇒

∨
v∗∈XT2

v∗=(u,v,a,v′)

(v∗ ∧ (u′, v′))
)

∧
∧

v∗∈XT2

v∗=(u,v,a,v′)

(
v∗ ⇒

∨
u∗∈XT1

u∗=(u,a,u′)

(u∗ ∧ (u′, v′))
) (5)

Theorem 4.2. For states s, t of a BMTS, we have

s ≤m t iff ∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3
Due to space constraints, the technical proof is moved to Appendix A.

4.2 Construction for PMTS

We now reduce the modal refinement on PMTS to QBF ∀4 , which now corre-
sponds directly to the complexity established in [BKL+11]. Nevertheless, due
to the first existential quantification in ∀∃∀∃ alternation sequence, we can still
guess the refinement relation using the QBF solver rather than compute the
lengthy fixpoint computation.

In the PMTS case, we have to find for all parameter valuations for the system
of s a valuation for the system of t, such that there exists a modal refinement
relation containing (s, t). We simply choose universally a valuation for the param-
eters of the left system (the underlying system of s) and then existentially for the
right system (the underlying system of t). Prior to checking modal refinement,
the valuations are fixed, so the PMTS becomes a BMTS. This is accomplished
by extending Ap with P1 and P2 and adding the necessary quantifiers to the
formula. Thus we obtain the following:

Theorem 4.3. For states s, t of a PMTS, we have

s ≤m t iff ∀P1∃P2∃XR∀XT1∃XT2Ψs,t ∈ QBF ∀4

10

4.3 Experimental Results

We now show how our method performs in practice. We implemented the reduc-
tion and linked it to the QBF solver Quantor. In order to evaluate whether our
solution scales, we generate random samples of MTS, disjunctive MTS, Boolean
MTS and parametric MTS with different numbers of parameters (as displayed
in tables below in parenthesis). For each type of system and the number of
reachable states (25 to 200 as displayed in columns), we generate several pairs
of systems and compute the average time to check modal refinement between
them.

We show several sets of experiments. In Table 1, we consider (1) systems
with alphabet of size 2 and all states with branching degree 2, and (2) systems
with alphabet of size 10 and all states with branching degree 10. Further, in
Table 2, we consider systems with alphabet of size 2 and all states with branching
degree 5. Here we first consider the systems as above, i.e. with edges generated
randomly so that they create a tree and with some additional “noise” edges thus
making the branching degree constant. Second, we consider systems where we
have different “clusters”, each of which is interconnected with many edges. Each
of these clusters has a couple of “interface” states, which are used to connect to
other clusters. We use this class of systems to model system descriptions with
more organic structure.

The entries in the tables are average running times in seconds. The standard
deviation in our experiments was around 30-60%. Each star denotes that on
one of five experiments, the QBF solver Quantor timed out after one minute.
The experiments were run on Intel Core 2 Duo CPU P9600 2.66GHz x 2
with 3.8 GB RAM using Java 1.7. For more details and more experiments,
see http://www.model.in.tum.de/~kretinsk/ictac13.html.

Table 1. Experimental results: systems over alphabet of size 2 with branching degree
2 in the upper part, and systems over alphabet of size 10 with branching degree 10 in
the lower part

25 50 75 100 125 150 175 200

MTS 0.03 0.15 0.29 0.86 0.87 0.96 1.88 2.48
DMTS 0.04 0.22 0.39 0.91 1.13 1.34 2.61 3.19
BMTS 0.03 0.15 0.30 0.62 0.83 0.87 1.61 2.17
PMTS(1) 0.03 0.20 0.37 0.84 0.97 1.23 2.44 3.15
PMTS(5) 0.04 0.22 0.42 0.91 1.26 1.59 2.83 3.66

MTS 0.18 0.84 2.12 3.88 5.63 7.64 10.30 14.18
DMTS 0.44 2.23 5.31 8.59 10.13 14.14 13.96 66.92
BMTS 0.21 1.08 2.65 4.58 6.70 9.63 12.44 17.06
PMTS(1) 0.26 1.12 2.74 4.57 7.58 10.31 11.26 16.41
PMTS(5) 0.25 1.17 2.94 6.36 7.80 10.01 11.90 36.51

On the one hand, observe that the number of parameters does not play any
major rôle in the running time. The running times on PMTS with 5 or even more
parameters are very close to BMTS, i.e. PMTS with zero parameters, as can be
seen in the graph. Therefore, the greatest theoretical complexity threat—the

11

Table 2. Experimental results: systems over alphabet of size 2 with branching degree
5; systems with random structure in the upper part, and systems with organic structure
in the lower part

25 50 75 100 125 150 175 200

PMTS (1) 0.34 2.04 5.38 8.81 11.78 17.41 27.33 58.06
PMTS (5) 0.29 1.83 *5.19 12.79 15.71 26.60 *35.30 89.25
PMTS (10) *0.43 1.36 6.70 13.66 *18.27 *21.10 51.67 232.83

PMTS (1) 0.05 0.14 0.18 0.30 3.40 0.73 0.85 0.96
PMTS (5) 0.02 0.04 0.23 0.70 0.58 0.39 1.13 *2.35
PMTS (10) 0.02 0.10 0.16 *0.16 *0.29 1.55 0.97 1.13

number of parameters allowing in general only for searching all exponentially
many combinations—is in practice eliminated by the use of QBF solvers.

On the other hand, observe that the running time is more affected by the
level of non-determinism. For branching degree 10 over 10-letter alphabet there,
there are more likely to be more outgoing transitions under the same letter
than in the case with branching degree 2 over 2-letter alphabet, but still less
than for branching degree 5 over 2-letter alphabet. However, the level of non-
determinism is often quite low [BKLS09], hence this dependency does not pose
so serious problem in practice. Further, even this most difficult setting with high
level of non-determinism allows for fast analysis if systems with natural organic
structure are considered, cf. upper and lower part of Table 2.

A more serious problem stems from our use of Java. With sizes around 200,
the running times often get considerably longer, see the tables. Here the memory
management and the garbage collection take their toll. However, this problem
should diminish in a garbage-collection-free setting.

5 Thorough Refinement Checking

While modal refinement has been defined syntactically, there is also a corre-
sponding notion defined semantically. The semantics of a state s of a PMTS is
the set of its implementations JsK := {i | i is an implementation and i ≤m s}.

Definition 5.1 (Thorough Refinement). For states s0 and t0 of PMTS, we
say that s0 thoroughly refines t0, written s0 ≤t t0, if Js0K ⊆ Jt0K.

5.1 Transforming PMTS to BMTS and DMTS

The thorough refinement problem is EXPTIME-complete for MTS [BKLS12]
and also for DMTS [BČK11] (for proof, see [BČK10]). First, we show how to
transform PMTS to BMTS and DMTS and thus reduce our problems to the
already solved one.

For a PMTS, we define a system where we can use any valuation of the
parameters:

12

Definition 5.2. For a PMTS M = (S, T, P, Φ) with initial state s0, we define
a BMTS called de-parameterizationMB = ({sB0 }∪S×2P , T ′, ∅, Φ′) with initial
state sB0 and

– T = {(sB0 , a, (s, ν)) | (s0, a, s) ∈ T, ν ⊆ P}∪{((s, ν), a, (s′, ν) | (s, a, s′) ∈ T},
– Φ′(sB0) =

⊕
ν⊆P

Φ(s0)[tt/p for p ∈ ν,ff/p for p /∈ ν, (s, ν)/s],

– Φ′
(
(s, ν)

)
= Φ(s)[tt/p for p ∈ ν,ff/p for p /∈ ν, (s, ν)/s].

The de-parameterization is a BMTS having exactly all the implementations
of the PMTS and only one (trivial) valuation.

Proposition 5.3. Let s0 be a PMTS state. Then Js0K = JsB0 K and s0 ≤m sB0 .

Proof. For any parameter valuation ν we match it with ∅ and the modal refine-
ment is achieved in the copy with ν fixed in the second component. Clearly, any
implementation of sB0 corresponds to a particular parameter valuation and thus
also to an implementation of s0. ut

Remark 5.4. The price we have to pay is a blowup exponential in |P |. This is,
however, inevitable. Indeed, consider a PMTS ({s0, s1, s2}, {(s0, p, s1), (s1, p, s2) |
p ∈ P}, P, {s0, s1 7→

∧
p∈P (p, s)⇔ p, s2 7→ tt}). Then in every equivalent BMTS

we need to remember the transitions of the first step so that we can repeat ex-
actly these in the following step. Since there are exponentially many possibilities,
the result follows.

Further, similarly to Boolean formulae with states in [BDF+], we can trans-
form every BMTS to a DMTS.

Definition 5.5. For a BMTS M = (S, T, ∅, Φ) with initial state s0, we define
a DMTS called de-negation MD = (S′, T ′, ∅, Φ′)

– S′ = {M ∈ Tran(s) | s ∈ S},
– Φ′(M) =

∧
(a,s′)∈M

∨
M ′∈Tran(s′)(a,M

′),

and T ′ minimal such that for each M ∈ S′ and each occurrence of (a,M ′) in
Φ(M), we have (M,a,M ′) ∈ T ′.

However, this DMTS needs to have more initial states in order to be equiv-
alent to the original BMTS:

Lemma 5.6. For a state s0 of a BMTS, Js0K =
⋃
M∈Tran(s0)JMK (where M are

taken as states of the de-negation).

Note that both transformations are exponential. The first one in |P | and the
second one in the branching degree. Therefore, their composition is still only
singly exponential yielding a state space where each state has two components:
a valuation of original parameters and Tran of the original state under this
valuation.

13

Theorem 5.7. Thorough refinement on PMTS is in 2-EXPTIME.

Proof. Recall that thorough refinement on DMTS is in EXPTIME. Further, note
that we have reduced the PMTS and BMTS thorough refinement problems to the
one on DMTS with more initial states. However, this does not pose a problem.
Indeed, let s0 and t0 be states of a BMTS. We want to check whether s0 ≤t t0.
According to [BČK10] where DMTS only have one initial state, we only need
to check whether for each M ∈ Tran(s0) we have (M,Tran(t0)) /∈ Avoid, which
can clearly still be done in exponential time. ut

5.2 Direct algorithm

We now extend the approach for MTS and DMTS to the BMTS case. Before
proceeding, one needs to prune all inconsistent states, i.e. those with unsatisfiable
obligation. This is standard and the details can be found in Appendix B.

We define a set Avoid, which contains pairs consisting of one process and one
set of processes. A pair is contained in the relation if there exists an implemen-
tation refining the single process, but none of the other processes. This approach
is very similar to [BKLS12], but the rules for generating Avoid are much more
complex.

Definition 5.8. (Avoid) Let (S, T, ∅, Φ) be a globally consistent BMTS over the
action alphabet Σ. The set of avoiding states of the form (s, T), where s ∈ S and
T ⊆ S, is the smallest set Avoid such that (s, T) ∈ Avoid whenever T = ∅ or
there exists an admissible set of transitions M ∈ Tran(s) and sets latera,u,f ⊆ S
for every a ∈ Σ, u ∈ S, f ∈

⋃
t∈T Tran(t) such that

∀t ∈ T : ∀Nt ∈ Tran(t) : ∃a ∈ Σ :

∃ta ∈ Nt(a) : ∀sa ∈M(a) : ∀f ∈
⋃
t∈T

Tran(t) : ta ∈ latera,sa,f

∨ ∃sa ∈M(a) : ∀ta ∈ Nt(a) : ta ∈ latera,sa,Nt

and
∀f ∈

⋃
t∈T

Tran(t) : ∀(a, sa) ∈M : (sa, latera,sa,f) ∈ Avoid

hold.

Lemma 5.9. Given processes s, t1, t2 . . . tn of some finite, global-consistent BMTS,
there exists an implementation I such that I ≤m s and I 6≤m ti for all i ∈ [1, n]
if (s, {t1, t2 . . . tn}) ∈ Avoid.

Theorem 5.10. Thorough refinement checking on BMTS is in NEXPTIME.

Proof. For deciding s ≤t t the Avoid relation has to be computed, whose size
grows exponentially with the size of the underlying system. Moreover, in each
step of adding a new element is added to Avoid, the sets latera,s,f need to be
guessed. ut

14

6 Thorough vs. Modal Refinement

In this section, we discuss the relationship of the two refinements. Some proofs
are moved to Appendix C. Firstly, the modal refinement is a sound approxima-
tion to the thorough refinement.

Proposition 6.1. Let s0 and t0 be states of PMTS. If s0 ≤m t0 then also s0 ≤t

t0.

Proof. For any i ∈ Js0K, we have i ≤m s0 and due to transitivity of ≤m, i ≤m

s0 ≤m t0 implies i ≤m t0, hence i ∈ Jt0K. ut

The converse fails already for MTS as shown in the following classical example
([BKLS09]) where s0 ≤t t0, but s0 6≤m t0.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

However, provided the refined MTS is deterministic, the approximation is also
complete [BKLS09]. This holds also for BMTS. This is very useful as determin-
istic system often appear in practice [BKLS09] and checking modal refinement
is computationally easier than the thorough refinement. Formally, we say that
a PMTS (S, T, P, Φ) is deterministic if for every (s, a, t), (s, a, t′) ∈ T we have
t = t′.

Proposition 6.2. Let s0 be a PMTS state and t0 a deterministic BMTS state.
If s0 ≤t t0 then also s0 ≤m t0.

However, the completeness fails if the refined system is deterministic but with
parameters:

Example 6.3. Consider a BMTS ({s0, s1}, {s0, a, s1}, ∅, {s0 7→ tt, s1 7→ tt}) and
a deterministic PMTS ({t0, t1}, {(t0, a, t1)}, {p}, {t0 7→ a ⇔ p, t 7→ tt}) below.
Obviously Js0K = Jt0K contains the implementations with no transitions or one
step a-transitions. Although s0 ≤t t0, we do not have s0 ≤m t0 as we cannot
match with any valuation of p.

s0 s1
a

t0 t1
a

Φ(t0) = a⇔ p

tB0 (t1, p = tt)
a

Φ(tB0) = (a⇔ tt) ∨ (a⇔ tt)

Corollary 6.4. There is a state s0 of a PMTS and a state t0 of a deterministic
PMTS such that s0 ≤t t0 but s0 6≤m t0.

In the previous example, we lacked the option to match a system with differ-
ent parameter valuations at once. However, the de-parameterization introduced
earlier is non-deterministic even if the original system was deterministic. Hence

15

the modal refinement is not guaranteed to coincide with the thorough refinement.
In [BKLS09], we defined the notion of deterministic hull, the best deterministic
overapproximation of a system. The construction on may transitions was the
standard powerset construction and a must transition was created if all states
of a macrostate had one. Here we extend this notion to PMTS, which allows to
over- and under-approximate the thorough refinement by the modal refinement.

Definition 6.5. For a PMTS M = (S, T, P, Φ) with initial state s0, we de-
fine a PMTS called deterministic hull D(M) = (2S , T ′, P, Φ′) with initial state
D(s0) := {s0} and

– T = {(S, a, Sa} where Sa denotes all a-successors of elements of S, i.e.
Sa = {s′ | ∃s ∈ S : (s, a, s′) ∈ T)},

– Φ′(S) =
∨
s∈S Φ(s)[(a, Sa)/(a, s) for every a, s].

Proposition 6.6. For a PMTS state s0, D(s0) is deterministic and s0 ≤m

D(s0).

We now show the minimality of the deterministic hull.

Proposition 6.7. Let s0 be a PMTS state. Then

– for every deterministic PMTS state t0, if s0 ≤m t0 then D(s0) ≤m t0;

– for every deterministic BMTS state t0, if s0 ≤t t0 then D(s0) ≤m t0.

The next transformation allows for removing the parameters without introducing
non-determinism.

Definition 6.8. For a PMTSM = (S, T, P, Φ) with initial state s0, we define a
BMTS called parameter-free hull P(M) = (S, T, ∅, Φ′) with initial state P(s0) :=
s0 and

Φ′(s) =
∨
ν⊆P

Φ(s)[tt/p for p ∈ ν,ff/p for p /∈ ν]

Lemma 6.9. For a PMTS state s0, s0 ≤m sB0 ≤m P(s0).

The parameter-free deterministic hull now plays the rôle of the deterministic
hull for MTS.

Corollary 6.10. For PMTS states s0 and t0, if s0 ≤t t0 then s0 ≤m P(D(t0)).

Proof. Since s0 ≤t t0, we also have s0 ≤t D(t0) by Propositions 6.6 and 6.1.
Therefore, s0 ≤t P(D(t0)) by Proposition 6.9 and thus s0 ≤m P(D(t0)) by
Proposition 6.2. ut

16

7 Conclusions

We have investigated both modal and thorough refinement on Boolean and para-
metric extension of modal transition systems. Apart from results summarized in
the table below, we have shown a practical way to compute modal refinement
and use it for approximating thorough refinement. Closing the complexity gap
for thorough refinement, i.e. obtaining matching lower bounds or improving our
algorithm remains as an open question.

MTS BMTS PMTS
≤t ∈ EXPTIME NEXPTIME 2-EXPTIME

refined system deterministic ≤m = ≤t ≤m = ≤t ≤m 6= ≤t

References

AFdFE+11. L. Aceto, I. Fábregas, D. de Frutos-Escrig, A. Ingólfsdóttir, and
M. Palomino. Graphical representation of covariant-contravariant modal
formulae. In EXPRESS, pages 1–15, 2011.

AHKV98. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating
refinement relations. In CONCUR, pages 163–178, 1998.

AHL+08. A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. 20
years of modal and mixed specifications. Bulletin of the EATCS no. 95,
pages 94–129, 2008.

BČK10. N. Beneš, I. Černá, and J. Křet́ınský. Disjunctive modal transition sys-
tems and generalized LTL model checking. Technical report FIMU-RS-
2010-12, Faculty of Informatics, Masaryk University, Brno, 2010.

BČK11. N. Beneš, I. Černá, and J. Křet́ınský. Modal transition systems: Compo-
sition and LTL model checking. In ATVA, pages 228–242, 2011.

BDF+. N. Beneš, B. Delahaye, U. Fahrenberg, J. Křet́ınský, and A. Legay.
Hennessy-milner logic with maximal fixed points as a specification theory.
Submitted.

BKL+11. N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Para-
metric modal transition systems. In ATVA, pages 275–289, 2011.

BKL+12. N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Dual-
priced modal transition systems with time durations. In LPAR, pages
122–137, 2012.

BKLS09. N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. On determinism in
modal transition systems. Theor. Comput. Sci., 410(41):4026–4043, 2009.

BKLS12. N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. Exptime-completeness
of thorough refinement on modal transition systems. Inf. Comput.,
218:54–68, 2012.

BL90. G. Boudol and K. G. Larsen. Graphical versus logical specifications. In
CAAP, pages 57–71, 1990.

BLS95. A. Børjesson, K. G. Larsen, and A. Skou. Generality in design and com-
positional verification using TAV. Formal Methods in System Design,
6(3):239–258, 1995.

BML11. S. S. Bauer, P. Mayer, and A. Legay. MIO workbench: A tool for com-
positional design with modal input/output interfaces. In ATVA, pages
418–421, 2011.

Bru97. G. Bruns. An industrial application of modal process logic. Sci. Comput.
Program., 29(1-2):3–22, 1997.

17

CGLT09. A. Campetelli, A. Gruler, M. Leucker, and D. Thoma. Don’t Know for
multi-valued systems. In ATVA, pages 289–305, 2009.

dAH01. L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC / SIG-
SOFT FSE, pages 109–120, 2001.

DFFU07. N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA: Eclipse
support for modal transition systems construction, analysis and elabora-
tion. In ETX, pages 6–10, 2007.

DGG97. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

DN04. D. Dams and K. S. Namjoshi. The existence of finite abstractions for
branching time model checking. In LICS, pages 335–344, 2004.

FS08. H. Fecher and H. Schmidt. Comparing disjunctive modal transition sys-
tems with an one-selecting variant. J. Log. Algebr. Program., 77(1-2):20–
39, 2008.

GHJ01. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model
checking using modal transition systems. In CONCUR, pages 426–440,
2001.

GNRT10. P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Composi-
tional may-must program analysis: unleashing the power of alternation.
In POPL, pages 43–56, 2010.

HJS01. M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A
foundation for three-valued program analysis. In ESOP, pages 155–169,
2001.

JP01. B. Jacobs and E. Poll. A logic for the java modeling language JML. In
FASE, pages 284–299, 2001.

LNW07. K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for
interface and product line theories. In ESOP, pages 64–79, 2007.

LT88. K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages
203–210, 1988.

LW94. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

LX90. K. G. Larsen and L. Xinxin. Equation solving using modal transition
systems. In LICS, pages 108–117, 1990.

Lyn88. N. Lynch. I/O automata: A model for discrete event systems. In 22nd
Annual Conference on Information Sciences and Systems, pages 29–38.
Princeton University, 1988.

Nam03. K. S. Namjoshi. Abstraction for branching time properties. In CAV,
pages 288–300, 2003.

Nym08. U. Nyman. Modal Transition Systems as the Basis for Interface Theories
and Product Lines. PhD thesis, Institut for Datalogi, Aalborg Universitet,
2008.

Rac07. J.-B. Raclet. Quotient de spécifications pour la réutilisation de com-
posants. PhD thesis, Université de Rennes I, december 2007. (In French).

RBB+09. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone.
Why are modalities good for interface theories? In ACSD. IEEE Com-
puter Society Press, 2009.

RBB+11. J.-B. Raclet, E. Badouel, A. Benveniste, B.Caillaud, A. Legay, and
R. Passerone. A modal interface theory for component-based design. Fun-
damenta Informaticae, 108(1-2):119–149, 2011.

UC04. S. Uchitel and M. Chechik. Merging partial behavioural models. In SIG-
SOFT FSE, pages 43–52, 2004.

18

Appendix: Proofs

A Modal Refinement Checking: Proof of Theorem 4.3

Before proving the soundness and the correctness of the construction for BMTS,
a lemma is introduced to simplify this proof.

Lemma A.1. Let be (s, t) ∈ S1 × S2 a pair of states. Let be AXR
, AXT1

and
AXT2

partial valuations for the sets of atomic propositions appearing in their
indices. Furthermore let be R ⊆ S1 × S2, M ∈ Tran∅(s) and N ∈ Tran∅(t) sets.
If AXR

= R, AXT1
⊇ πs (M) and AXT2

⊇ πs,t (N) holds, then AXR
∪ AXT1

∪
AXT2

|= ϕs,t if and only if

R ∪M ∪N |= ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R
∧ ∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R

Proof. We assume the conditions and set AX = AXR
∪AXT1

∪AXT2
and AR =

R ∪M ∪ N . Additionally, we only consider one half of the conjunction, as the
other is proven analogously.

AR |= ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R

iff AR |=
∧

(a,s′)∈T1(s)

(
(a, s′) ∈M ⇒

∨
(a,t′)∈T2(t)

((a, t′) ∈ N ∧ (s′, t′ ∈ R))
)

iff AX |=
∧

s∗∈XT1

s∗=(s,a,s′)

(
s∗ ⇒

∨
t∗∈XT2

t∗=(s,t,a,t′)

(t∗ ∧ (s′, t′))
)

As M and N are finite sets, ∀ and ∃ quantifiers may simply be expanded. In
the second step we simply apply π and substitute ∈ with atomic propositions.

ut

A relation satisfying the conditions of the definition of the modal refinement
is called a modal refinement relation.

Soundness and Correctness ’If’ part (soundness of the construction). Assume
s ≤m t with the modal refinement relation R. As the partial valuation for XR,
we set AXR

= R. Furthermore let AXT1
⊆ XT1 be an arbitrary assignment. We

now construct an assignment AXT2
, such that

A = AXR
∪ AXT1

∪ AXT2
|= Ψs,t

holds. Without adding anything to AXT2
, clearly A |= (s, t) and A |= (u, v) ⇒

ψu,v for all (u, v) ∈ XR ∩R hold.

19

Let now (u, v) ∈ R be an arbitrary pair of states. If A 6|= πu (Φ(u)), then
A |= ψu,v and A |= (u, v) ⇒ ψu,v. Hence we assume now A |= πu (Φ(u)).
Since (u, v) ∈ R, there exists for all M ∈ Tran∅(u) a set N , such that the
condition holds, which is included in the assignment AXT2

⊇ πu,v (N). This can
safely be done due to the prefixing and with Lemma A.1 we get A |= ϕu,v and
A |= (u, v)⇒ ψu,v.

As a valuation A can be constructed for a fixed modal refinement relation,
such that for all subsets of XT1 it satisfies the formula, ∃XR∀XT1∃XT2Ψs,t ∈
QBF ∃3 holds.

’Only-If’ part (correctness of the construction). We now assume

∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3

Then there exists a partial valuation AXR
⊆ A for XR, which satisfies Ψs,t. R is

simply constructed by setting R = AXR
. Clearly (s, t) ∈ R. Let now (u, v) ∈ R

be an arbitrary pair of states. As (4) is satisfied for this pair, either Φ(u) is
unsatisfiable and there simply exists no M ∈ Tran∅(s) or for the chosen M =
π−1u (AXT1

) exists a N = π−1u,v(AXT2
). By Lemma A.1 the modal refinement

condition holds for this arbitrary pair. Hence R is a modal refinement relation.

Polynomial Runtime of the Reduction We show that the reduction indeed
takes only polynomial time. For this observe that (5) is in O(| T1(u) || T2(v) |).
Therefore (4) is in O(| T1(u) || T2(v) | + | Φ1(u) | + | Φ2(v) |). Leading to a
total formula size of

O
(
| S1 || S2 |

(
| T1 || T2 | + | Φ1 | + | Φ2 |

))
B Thorough Refinement

B.1 Pruning

Now the preprocessing is formally introduced. Basically, we prune all the “in-
consistent” states.

Definition B.1 (Consistency). A state s of a BMTS is called locally consis-
tent if Φ(s) is satisfiable, otherwise it is called locally inconsistent. If all states of
a BMTS are locally consistent, the BMTS is called locally consistent. A state s
of a BMTS is called globally consistent if it has an implementation, i.e. JsK 6= ∅.

Lemma B.2. If (S, T, ∅, Φ) is a globally consistent BMTS, then for all s ∈ S:

∀M ∈ Tran∅(s) : ∃I ∈ JsK : TI(s) = M

Proof. Assume the conditions of the lemma. As the BMTS is globally consistent,
for all s ∈ S the set Tran∅(s) is non-empty. Let now s ∈ S be an arbitrary
state and M ∈ Tran∅(s) an arbitrary set of admissible transitions. We define

20

an implementation (SI , TI , ∅, ΦI) with SI = {tI | t ∈ S}, TI(sI) = M and
for all tI ∈ S \ {sI} and some N ∈ Tran∅(tI) we set TI(tI) = N . As e.g.
R = {(tI , t) | t ∈ S} is a suitable modal refinement relation, sI ≤m s holds.. ut

Corollary B.3. If a state of a BMTS is locally consistent, it is also globally
consistent.

Proof. As the system is globally consistent, lemma B.2 is applicable. Because
Tran∅(s) is non-empty for every s ∈ S, there is at least one implementation
refining s. Thus JsK 6= ∅. ut

As one may have already noted, a locally inconsistent s ∈ S of some system
cannot have any implementation, as Tran∅(s) is empty. This is captured by the
following lemma.

Lemma B.4. Removing a locally inconsistent state s ∈ S from a BMTS does
not change the semantic JtK of any other process t ∈ S \ {s}

Proof. As the obligation of the state s is unsatisfiable, Tran∅(s) is empty. Hence
the modal refinement condition is always violated if the left system is locally
consistent, which holds for implementations. Therefore, (u, s) 6∈ R for any state
u of an implementation. Removing the state from the system never affects the
modal refinement relation, thus never changes the semantic of any other process
of the system. ut

However, please note that while removing states from a system does not affect
the semantic of other states, it still can make them locally inconsistent. As a
preprocessing step, before constructing the Avoid relation, one has to remove all
locally inconsistent states until the system becomes globally consistent. If one
of the states, for which thorough refinement should be decided, is removed, the
decision becomes trivial. If the the left one is inconsistent, the refinement holds.
In the other case it does not.

B.2 Bounded Refinement

In the course of the proof of Lemma 5.9, we use a bounded version of definition
3.2, which coincides in the limit with the normal definition of modal refinement.

Definition B.5 (Bounded Modal Refinement). Let M1 = (S1, T1, P1, Φ1)
and M2 = (S2, T2, P2, Φ2) be two PMTS. A binary relation Rnµ,ν ⊆ S1×S2 (n ∈
N0) is a bounded modal refinement relation under two fixed valuations µ ⊆ P1

and ν ⊆ P2 if either n = O, then R0
µ,ν = S1 × S2, or if for every (s, t) ∈ Rn+1

µ,ν

holds

∀M ∈ Tranµ (s) : ∃N ∈ Tranν (t) :

∀ (a, s′) ∈M : ∃ (a, t′) ∈ N : (s′, t′) ∈ Rnµ,ν
∧ ∀ (a, t′) ∈ N : ∃ (a, s′) ∈M : (s′, t′) ∈ Rnµ,ν

21

We say that s n-bounded modally refines t, denoted by s ≤nm t, if for all µ ⊆ P1

there exists a modal refinement relation Rnµ,ν with some ν ⊆ P2 such that (s, t) ∈
Rnµ,ν .

Lemma B.6. On finite PMTS modal refinement and bounded modal refine-
ment coincide, meaning s ≤m t if and only if s ≤nm t for all n ∈ N0.

Proof. ’If’ part. Let’s assume s ≤nm t for all n ∈ N0. Then there exists for every
µ ⊆ P1 a nonincreasing series of sets R0

µ,ν , R
1
µ,ν , R

2
µ,ν . . . with the bounded modal

refinement definition applied each time and in all these sets is (s, t) contained.
Every iteration of the bounded modal refinement definition will either remove at
least one element or remove nothing and stabilize. As the underlying PMTS is

finite, this series is stable after at most |S1×S2| iterations and Rµ,ν = R
|S1×S2|
µ,ν 3

(s, t) is a sufficient modal refinement relation for µ and ν. As this is applicable
for every µ ⊆ P1, s ≤m t holds.

’Only-If’ part. Let’s assume s ≤m t. Then there exists for every µ ⊆ P1 a
modal refinement relation with (s, t) ∈ Rµ,ν . Let now R0

µ,ν , R
1
µ,ν , R

2
µ,ν . . . be

a nonincreasing series of sets with each time the bounded modal refinement
definition applied. Clearly for all i ∈ N0 : (s, t) ∈ Rµ,ν ⊆ Riµ,ν . As this this can
be done for every µ ⊆ P1, we have s ≤nm t for all n ∈ N0. ut

B.3 Proof of Lemma 5.9

First, we state a trivial technical claim.

Claim. Avoid is downward closed, i.e.

(s, T) ∈ Avoid =⇒ ∀T ′ ⊆ T : (s, T ′) ∈ Avoid

Proof (of Lemma 5.9). ’If’ part (soundness of the construction). As Avoid is de-
fined as smallest set, let Avoid0, Avoid1, Avoid2 . . . denote the non-decreasing
sequence of sets leading to Avoid by applying the definition each time. We ini-
tialize Avoid0 with (s, ∅) for all s ∈ S. We prove by induction on n that, when-
ever (s, T) ∈ Avoidn, there exists an implementation I such that I ≤m s and
∀t ∈ T : I 6≤m t.

The base case n = 0 is trivial, as T = ∅ the underlying BMTS is globally
consistent and by corollary B.3 there is an implementation I for s. For the
induction step assume (s, T) ∈ Avoidn+1.

As (s, T) ∈ Avoidn+1 there exists sets M ∈ Tran∅(s) and latera,s′,f such that
the conditions of the definition hold. By the second part of the condition and the
induction hypothesis, for all (a, s′) ∈ M and f there exists an implementation
Ia,s′,f with Ia,s′,f ≤m s′ and Ia,s′,f 6≤m t′ for all t′ ∈ latera,s′,f . We now construct
a new implementation I, such that I ≤m s and I 6≤m t for all t ∈ T . We simply
take the disjoint union of the previously mentioned Ia,s′,f , add a new state I
with new transitions (I, a, Ia,s′,f) for every (a, s′) ∈M and f .

We now show that indeed I ≤m s and I 6≤m t for all t ∈ T holds. The first
claim trivially holds by construction. For the second claim, let us consider some

22

arbitrary t ∈ T . Then for each N ∈ Tran(t) there exists a particular action
a ∈ Σ, for which one of the disjunctions holds.

Whenever the first is true then either M(a) is empty, which is a violation of
the modal refinement condition, or there exists t′ ∈ N(a), which is contained in
latera,s′,f for each s′ ∈M(a). Since Ia,s′,f 6≤m t′ the modal refinement condition
is violated.

Whenever the second is true then again either N(a) is empty, which is a direct
violation of the modal refinement definition, as t cannot match the move of I, or
there exists a s′ ∈M(a), such that ∅ 6= N(a) ⊆ latera,s′,f . Since Ia,s′,f 6≤m t′ for
all t′ ∈ latera,s′,f , (Ia,s′,f , t

′) is never contained in a modal refinement relation.
As Ia,s′,f is by construction an a-successor of I, the modal refinement condition
is violated for (I, t). Therefore the second claim holds.

’Only-If’ part (completeness of the construction). We prove by induction on
n, that whenever there exists an implementation I with I ≤m s and I 6≤nm t for
all t ∈ T then (s, T) ∈ Avoid. After that, lemma B.6 is applied. The base case
n = 0 is trivial, as all pairs of processes are refining each other, hence T = ∅ and
by definition (s, T) ∈ Avoid.

For the induction step assume the existence of an implementation I, such
that I ≤m s and I 6≤n+1

m t for all t ∈ T . As I is an implementation, Tran(I) is a
singleton and NI ∈ Tran(I) is unique. Furthermore as I ≤m s holds, there exists
by definition Ns ∈ Tran(s), such that for all a ∈ Σ
1. ∀sa ∈ Ns(a) : ∃Ia ∈ NI(a) : Ia ≤m sa
2. ∀Ia ∈ NI(a) : ∃sa ∈ Ns(a) : Ia ≤m sa

To show that (I, T) ∈ Avoidn+1 we set M := Ns. For each f ∈
⋃
t∈T Tran(t)

and each (a, s′) ∈ Ns, we define latera,s′,f such that the conditions are satisfied.
We set

latera,s′,f := {t′ | ∃t ∈ T :∃Nt ∈ Tran(t) : t′ ∈ Nt(a)∧ (*)

∀I ′ ∈ NI(a) : I ′ 6≤nm t′

∨f = Nt ∧ ∃I ′ ∈ NI(a) : I ′ ≤m s′ ∧ ∀t′′ ∈ Nt(a) : I ′ 6≤nm t′′}

Let t ∈ T and N ∈ Tran(t) be arbitrary but fixed. As I 6≤n+1
m t, for some

a ∈ Σ, there is a violation of the modal refinement definition, such that one of
the cases hold:

1. NI(a) = ∅ ∧Nt(a) 6= ∅
2. NI(a) 6= ∅ ∧Nt(a) = ∅
3. ∃ta ∈ Nt(a) : ∀Ia ∈ NI(a) : Ia 6≤nm ta
4. ∃Ia ∈ NI(a) : ∀ta ∈ Nt(a) : Ia 6≤nm ta

If the third holds, then due to the first disjunct of (*) we can satisfy the first
disjunct of Definition by giving the same ta. If the fourth holds, then due to the
second disjunct of (*) we can satisfy the second disjunct of Definition for any s′

with I ′ ≤m s′ (there is one due to 2.).
Finally, to prove that (sa, latera,sa,f) has a n-step distinguishing implemen-

tation it is sufficient to take I ′ of the second disjunct.
ut

23

C Thorough vs. Modal Refinement

C.1 Proof of Proposition 6.2

Proof. We fix a valuation ν of parameters and define a relation R that satisfies
the condition of Definition 3.2. The relation R is taken as the smallest relation
such that (sν0 , t0) ∈ R and whenever (s, t) ∈ R, (s, a, s′) ∈ T and (t, a, t′) ∈ T
then also (s′, t′) ∈ R. Before we prove that R satisfies the conditions, we make
the claim that (s, t) ∈ R implies s ≤t t. Clearly, this holds for (s0, t0). Suppose
now that s ≤t t, (s, a, s′), (t, a, t′) ∈ T and i′ is an arbitrary implementation

of s′. Then there exists an implementation i ∈ JsK such that i
a−→ i′. But as

s ≤t t, i is also an implementation of t. Therefore, as t is deterministic, i′ is
an implementation of t′, thus s′ ≤t t

′. We can now check that R satisfies the
condition of Definition 3.2. Let (s, t) ∈ R and M ∈ Trans. Define A := {a |
∃s′ : (a, s′) ∈ M}. There is an implementation i with exactly transitions under
A. Moreover, according to the assumption it also an implementation of t. Hence
N := {(a, t′) | (t, a, t′) ∈ T ∧ a ∈ A} is an element of Tran(t). The two conjuncts
then clearly hold by construction of R. ut

C.2 Proof of Proposition 6.6

Proof. As the transition system ofD(M) is created by the powerset construction,
it is clearly deterministic. We prove that s0 ≤m D(s0). Since both systems
have the same parameter set, for any valuation of parameters of M we can
choose the same valuation for D(M). Further, we define relation R such that
(s, S) ∈ R iff s ∈ S and show that the condition of Definition 3.2 is satisfied. Let
(s, S) ∈ R. For M ∈ Tran(s), we set N := M [(a, Sa)/(a, s′)]. Since Tran(S) =⋃
s∈S Tran(s)[(a, Sa)/(a, s′)], we have N ∈ Tran(S). We check the two conjuncts.

Whenever there is (a, s′) ∈ M then (a, Sa) ∈ N and s′ ∈ Sa hence (s′, Sa) ∈ R.
Whenever there is (a, Sa) ∈ N we have the respective (a, s′) ∈ M with by
construction of N . Further, s′ ∈ Sa hence (s′, Sa) ∈ R. ut

C.3 Proof of Proposition 6.7

Proof. Assume t0 deterministic state of a PMTS N with s0 ≤m t0. Therefore,
there for every valuation µ there is a valuation ν and the greatest relation Rµ,ν
containing (sµ0 , t

ν
0) and satisfying the condition of Definition 3.2. We show that

D(s0) ≤m t0 by choosing for every µ the same ν and constructing a new rela-
tion Qµ,ν between states of D(M)µ and N ν that also satisfies this condition as
follows:

(S, t) ∈ Qµ,ν if and only if ∅ 6= S ⊆ {s | (s, t) ∈ Rµ,ν}

We now check the condition. Since (s0, t0) ∈ Rµ,ν , we have (D(s0)µ, tν0) =
({s0}µ, t0) = ({sµ0 , t0}) ∈ Qµ,ν . Let now (S, t) ∈ Qµ,ν and M ∈ Tran(S). Hence
there is s ∈ S with M ′ ∈ Tran(s) with M = M ′[(a, Sa)/(a, s′) for every a, s′].

24

Since (s, t) ∈ Rµ.ν , there is N ∈ Tran(t) matching M ′. We show it also matches
M . Let (a, Sa) ∈ M . There is unique (due to determinism) (a, t′) ∈ N and
further (Sa, t

′) ∈ Qµ,ν as each sa ∈ Sa modally refines the only a-successor
of t, thus (sa, t

′) ∈ Rµ,ν . Similarly, let (a, t′) ∈ Tran(t). Then there is unique
(a, S′) ∈ Tran(S), namely (a, Sa). For the same reasons as above (sa, t

′) ∈ Rµ,ν
for every sa ∈ Sa.

The minimality for BMTS holds w.r.t. both thorough and modal refinements
as they coincide when the refined system is a deterministic BMTS. ut

C.4 Proof of Proposition 6.9

Proof. First, observe that for any parameter valuation ν, the identity relation
satisfies the condition of Definition 3.2 for sν0 and P(s0). Indeed, for any M ∈
Tran(s) we also have M ∈ Tran(P(s)). Similarly, {((s, ν), s) | s ∈ S, ν ⊆ P} ∪
{(sB0 ,P(s0))} satisfies the condition for sB0 and P(s0). ut

25

	On Refinements of Boolean and Parametric Modal Transition Systems

