arXiv:1401.2714v1 [cs.FL] 13 Jan 2014

Deterministic Logics for UL

Paritosh K. Pandya and Simoni S. Shah

Tata Institute of Fundamental Research, Colaba, Musba005 India

Abstract. The class of Unambiguous Star-Free Regular Languddée$ \yas
defined by Schutzenberger as the class of languages definadmbiguous
Polynomials UL has been variously characterized (over finite words) byckogi
such asTL[Xa, Ya], UITL, TL[F,P], FO?[<], the varietyDA of monoids, as well

as partially-ordered two-way DFAp02dfg. We revisit this language class with
emphasis on notion of unambiguity and develop on the corafdpeterministic
Logics for UL. The formulas of deterministic logics unigyedarse a word in
order to evaluate satisfaction. We show that several d@testic logics robustly
characterizéJ L. Moreover, we derive constructive reductions from thesggcko

to the po2dfaautomata. These reductions also allow us to show NP-coenplet
satisfaction complexity for the deterministic logics ciolesed.

Logics such ag'L[F,P], FO?[<] are not deterministic and have been shown to
characteriz& L using algebraic methods. However there has been no known con
structive reduction from these logics pm2dfa We use deterministic logics to
bridge this gap. The language-equivaleo2dfafor a givenTL[F, P] formula is
constructed and we analyze its size relative to the sizeeTLiF,P] formula.
This is an efficient reduction which gives an alternate ptodfl P-complete sat-
isfiability complexity of TL[F, P] formulas.

1 Introduction

Unambiguous star-free regular languaggs) was a language class first studied by
Schitzenberger[Schi76]. He gave an algebraic charaatiernforU L using the monoid
variety DA. Since then, several diverse and unexpected characterigdiave emerged
for this language clasdi;[<] in the quantifier-alternation hierarchy of first-order de-
finable languages [PW97], the two variable fragme@?[<] [TW98] (without any
restriction on quantifier alternation), and Unary Tempaaic TL[F, P] [EVWO02] are
some of the logical characterizations that are well knowwestigating the automata for
UL, Schwentik, Therien and Volmer [STV01] defined Partiallyd&red 2-Way Deter-
ministic Automatapo2dfg and showed that these exactly recognize the language class
UL. Recently, there have been additional characterizatibtblLousing deterministic
logicsUITL [LPS08] as well aFL[Xa, Ya] [DKO7]. A survey paper [DGKO08] describes
this language class and its characterizations.

A monomial over an alphabé&tis a regular expression of the forijas - - - an—1A;,
whereA; C ~ andg € 2. By definition,UL is the subclass of star-free regular lan-
guages which may be expressed as a finite disjoint union ghbigauous monomials:
every word that belongs to the language, mayibambiguouslparsed so as to match

http://arxiv.org/abs/1401.2714v1

a monomial. The uniqueness with which these monomials @argevord is the char-
acteristic property of this language class. We explore dlairphenomenon in logics
by introducing the notion dbeterministic Temporal Logics for UL

Given a modality# of a temporal logic that is interpreted over a word model, the
accessibility relatiorof . is a relation which maps every position in the word with the
set of positions that are accessible . In case of interval temporal logics, the relation
is over intervals instead of positions in the word model. rtoalality isdeterministiaf
its accessibility relation is a (partial) function. A loggcsaid to be deterministic if all its
modalities are deterministic. Hence, deterministic lesgiger words have the property
of Unique Parsability

Definition 1 (Unique Parsability). In the evaluation of a temporal logic formula over
a given word, every subformula has a unique position (omir&h in the word at which
it must be evaluated. This position is determined by theesdoff the subformula.

In this paper we relate various deterministic temporaldegyith diverse determin-
istic temporal modalities and investigate their propsrtie give constructive reduc-
tions between them (as depicted in Figure 1) and also tpd2elfaautomata. Hence,
we are able to infer their expressive equivalence with thguage class L. Moreover,
the automaton connection allows us to establish their NRptete satisfiability foall
the deterministic logics that are considered.

(i) Deterministic Until-Since LogicTL[U,Q:
Let A be any subset of the alphabet amdbe any letter from the alphabet. The
"deterministic half until” modalityAUp@ holds if at the first occurrence df in
(strict) futureg@ holds and all intermediate letters arednThe past operat&S,@is
symmetric. Since the modalities are deterministic, thenfdas posses the property
of unique parsability. This logic admits a straightforwarttoding ofpo2dfa

(i) Unambiguous Interval Temporal Logic with Expanding Nadities -UITL®:
This is an interval temporal logic with deterministic chopadalitiesF; and Ly
which chop an interval into two at the first or last occurrenédetter a. These
modalities were introduced ih [LPS08] as logitTL. Here, we enrichJITL with
the expandindg=;~ andL, chop modalities that extend an interval beyond the in-
terval boundaries in the forward and the backward direstimnthe next or the
previous occurrence @ We call this logicUITL®.

(iii) Deterministic Temporal Logic of Ranker3L[Xy, Ya):
Modality Xa¢ (or Ya¢) accesses the position of the next (or the last) occurrence
of letter a where@ must hold. The temporal logic with these modalities was in-
vestigated in[[DKQ7]. The authors showed that the detestimiemporal logic
TL[Xa, Ya] which closes the rankers of [WI07, STV01] under boolean apens,
characterizedJ L (their work was in the setting of infinite words). We identify
TL[Xa, Ya] as a deterministic logic and use its property of unique fmlisato give
an efficient reduction from formulas fm2dfa

(iv) Recursive Deterministic Temporal Logidt" [Xg, Yol:
This logic has the recursive modaliti®g andY,. These modalities determinis-
tically access (respectively) the next and previous pasitiwvhere the formule
holds.¢@in turn, is aTL*" Xy, Yy formula. An attempt to “flatten” th&@L" Xy, Y|

formulas by a reduction t&L[X5, Ya] formulas seems non-trivial. However we ob-
serve another important property of rankers naneelyvexity This property holds
true even in the case of recursive rankers. Using this ptppee give a polynomial
time reduction fronTL" Xy, Yy] to the non-deterministi€L[F,P).

The above logics share some common properties: all theiratitied aredeter-
ministic and they possess the property of unique parsability. Thikeikey property
which brings out the “unambiguity” of the language classe Hiove logics are also
symmetric- in the sense that they possess hdtire andpasttype of modalities. This
property corresponds to the two-way nature of po@dfaautomata and we are able to
show constructive equivalences between the logicgadifa

[DKL10] showed an important property of the lodi&[Xa, Ya] namelyranker di-
rectionality. Given a ranker there exisfTL[Xa, Ya] formulas which determine the rel-
ative positioning of any position in the word with respectthe position at which
accepts. This property has proved to be crucial in the tasinsl from various logics of
UL to TL[Xq, Ya).

The prominentlogical characterizationd tif have primarily been non-deterministic,
such as the fragments[<] andF O?[<] of first-order definable languages and as Unary
Temporal LogicTL[F, P]. While these logics are expressively equivalent to Péytoat
dered 2-Way DFAsfo2dfg, no explicit reductions from these logics po2dfawere
known. Neither the complexities of the formula automatonstnuction nor the bounds
on the size of equivalent automata were worked out. We givaffantive language pre-
serving translation from the non-deterministic logic[F, P] to the deterministic logic
TL[Xa, Ya]. This completes the missing link in effective reductiomfrtogicsTL[F, P]
andFO?[<] for UL to their language equivalepb2dfaautomata. (See figufé 1) The
translation is complex and its formulation involves ranttigectionality along with fol-
lowing key observation which relates undnyure andpastmodalities to the determin-
istic first andlast modalities:

In order to evaluate the truth ofeL[F, P] formulaF (@) or P(¢) at any position
i in a wordw, it is sufficient to determine the ordering iofelative to the first
and last positions iw at which its immediate modal subformugeholds.

The logic TL[F, P] was shown to have NP-complete satisfiability, originallyHtes-
sami, Vardi and Wilke[[EVWO02], by exploiting its small-mdderoperty. Our trans-
lation from TL[F,P] to TL[Xa, Ya] and hencepo2dfa gives an alternative “automata-
theoretic” proof for the same and allows us to analyze thectire and size of the
resulting language-equivalent automaton.

This paper is organized as follows.

2 po2dfa An Automaton characterization for UL

Partially ordered two-way DFA were introduced by Schwegqtithérien and Vollmer
[STVO1] where they showed that it is characterizedy. As the name suggests,
po2dfaare two-way automata, so that the head of the automaton mag imoei-
ther direction (one step to the left or right) in every traiosi. Also, the only loops

Deterministic Non-deterministic

lumL=] FO?(<]

TLU,S

Fig. 1: Unambiguous Languages and its equivalent charaatiems: Arrows indicate
the size blow-up in the effective reduction in the correspog direction

in the transition graph of the automaton are self-loops atest This naturally defines
a partial-order on the set of states. Lastly, the automataleierministic- so that there
is exactly one possible transition from any configuratiothef automaton.

Consider a finite alphab&t Givenw € *, the two way automaton actually scans the
stringw’ = >w« with end-markers and«< placed at positions 0 andw#- 1 respectively.
LetY = ZU{m,«} include the two endmarkers.

Definition 2 (po2dfy. A po2dfa ovek is a tuple M= (Q,<,d,s,t,r) where(Q,<) is

a poset of states such that are the only minimal elements. s is the initial state, t is
the accept state and r is the rejecting state. The se{tQx } is partitioned into Q and
Qr (the states reached from the left and the right respectjv8ly((Q. UQR) x Z) —

Q) U((QL x {«}) = Q\Qr)U((Qr x {r}) — Q\ QL) is a progress-transition function
satisfyingd(g,a) < g. Hence it defines the progress transitions of the automdton
order to make the automaton “complete”, every state q iR{®,r} has a default else
(self-loop) transition which is taken on all letters b for il no progress transition
5(g,b) is defined. Hence, the transition functidrspecifies all theprogresdransitions
of the automaton, and a default self-loagdg transition is takes place otherwise. Note
that there are no progress @isetransitions for the terminal states (r and t).

Direction of head movement on a transition

The direction in which the head moves at the end of a tramsitlepends on whether
the target state of the transition i< state, or &g state.Q is the set of states that
are“entered from the left’andQg are the states that atentered from the right’ i.e.
if the automaton is in a statg reading a symbaj, it enters a statq' = d(q, a), then it
moves its head to the rightdf € Q, leftif g € Qg, and stays in the same position if
d € {t,r}. The same rule applies to the self logpetransitions also: orlsetransitions
of Q. states, the head moves to the right, anetsetransitions ofQg states, the head
moves to the left.

Transitions on end-markers

The transition function is designed to ensure that the aatomdoes not "fall off”
either end of the input. Hence, for ajie Q\ {t,r}, there are transition¥(q,>) € QLU
{t,r} andd(qg,<) € QrU{t,r}.

Run of a po2dfa

A po2dfaM running over wordv is said to be in a configuratidig, p) if itis in a state
g and head reading the positignin word. LetDef(q) C X be the subset of letters on
which no progress transition fromis defined. Hence, the automaton takes the default
elsetransition on exactly the letters froBe f(q). The run of a po2df on an input
word w starting with input head positiop is a sequencéqo, po), (d1, P1), ---(Af, Pr)
of configurations such that:

- Qo =sandgs € {t,r},
— Foralli(1<i< f),if w(pi) € Def(qgi) then
e ¢i.1=(and
e pir1=pi+1if g €QLandpii1=pi—1if g € Qr.

Otherwise, ifd(gi,w(pi)) = (d) then
e g:1=d and
e pi1=pi+1ifgr1€QL,
Piv1=pi—1if g1 € Qrand
Pi+1=piif gir1 € {t,r}.
In general, we abbreviate the run of an automatbstarting from a positiorpg in
a wordw by writing M(w, po) = (qs, pr). The run isacceptingif q: = t; rejectingif
gs = r. The automatom is said to bestart-freeif for any w, andVp1, p2 € domw),
M(w, p1) = (qs, ps) if and only if M(w, p2) = (qs, pf).
The language (M) of apo2dfa Mis the set of all wordss such thaM(w, 1) = (t,i)
(for somei € domw')).

Remark 1.We shall represemgo2dfausing their transition graphs such that@qi Q.
are marked with a-»" and allg € Qr are marked with a&-".

Example 1.Thepo2dfaq is givenin figuré 2.2 accepts all such words ovga, b, c,d}*,
which has its lash at some position (say, and some position (sgy> i) has the first
afteri and all intermediate positions betweieand j do not have &. Observe that the
automaton rejects iff:

— There is na in the word
— There is na after the last in the word
— There is & between the last and the subsequedtafter it.

The language accepted 8 may be given by the regular expressirac'd{b,c,d}*.

@ < /) _a /N d @

> , <

Fig. 2: Examplepo2dfad

2.1 Constructions onpo2dfa

For the description opo2dfawe shall useExtended Turtle Expressions ([LPSQ08]),
which are extensions of the turtle programs introduced bdyw®atick, Thérien and
Vollmer [STVO1]. The syntax oETE follows and we explain its semantics below. Let
A, B range over subsets af.

Ex=Acc| Rej| 18 |18 A8 | A | E1 BB

AutomatonAcc accepts immediately without moving the head. SimilaRg,j re-

jects immediatelyA B accepts at the next occurrence of a letter fi®strictly to the
right, maintaining the constraint that the interveningdes are fromA\ B. If no such
occurrence exists the automaton rejects at the right endlemar if a letter outsidé\

intervenes, the automaton rejects at its position. Automat’ accepts one position
to the right if the current letter is from, else rejects at the current positiaﬁmE and

12 are symmetric in the leftward direction. The conditionahstuctE; ?E,, E; first
executeE; onw. On its acceptingv at positionj it continues with execution dE,
from j. OnE; rejectingw at positionj it continues withEs from positionj.

Here are some abbreviations which illustrate the power efribtation:Ey; E; =
E17E2,Rej —E; =Ei1?Rej Acc Moreover, ifE; is start-free thel; vV E; = Ey?Acc Ex
andE; A E; = E17E2,Re | Notice that automata for these expressions are starféfree

E. is start-free. We will usé\ - for A{ﬁ, 2 for (7) and-> for (1 E/>). Similarly
defined and<-.

Proposition 1. — Given an ETE E we can construct a po2dfa accepting the same
language with number of states linear|H|.
— Given a po2dfad we may construct a language-equivalent ETE whose sizeesigtlin
in the size ofA.

2.2 Properties ofpo2dfa
The following properties opo2dfaare useful. See¢ [LPSD8] for detalils.

— Boolean ClosureBoolean operations gpo2dfamay be achieved with linear blow-
up in the size of the automata.

— Small Model Given apo2dfa Mwith n number of states, if (M) # 0, then there
exists a wordv € £(M) such that length ofv is linear inn.

— Membership Checkingsiven apo2dfa Mwith n number of states and a wowndof
lengthl, the membership ofin £(M) may be checked in tim@(nl).

— Language Non-EmptinesEhe non-emptiness of the language qgfa2dfamay be
decided with NP-complete complexity.

— Language InclusionThe language inclusion problempd2dfais CONP-complete.

3 TL{Xa,Ya]

In [DKO7] the authors showed that the deterministic templagic TL[Xs, Ya] which
closes the rankers df [WID7] under boolean operations,@laoacterizes L. In a sub-
sequent paper [DKL10], they gave an important property okeas calledanker direc-
tionality. We revisit this logic of rankers, giving a mild generalinatof the same and
study some key properties of rankers suclk@ws/exity We shall give direct reductions
betweenlL[X,, Ya] formulas ango2dfain both directions and analyse the complexity
of translations. This also gives us an NP-complete satififighlgorithm for TL[Xa, Ya)
formulas.

3.1 TL[Xa, Ya]: Syntax and Semantics

TL[Xa, Ya] is @ unary deterministic temporal logic with the deterntinisnodalitiesX,
(nexta) andY;, (previousa) which uniquely mark the first and last occurrences (respec-
tively) of a lettera from the given position. We also include their correspogdirak
modalities K, andYa), andunit modalities K1, Y1) which access the next and previous
positions respectivelsP (Starting Positiof andEP (Ending Positiof are additional
modalities which uniquely determine the first and last posg of the word respectively.

Let @ ¢ and@, range ovellL[X,, Ya] formulas andarange over letters from a finite
alphabet. The syntax offL[Xa, Ya] is given by:

@:=a| T |SRy | EPg | Xa@ | Ya@1 | Xa@1 | Ya@1 | Xa@1 | Y101 | @1V @2 | -1
Gz = X3 T andHz = =Y, T are derived atomic formulas.

Remark 2.The weak modalities and unit modalities do not add expressiwer to the
logic. They may be derived using tbg andY,; modalities alone. However, we include
them in the syntax of the logic. As we shall see later in theepgproperties of these
generalized rankers play a crucial role in our formulatiohi®ductions between logics
for UL.

A TL[Xa, Ya] formulag may be represented by its parse tfgavith each node rep-
resenting a modal or boolean operator such that the subfasrofrp form the subtrees
of Ty. Let Subf(n) denote the subformula corresponding to the subtree rosdtecddz
n, andn be labelled byOpr(n) which is the outermost operator (such>gsor V) if
nis an interior node, and by a letter or, if it is a leaf node. We will use the notion
of subformulas and nodes interchangeably. @heestryof a subformulan is the set
of nodes in the path from the root up to (and includinglhe depth of a node is its
distance from the root.

Semantics ofTL[Xa, Ya] formulas is as given below. Let € = be a non-empty
finite word and lef € domw) be a position within the word.

wi E=aiff wi)=a
w,i = SRpiff w1k @
w,i = EP@iff w#w = @

wi = Xa@iff 3j >i.w

wi = Ya0iff 3j <i.w

Wi = Xq@iff 3j >i.w(j) =aandvi <k< j.w

Wi = Ya@iff 3) <i.w(j) =aandVj < k<i.w

wiEXi@iff Ij=i+1l. wjE@
wiEYi@iff 3j=i—-1.wjEq
wiE@Vaeiff wikE@ orwilE@

Wi f= @y iff wi i @

The language accepted b B[X,, Ya] formulagis given byZ (@) = {w | w,1}= ¢}.

=aandvi < k< j.wi

) #aandw, j = @.
)=aandvj <k<iw
)

#aandw, j = .
#aandw, j = .
#aandw, j = .

P e e

j
j
j
j

A A A
~ X XX
z oL

3.2 TL[Xa, Ya): Unique Parsing

TL[Xa, Ya] is a Deterministic Logic Given any wordw € =" and TL[Xa, Ya] formula

@, for any subformulay of @, there exists a unique position domw) wheren must
be evaluated in order to find the truth@fThis position is denoted bosy(n) and is
uniquely determined by the ancestrympfThis property of the logic is referred to as the
unique parsingroperty [LPSO0B]. If such a position does not exist, tRes,(n) = L.

It can be defined by induction on the depthmpfas follows. If Ny is the topmost
node denoting the full formula, thePosy(Nrot) = 1. Inductively, ifn = op(n1) or

n =op(ni,n2) andPosy(n) = L thenPosy(n1) = Posy(n2) = L. For the remaining
cases, lePosy(n) =i (which is notL). Then,

— If N =S, thenPosy(n1) = 1.
— If n = EPny thenPosy(n1) = #w.
— If n=Xan1. Then,Posy(n1) = L if Vk> i, w(k) #a.
OtherwisePosy(n1) = j s.t.j >iandw(j) =aandvi <k < j, w(k) # a.
— If n =Yani. Then,Posy(n1) = L if vk <i, w(k) # a.
OtherwisePosy(N1) = j s.t.j <iandw(j) =aandVvj < k <i, w(k) # a.
— 1f N = Xan1. Then,Posy(n1) = L if vk > i, w(k) # a.
OtherwisePosy(n1) = j s.t.j >iandw(j) =aandvi <k < j, w(k) # a.
— 1f n = Yan1. Then,Posy(n1) = L if Yk <i, w(k) # a.
OtherwisePosy(n1) = j s.t.j <iandw(j) =aandvj < k<i, w(k) # a.
— If n =Xin1. ThenPosy(n1) = L if i =#w
OtherwisePosy(n1) = i+1
— If n=Yin1. ThenPosy(n1) = Lifi=1
OtherwisePosy(n1) = i—1
— If n=n1Vvn2o0rn=n1An2thenPosy(ni) = Posy(n2) = Posy(n). Similarly, if
n = —-n1 thenPosy(n1) = Posy(n).

Example 2.Consider the language given B= Z*ac‘d{b,c,d}* as in Examplé&]l of
Chapter??. The language defines the set of all words such that tha lashe word has

a successive such that there is nobetween them. This may equivalently be expressed
using theTL[X,, Ya] formula

@ := EPYaXg(—-YoT V YpXaT)

For any wordv which belongs to the language of the above formbde, (Xq—(YoXaT))
matches with the last in the word. Let this position be Further,Posy(YoXaT) is a
position j such thatj is the firstd afteri. Now at j, the formula(=Y,T V YpXaT)

holds if and only if either there is nobeforej or theb beforej (which is at somé),

is such that there is amafter it. Hencek < i, and there is nd between andj. Hence
we can see that the above formglaxpresses the language givenRy

3.3 Ranker Formulas

The notion ofrankers|WI07] has played an important role in characterizing uneyub
ous languaged L. They were originally introduced as turtle programs by Sehtick

et al [STV01]. Basically a ranker is a finite sequence of instructions of the foXxn
(denoting “go to the nexa in the word”) orYy (denoting “go to the previoua in the
word”). Given a wordw and a starting position the execution of a rankersucceeds
and ends at a final positionif all the instructions find their required letter. This is
denoted byw,i =r.

Here, we generalize rankers and call thRanker FormulasThese are essentially
TL[Xa, Ya] formulas without any boolean operators, but including libéhstrict and the
non-strict deterministic modalities{, Ya, Xa, Ya), the unit-step modalitiesxg, yunit),
as well as the end postion modaliti€S5EP). This generalization maintains the key
deterministic nature of rankers.

The syntax oRanker Formulass as follows: B

@:=T | SRy | EPQ | Xa@ | Ya® | Xa® | Ya® | X9 | Yrol]
Given aRanker Formulay, let Leaf() denote the unique leaf node Ty. Note that
the parse tree oRanker Formulagomprise of a single path, giving uniqueaf(y)
andOpr(Leaf(y)) = T. For a given wordw, the position of leaf node is denoted as
(Posy () = Posy(Leaf(y)).

Ranker Directionality
Consider &Ranker Formulap. We can construcEL[Xa, Ya] formulas?=<(y), P=(y),
P> (), P=(P) such that they satisfy the following Leminla 1. These formatascalled
ranker directionality formulagnd they allow us to analyse the relative positioning of
the current position, with respect to thgos of the ranker. These formulas were given
by [DKL10Q] for rankers. We generalize them fRanker Formulas
Let @T be aRanker Formulawhere @ is the ancestor of the leaf node. The

ranker directionality formulas are given by Table 1, by iotion on the length of the

ranker. In this table, letfirst %' —(Vaez(YaT)) andAtlast gef —(Vaes(XaT)) be

formulas which hold exactly at the first and last positionsany word. Since every
Ranker Formuldormula is evaluated starting from the beginning of the wavd shall
assume that at the top level the ranker begins wittsRmodality.

Ly | 2=y | P=(Y) | 27 | P=(W) |
@SPT L Affirst —Atfirst T
QEPT| —Atlast T L Atlast

PXaT [Xa(P= ()| HaV (YaP=(@T)) [YaP=(9T)] GaVXaP” ()
PXaT [Xa(P=(W))| HaV (YaP=(9T)) [Ya?~ (9T)| GaVXa?~ (W)
WaT [XaP=(@T)| HaV(YaP<(¥)) |YaP=(P) | GaVXaP” (9T)
OaT [XaP=(@T)| HaV(YaP (@) |[YaP=(Y) | GaVXaP=(@T)
OX1 T | P=(@T) |Atfirst v Y1P=(@T)|Y1P~ (@T) P~ (@T)
OY1T | X1P<(@T) P<(@T) P=(@T) |Atlast vV Xy P=(@T)
Table 1: Ranker Directionality Formulas

L while a (for every a € %) is an atomic formula in the case @FL[Xs,Ya] formulas,
Ranker Formulaslo not havea as an atomic formula.

Observe that the size of the ranker directionality formaltniear in the size of the
Ranker Formula

Lemma 1 (Ranker Directionality [DKL10]). Lety be a Ranker Formula. Thétw €
t andVi € domw), if /Posy (W) # L, then

—wiEP<(p)iffi < {Posy(W)

— Wi [P=() iffi < (Posy(y)

— Wi [= P () iffi > (Posy(y)

— Wi = P=() iffi > (Posy (W)
Proof. The correctness of the construction of the ranker direatipnformulas is a
direct consequence of the semantic3bfX,, Ya]. We shall prove some key cases from
Table[1. Consider any € =* and for all the cases below, assuff@s, () # L.

— Considenp = X, T. This is depicted in Figuriel 3. Note that there are two mutu-
ally exclusive cases: (i) Wv(¢/Posy(@T) = a then/Posy(@T) = ¢Posy(W). (ii) If
W(¢Posy(@T) # athenfPosy(p) > (Posy(@T).

a

w | t
(Posy(@T) = (Posy(Y)

Casdi) : w({Posy(¢T))=a

—a

E a
1
T

w | }
£Posy(@T) £Posy(Y)

Caséii): w({Posy(@T)) #a

Fig.3:p = @Xa T

Vi . i < (Posy(W) iff either there exists nato the left ofi
otherwise, the las strictly to the left ofi, is strictly
to the left of/Posy(@T)
iff HaV (Ya?=(@T))
— Considerp = X, T. This is depicted in Figuig 4. Note thdos,(@T) < (Posy(W).
Vi . i < /Posy() iff either there exists nato the left ofi
otherwise, the las strictly to the left ofi is < (Posy(@T)
iff HaV (YaP=(@T))
— Considenp = @X; T. This is depicted in Figuig 5. Note thd@0os, () = /Pos,(@T) +
1.
Vi i < Posy(W) iff (i—1) < (Posy(@T)
iff eitheri = 1(since/Posy(P) > 1) or (i — 1) < ¢Posy(®)
iff wi = Atfirst vV Y1P=<(@)

—a

€ a
1
T

w } }
£Posy(@T) £Posy(Y)
Fig.4:Q = @XaT
y Ly
(Posy(¢T) }w)
Fig.5:0 =X, T

From TLUX,, Ya) to Ranker Formulas

We shall show that everfL[Xa, Ya] formula may be written as a boolean combination
of Ranker Formulagnd atomic formulas. This is done by first eliminating atofoie
mulas of the forma for anya € > and then “pulling out” booleans. This is given in the
proposition below.

Proposition 2. For any TLX;, Ya] formula @, there is a boolean combinatioB(y;)
of formulasy;, such thatZ (@) = £(B(y;)). Eachyy is either an atomic formula or
Ranker Formula. Moreover eaaf is linear in the size of.

Proof. Every boolean may be “pulled out” &fL[X,, Ya] formulas using the equiva-
lences below.

= @Xa(P1V @) = (PXar) V (PXa2)
— @Xa(P1 A @2) = (PXar) A (PXa2)
= @Xa(~@1) = ~(PXar) A QX T
- Pa(@V) =
- (L AQ)
- Oa(—@n) =

(PYa@r) V (@Yal2)
((PYa(Pl) (@Ya@2)
(QYa@L) N@YaT

_I

Now, if ¢ is aRanker Formuladefine formulas
nex(y) = - V Yo AP~ ()
prev) = - V (Xo A P=(W))
Observe thane >* such thatPosy(W) # L,

— If i > fPosy(W), thenw;,i = nex{y) if and only ifi = (Posy(Y) +1
— If i < fPosy(W), thenw,i = prev(y) if and only ifi = ¢Posy (W) —

In other words, given &anker Formulap, the formulasnex{y) andprey) respec-
tively hold exactly at the position next to and previougkos, ().

The atomic formula may be eliminated from theanker Formulasising the equiv-
alences:

— PXpa = @ T andeYpa = QYT ifa=Db
— Ppa = L andgpa= Lifa#b

- Xpa = X, T andgVpa = ¢Yp T if a=Db
— @Xpa = LandgYya = Lifa#£b

— @SPa= @SPXy(Atfirst)

— gEPa = gEPY,(Atlast)

— gXja = Xanex{o)

— gYV1a = PYaprev()

After elimination of atomic formulas, we obtaifiL[Xa, Ya] formulas with booleans.
We may again eliminate booleans using the equivalenciengibove. The resulting
formula is a boolean functio®(y) where eachy is either an atomic formula or a
Ranker Formulaof size linear ing.

Example 3.We may eliminate the negation and conjunctions from the fdaras given
below: _ _
@ = EPYaXyq[~(WXaT) A YeT] = EPYaXq[~(YoXaT)] A EPYaXgYc T

[~(EPYaXgYoXaT) AEPYaXgT] A EPYaXgYcT

Eliminating additional modalities

Proposition 3. Every TLUX,, Ya] formula may be expressed as language-equivalepl Y]
formula without weak modalities and unit-step modalities.

Proof. Consider aniL[Xs, Ya] formula®. We shall reduce it to a formula without weak
modalities and unit-step modalities. Firstly, we may puli the booleans to reduce the
formula to a boolean combination &anker Formula@ising Proposition]2). We may
then eliminate the unit-step modalities from tRanker Formulasising the following
rules:

QX1 = cma\e/z[&(nexwl)mpz)]
oY1 = (Pla\e/z[Ya(preV((Pl)/\(PZ)]

Note that eliminating each unit step modality inT&[Xa, Ya] formula involves first
pulling out booleans and then applying one of the above tolesachRanker Formula
This is because theextandprevformulas use ranker directionality formulas which are
applicable tdRanker Formulasind notTL[X;, Y4 formulas in general.

Further, we may eliminate the weak modalities using thefalhg reductions:

Xa® = (@A @)V (~a Xa¢)
Ya@ = (@AQ) V (—an Ya@)

Convexity of Ranker Formulas
We show here another useful propertyRdnker Formulaswhich will be important
in reductions given later in the paper.

Lemma 2 (Convexity). For any Ranker Formulap, and any word we =T, if there
existij € domw) such thati< jand wi =@andwj | U, thenVi < k < j, we have

wk = .

Proof. We prove the lemma by induction on the structurapofThe lemma trivially
holds for the base casepf= T. We give the inductive argument for the cas@iof X,
(other cases are similar/simpler and omitted). Assumethigalemma holds true fap
(Induction Hypothesis). Leit, j € dom(w) such thati < j andw,i =@ andw, j = U.
Consider somé such thai < k < j. Leti’ and |’ respectively be the positions of first
occurrence of afteri and j. These positions must exist asi = { andw, j = and
we havew,i’ = @andw, j’ = @andi < i’ < j’ with j < j’. Hence,j’ > k. Letk’ be the
position of first occurrence af afterk. Such a position must exist sinegj’) = a and

i’ > k. Alsoi’ <K < j’. Then by induction hypothesig, k' = @ and hencev,k = Y.

Sequential composition of Rankers

Through the rest of this chapter, we shall alternatively tgeterms “ranker” and
“Ranker Formula We say that a rankegacceptst a position in a wordw if /Posy () =
i. Given a rankem; and anyTL[Xa, Ya] formulag,, denote byp; @ the TL[X,, Ya] for-
mula obtained by replacing the leaf nodegfby the parse tree af,. Hence, it is easy
to see that for any wordl, w,1 = @n; @ iff w,i = @, wherei = (Posy(@1). Note that if
@1 and@, areRanker Formulashen@; ¢ is also aRanker Formula

3.4 Equivalence ofTL[X,, Ya] and po2dfa

We give a language-preserving reductions frobjXs, Ya) to po2dfaand analyse its
complexity. This also gives us an NP-complete languageamptiness checking algo-
rithm for TL[Xy, Ya] formulas.

From TLUX,, Y] to po2dfa

First, we shall show a language-preserving conversion ff@fX,, Ya] formulas to
po2dfa One simple approach is to convert each ranker without weakib modalities
into po2dfa Since evergpcan be written as a boolean combination of seelmker Formulas
and sincepo2dfaare effectively closed under boolean operations, we obtiEnguage-
equivalent automaton. However, the resulting automaterpsnential in size aof. Be-
low, we obtain a polynomial-sized automaton by utilizing tmique parsability prop-
erty of TL[Xa, Ya] formulas.

Theorem 1. Given any TIX,, Ya] formula@ we may construct an equivalent po2dfa
A(@) such thatZ (@) = L(A4(@)). The number of states ifi(@) is polynomial in the size

.

Construction

The efficient reduction fronTL[X,, Ya] to po2dfarelies on the property of unique
parsing ofTL[X,, Ya]formulas. We use thETErepresentation to illustrate the construc-
tion of thepo2dfa Fix a TL[X, Ya] formula ®. For any subformula of ® and any
given wordw, Posy(@) depends on the context @fand may be evaluated in a top-down
manner. We construct &TE POS3@) which is given by the following proposition.

Proposition 4. For any subformulap of ® and any word we 2*, we have

~ POS()(W,1) = (t,i) iff Posy(@) =
— POSQ)(w 1) = (1, iff Posy(9) = L

Proof. TheETE for POS @) may be constructed by structural induction on the formula
as follows.

POS®) = > 2:(13)

— If @=Xa@ thenPOS @) = POS); 15;;a5/>

— If @=Ya@ thenPOS @) = PO 3¢),1<§;a<§

— If 9= Xa@r thenPOS@y) = POSg);a >

— If 9= Ya@1 thenPOS@1) = POS¢@);aZ

— If 9= X1y thenPOS@;) = POSQ) ; [(15;1@)?Rej: 13]
— If = Y11 thenPOS @) = POS{(p) (1&;15)2Rej: 1&]

>

— If 9= SRp, thenPOS@1) = > & ; (1)
— If = EPg, thenPOS @) = . (1)

— If =@ V@ thenPOS @) = POS) = POS9)
- If = —@1 thenPOS 1) = POS)

The correctness of the above construction may be directiyckd from the definition
of Posy(@) for TL[Xa, Ya] formulas. Note that th&TE for POS¢;) wheng = X1 is
constructed as follows. It first checkdADS @) is at the last position in the word (by us-

ing 15; 1<). If so, it rejects (evaluates th), in which caseéPosy (@) = L. Otherwise,

it accepts at the next position afe©S@). The case 0= Yi@, is symmetric to this.
By observing the above construction, the following propently be easily verified.

Now, for every subformule, we construcETE EVAL(@) which evaluates the for-
mula at is unique position, as follows.

Proposition 5. For any subformulap of ® and any word we Z* we have EVA[w, 1) =
(t,) iff Posy(9) # L and wPosw(@) = ¢.

Proof. — If =T thenEVAL(g) = POJ@);Acc
= If @=Xa®1, Ya@r, Xa®r, Ya®r, SRP1, EP@1, X11 or Y2y then
EVAL@) = POSq.);EVAL @)
= If o=@V @ then[PO]);EVAL(q1)] ? [Acd : [POS¢); EVAL(¢y)]
— If = —@; thenEVAL(@;) ?Rej: Acc
Hence, we may verify that for any subformgland any wordv, EVAL(w, 1) = (t,i)
iff Posy(¢) # L andw, Posy(@) [~ ¢.

For the top level formula, we can see tEAIAL(®) is the language-equivaleBTE
for @.

Complexity

Consider & L[Xa, Ya] formula® of lengthl. For every subformuleof ®, observe that
POS) is linear inl. FurtherEVAL(@) is polynomial inl. Therefore, we can conclude
that the size of th&TEand hence th@o2dfg which is language-equivalent t is
polynomial in the size ofb. Hence the theorem (Theorémn 1).

The above translation allows us to give a tight NP-complatisfability complexity
for TL[Xa, Ya] formulas. We may convert a giverL[Xa, Ya] formula to its language-
equivalentpo2dfawhose size is polynomial in the size of its original formu&ince
language emptiness ofo2dfais an NP-complete problem, satisfiability problem of
TL[Xa, Ya] is in NP. The NP-hardness of the satisfiaility problenTtfX,, Ya] can be
inferred from the NP-complete satisfiability of propositédtemporal logic. Hence the
following theorem.

Theorem 2 (Satisfiability of TL[Xs, Ya] formulas). The satisifability of T[X,, Ya] for-
mulas is decidable withNP-complete complexity.

4 TLU,S

The deterministic Until-Since IogiEL[LNJ,Q in some sense is very close to the2dfa
automata: the looping of the automaton in a state until anessgtransition is enabled,
corresponds well with the invariance and eventuality ctols of the until and since
modalities.

LetAC =, a,be X andgrange ovefL|U, § formulas. ATL|U, Sformula may be
given by the following syntax.

TlalAUw | ASQ | oV | —¢

Given a wordw € 3*, andi € dom(w), TL[U, S formulas may be interpreted using the
following rules.

w,i |=aiff w(i) =a
Wi = AUp@iff 3j > 1. w(j) =bAVi<k<j.wk) e A\bAwjEo@
Wi = AS@Iff 3j <i.w(j) =bAVj<k<i.wk)eA\bAwjE=e

The boolean operators have their usual meaning. The laegiefined by arL[U,S
formula@is given byL(¢@) = {we Z* | w,1 | @} (if the outermost operator afis a

U operator) andZ(@) = {w e =* | w,#w |= @} (if the outermost operator afis a S
operator).TL[L~J,§] formulas may be represented as a DAG, in the usual way, with th
modal/boolean operators at the intermediate nodes.

Example 4.The language described in ExaLne 1 which is giverkbgc d{b,c,d}*
may be expressed using thie[U, § formulazS,; (Z\ {b} UgT).

TL[U, S and Unique ParsabilityThe U andS modalities ofTL[U, S are deterministic,
in the sense that they uniquely define the position at whtsitoformula must be
evaluated. Hence, for every subformujeof aTL[U,S formula @, and any wordw,
there exists a unique position denotedPasy(W), wherey is to be evaluated. Moreover,
Posy(W) is determined by the context dfin @. For example, consider the subformula
P = AUp(y), such thaPos,(y) = i. ThenPosy(y/) = j such thatj > i, w(j) = b and
Vi <k<j.w(k) €A\ {b}.

The until and since modalitiesj)TL[U ,Q seem to subsume thg andY; modalities
of TL[Xa, Ya]: for exampleXa@= ZU 0. However both logics share the same expressive
power.

4.1 Frompo2dfato TL[U,Y

The deterministiantil andsinceoperators offL[U, § naturally model the constraints
on the run of apo2dfa the looping of thepo2dfain a given state and on a subset
of letters until an outward transition is enabled is stréfigwardly captured by the
invariance condition of th&) andS modalities. We shall now give a translation from
po2dfaautomata to language-equivalditfU, § formulas.

_—C

O,

Fig. 6: Frompo2dfato TL[U, S

We shall construct ZL[U,§ formulaForm(q) for each state ofa, such that the
following lemma is satisfied.

Lemma 3. Given a po2dfaq and any non-initial state g aff, we may construct a
TL[U, S formula Forn{q) such that for every w =, if q is entered on reading a posi-
tion xe domw), then wx = Form(q) if and only if the run terminates in the accepting
state.

Proof. We shall prove this lemma by constructing the formiatam(q) for every non-
initial stateq in 4. From the syntax gbo2dfait is straightforward to infer tha&orm(t) =
T andForm(r) = L. Now, consider a non-initial statpof apo2dfaas shown in Figure
[6, such that| & {t,r} andAq =X\ {b1---bn} is the set of letters on whiatploops. Let
us assume thaorm(qs), - - - Form(qn) are appropriately constructed.dfe Q. (i.e.q
is a state entered from the left, and the head of the autommadees right on all transi-
tions whose target stated3, then the automaton “scans” rightwards franooping in

g on letters fromAq, until a progress transition from one of the letters froio, - - - bn}
is enabled. Hence, a progress transitipis enabled frong if and only if there exists
y > x such thatv(y) = b; and for allx < k <y, w(k) € Aq. Further, this run is accepting
if and only if w,y = Form(q).

From the above argument, we may constfemtm(q) as follows.

— If ge Qr, then

Form(g) = \/ [AqUyForm(g)]
ie{1,--n}

— If g€ Qg, then -
Form(g) = \/ [AqS,Form(q)]

ie{1,--n}
O

Theorem 3. Given a po2dfaq, we may construct a TU, S formula Tran$4) such
that £(4) = L(Trang4)), whose DAG representation is linear in the sizedof

Proof. Consider the start state of tpe2dfa which loops on the letters iAs until a
progress transition on one of the letterd @, - - - ¢ } is enabled, such that the transition
on¢; is targeted into a stat, for eachi € {1---1}. From an argument similar to the
one in Lemm&B, we may infer that

Trang4) = \/ [aAForm(g)] v \/ [\ bAAUgForm(qg)]
ie{1-1} ie{11} beAs

In the above formula, the two sets of disjunctions corredptonthe cases when the
progress transition fromto the target state is taken on the first position in the word, o
any other position, respectively.

In the DAG representation of the formulaang4) as per the above construction,
note that the number of nodes in the DAG is linear in the nurobstates in4. This
is becausé-orm(q) may be constructed exactly once for each stpté 4. Hence the
theorem. O

Remark 3.1f we do not consider the DAG representationlafU, § formulas, then we

must note that the size of the Ianguage—equivélrefﬁ ,Q formula is exponential in the
size of the originapo2dfa

5 Interval Temporal Logic UITL®

The interval logidJITL ([LPS08]) has the unambiguous chop modalities which deter-
ministically chop at the first and last occurrence of a lestevithin the interval. We
enrich this logic with unambiguous modalities which chogdred the interval bound-
aries in either direction. We call this logldITL*. In this section, we introduce the
logic UITL* and show that it is no more expressive th&ifL, by giving an effective
conversion fronUITL* formulas to their corresponding language-equivaléfiXa, Ya)
formula. The conversion is similar to the conversion froififL to TL[Xa, Ya, @s given

in [DKL10].

5.1 UITL*: Syntax and Semantics

The syntax and semantics Of TL* are as follows:

T | a| pt | un_it | BP9| EP(p| D1F.D> | D1LaDo | DlF;Dz | DngDz |
@Dy | ©D;1 | &D; | ED1 | D1vD2 | -D

Let w be a nonempty finite word ovér and letdomw) = {1,...,#w} be the set
of positions. LeINTV(w) = {[i,j] | i,] € domw),i < j} U {L} be the set of in-
tervals ovemw, where | is a special symbol to denote an undefined interval. For an
intervall, let1(l) andr(l) denote the left and right endpoints lofFurther, ifl = L
thenl () =r(l) = L. The satisfaction of a formula is defined over intervals of a word
modelw as follows.

w[i,j] = T iff [i,j]€INTV(w) and[i,j] # L
Wi, j] Eptiff i=]
w[i,j] Eunitiff j=i4+1
W,[I,J}):BPtplff w[iil =9
’J

w.[i,j] = EPiff w[j,j] =@

w,[i, j] = D1FaD> iff forsome k:i <k<j. wk]=aand
(forall m:i <m< k. wim| # a) and
W, [I’k]): D1 andw,[k,j]): D2

W, [i, j] = D1LaD2 iff for some k:i <k <j. wlk]=aand
(forall m:k<m< j.wm # a) and
W, [Ivk] ': D1 andw,[k,]] ': D2

W, [i, j] =D1F; D> iff forsome k: k> j. wk] =aand
(forall m:i <m< k. wim| # a) and
w, [I’k]): D1 andw,[j,k]): D2

w, i, j] = D1L; D2 iff forsome k:k<i. wk]=aand
(forall m:k<m< j.w[m #a) and

w, [K,i] =Dy andw, [k, j] = D2

w,[|,J]|=EBD1 iff i<j andw[|+1 il ED1
w, i, j] oDy iff i< jandw]i,j—1] =D
w,[i,] = @Dy iff J<#Wandw[J+1]|:D1
w,[i, j] E©Dy iff i>1 andw,[i—1,]] = D1

The language (@) of a UITL formula@iff is given by £(@) = {w | w,[1,#w]| = @}.
We may derive “ceiling” operators which assert the invac&as follows.

— [A] = pt V unit v ﬁb;/ (@O (TR T))

Hencew;,[i, j] = [A] ifand only if Vi < k < j . w(k) € A.
— [A]] = ptv ﬂb;/A((TRT))

Hencew,[i, j] = [A]] ifand only if Vi <k < j . w(k) € A.
— [[A] = ptv ﬂbgA((TRT))

Hencew, i, j] = [[A] if and only if Vi < k < j . w(k) € A.

— [[All = _‘b;/A(TFbT)
Hencew,[i, j] = [A]] if and only if Vi <k < j . w(k) € A.

Example 5.The language given in Examplé 1 may be given by th&L* formula
TLa ([Z\ {b}] F4T).

UITL* and Unique Parsing UITE is a deterministic logic and the property@hique
Parsingholds for its subformulas. Hence, for evéyTL* subformulap, and any word
w, there is a unique intervahtw, () within which it is evaluated. Further, for any
“chop” operator Fa, La, Ff Ly, ®,0,®,0), there is a unique chop positi@fos, ().

If such an interval or chop position does not exist in the wadinén they are equal to
L. Thelntwy (W) andcPosy (W) for any subformulap depend on its context and may be
inductively defined. (Seé [LPS08] for similar such definitfor the sublogidJITL).

5.2 FromTL[U,§ to UITL®

Given aTL[U, S formulag, we shall construct#ITL* formulasBTrang) andE Trang)
having the following property.

Lemma 4. Given a Tl[U, § formulag, we may construct UITE formulas BTran&p)
and ETrangg) such that for any word v& X+ and any intervali, j] in w

— wi,j] - BTrang) iffwi = ¢
- \Nv[lvj] ': ETranS((p) Iﬂ:WaJ ':(p

The translation takes polynomial time.

Proof. The formulasBTransandE Transmay be constructed by bottom-up induction
using the following rules.

— BTranga) = BP (ptR,T)

— BTrang@ V@) = BTrangq) vVBTrangqy)

— BTrang—¢@) = —BTrangg)

— BTrangAUp9) = BPT & [([[A]) R, ETrangg)]
— BTrangAS,¢) = BPS o[([A]]) L, BTrang)]

— ETranga) = EP (TLapt)

— ETrang@ V@) = ETrang@) VETrangqy)

— ETrang—-@) = —-ETrangg)

— ETrangAUL) = EPZ @ [([[A]) 7 ETrangg)]

- ETrangAS,¢) = EPSo [([A]]) L, BTrangg)]

The correctness of the above construction may be infergad the semantics of the
logics. For example, consider the formBa rangAUp(). Let us assum& Trang)
has been appropriately constructed so as to satisfy thedeifimen for any worgv € =+
and any intervali, j] of w,

w, [i, j] E BTrangAUL)

iff w.fi,j] = BPO® [([[A]) Fy ETrango)]

iff w[i,ij = @[([[A]) R, ETrangg)]
iff wli+1i+1][= [([[A]) R ETrangg)]
iff k> (i+1).wk)=bA V(i+1) <m<k.w(m)eA\{b} A
w,[i +1,K = ETrang)
iff wi =AUp® o

From the above construction, we infer that for ev@iyU,S formula, we may
construct a language-equival@fTL* formula whose size is linear in the size of the
TL[U, § formula. Clearly, the time time taken for the constructismiso polynomial.

5.3 UITL® to TL[Xa, Ya]

In [LPSO8], we exploited the interval-nesting structurdJTL formulas to give a re-
duction fromUITL to po2dfa However such a nesting structure is absent in the case
of UITL*and the translation presentedin [LPS08] can not be extetedgtlL*. The
reduction fronI TL* formulas topo2dfais factored vialL[X,, Ya]. This translation is
interesting and it uses the concept of ranker directionalit

Theorem 4. Given any UITE formula @ of size n, we can construct in polynomial
time a language-equivalent TXa, Ya] formula Trangg), whose size is @?). Hence,
satisfiability of UITLE is NP-complete.

The construction ofrang @) requires some auxiliary definitions. For ev&HTL* sub-
formulay of ¢, we defineRanker Formulas Lintwy) andRIntW W), such that Lemma
holds.LIntv() andRInt) areRanker Formulasvhich accept at the left and right
ends of the unique intervéitvy () respectively.

Lemma 5. Given a UITLE subformulay of a formulag, and any we =+ such that
Intviy (W), cPosy(W) # L,

— (Posy(LIntv(P)) = | (INtviy(P))
— (Posy(RINMY)) = r(Intviy(P))

The required formulalsintv(y), RInt W) may be constructed by induction on the depth
of occurrence of the subformulp as below. The correctness of these formulas is ap-
parent from the semantics ATL* formulas, and we omit the detailed proof.

— If Y =@, thenLIntv(y) = SPT, Rint) = EPT
— If ¢y =BP Dy then
Lintv(D1) = RIntvD1) = LIntv(y)
— If y=EP D then
Lintv(D1) = RIntyD1) = RInt(Y)
— If Y =D1F;D2 then
Lintv(D1) = Lintv(y), RintD1) = LIntv() ; XaT,
Lintv(D2) = Lintv(y) ; XaT, RintyD2) = RInt(y)
- Ify= D]_F;Dz then
Lintv(D1) = Lintv(y), RintD1) = RINt(Y) ; Xa T,
Lintv(D2) = RIntV(y), RintyD2) = RINtVY) ; Xq T

— If y=D1L4D7 then

Lintv(D1) = Lintv(y), Rint(D1) = RINt(Y) ; YaT,

Lintv(D2) = RINtVY) ; YaT, RintyD2) = RIntv(y)
— If =D1L; D> then

Lintv(D1) = Lintv(y) ; YaT, RintyD1) = Lintv(y),

Lintv(D2) = Lintv(y) ; YaT, RintD2) = RIntv(y)
— If y =®D; then

Lintv(D1) = LIntv(g) ; X1 T, RIntyD1) = RInt\(Y)
— If y =D then

Lintv(Dy) = Linty(y), RIntD1) = RINtY) ; X4 T
— If y=06D; then

Lintv(Dy1) = Lintv(y), RIntD;) = RIntMY) ; Y1 T
— If y =5EDq then

Lintv(D1) = LIntv(y) ; 2T, RIntYD1) = RInt\(Y)

We can now construct, for any subformujiaof @, a correspondingL[X,, Ya] for-
mula Trangy). The conversion uses the following inductive rules. Thers easy to
see thaffranqy) is language equivalent tp(see [Shal?2] for proof).

— If y=BP Dy or EP D; thenTrangy) = TrangD;)

— If = D1FaDy, thenTrang W) = [(LINtv(P); Xa T) ; P=(RINtV))] ATrangD1) A
TrangD3)

— If Y =DjLaD>, thenTrang) = [(RINtY); YaT) ; P> (LIntv(W))] ATrangD1) A
TrangD3)

— If y=D1F; Dy, thenTrang) = [(LIntv(); Xa T) ; 2= (RINMW))] A Trang D1) A
TrangDy)

— If y=D1L; Dy, thenTrang) = [(RINtMW); YaT) ; P=(LIntv(y))] ATrangD1) A
TrangD3)

— If Y = @Dy, thenTrangy) = [(LIntv(); X1 T) ; P=(RIntM))] A TrangD1)
— If Y = oDy, thenTrangy) = [(RINt(W); Y2 T) ; P=(LIntv(P))] A TrangD1)
— If Y =&D1, thenTrangW) = [(RInt(W); X1 T)] A TrangD1)
— If ¢ = 6Dy, thenTrangy) = [(LIntv(P); Y1 T)] A TrangDj)

— TrangD;1 Vv D2) = TrangD1) V TrangD3)
— Trang—D1) = —~TrangD1)

6 Bridging the Gap: From Deterministic to Non-deterministic
Logics

TL[F,P] is the unary fragment of the well known Linear Temporal Logiith the unary
modalitiesF (future) andP (pas) and the boolean operatofE.[F, P] was studied by
Etessami, Vardi and Wilké [EVW02] who showed that it belot@ythe language class
UL. They also showed that the satisfiability BE[F,P] is NP-complete by giving a
small model property fofL[F, P] formulas. We derive here, an explicit translation from
TL[F, P] formulas to language-equivaleRit[X, Y5) formulas and analyse its size. This
will not only allow us to construct an equivalepo2dfafor the TL[F, P] formula but
also give an alternative proof for their NP-complete satisfity.

Leta € X. The syntax and semantics Bif[F, P] formulas is as follows.

alFo|Po|ove| —@

Given any wordv € * andi € domw), TL[F,P] formulas are interpret over words as
follows.

wiE=aiff wi)=a
wi EFoiff 3j>i. wjEo
wiEPoiff 3j<i.wjEo

The boolean operators have their usual meaning. GivER, P] formulag, the lan-
guage defined byis givenbyLZ(@) = {w | w,1 E ¢}.

Modal subformulas and Boolean subformulagvery modal subformuld = Fg or

W = P@is such thatp = Z(y;), where eachy; is in turn either a modal subformula
or an atomic formula andg is a boolean function. We shall ugeto denote modal
subformulas and to denote the boolean formulag.is a F-type orP-type formula
depending on the outer modality ¢f For any subformulg, let Sform&) denote the
set of modal subformulas @f(excluding) andlform(§) C Sforn{§) denote the set of
immediate modal subformulas &f

Validity of modal subformulas

Given a wordw and a modal subformulé, @ is said to bedefinedin w if Ji €
domw) . w,i = . We call the last position (in casgeis F-type) or the first position (in
case| is P-type) inw where holds, as theefining positiorof Y in w. This is denoted
asdPosy(W). In casayp is not defined irw, then its defining position does not exist, and
is equal tol. ThusdPos,(y) € domw)U{L}.

6.1 TL[F,P]to TL[Xa,Ya]

Representing the non-determinigtiandP operators off L[F, P] in deterministicTL[Xa, Ya]
is challenging. A critical property of the unary modalitisshe following. In any given
wordw if a modal subformula of the formgis defined inw, then it holds at exactly all
positions within an intervdll, i — 1], wherei is the last position inv where@is defined.
Similarly, if a modal subformula of the fora@is defined inw then it holds exactly at
all positions within an interva)j + 1,#w| wherej is the first position inv where@ is
defined.

The following proposition relates the defining position obaal formulas of the
form Fo or P@ to the first or last position wherg is defined. Its correctness may be
directly inferred from the semantics BfandP operators.

Proposition 6. — If y = Fpand i is the last position in w whexgholds then
o dPos,(Y) =i—1(ifi > 1)
e Vj<dPosy(¥) . W jEy
— If y =P@andiis the first position in w whemgholds then
o dPosy(Y) =i+ 1(ifi <#w)
e Vj>dPosy(W) . W, j =y

Region partitioning
Our translation fronTL[F, P] formulas toTL[X,, Ya) formulas relies on the following
key observation, which is closely related to Propositibn 6.

In the evaluation of &L[F,P] formula over a wordw, it is sufficient to deter-
mine the relative positioning of th#Pos, positions of the modal subformulas
and the occurrence of letters (of the alphabet) between.them

Consider a set of modal subformulas= {(); - - - Wn} and a wordw such that every
Y; is defined inw. The defining positions o) partitionw into “regions”, such that
each region is either a defining position of one or mpyrécalled a formula region or F-
region), or the region lies strictly between two conse@utiefining positions (called an
Intermediate region or I-region). While each F-region dstssof exactly one position
in w, anl-region is a subword of length 0 or more. The region partitigtomprises of
alternating | and F-regions, along with a specification efsbbset of the alphabet that
occurs within these regions, as well as their order of firast &ppearances within each
region.

Example 6.Consider a set of modal formulas= {1, Y2, W3, Ys} that are defined in
a wordw. The orientation of their defining positions is as depicted-igure[T. We
havedPos, (1) = dPosy(W2) > 1 anddPosy(W3) = #w. The region partitioning of
K in wis given asri,ro,r3,rq,rs,rg, Wherery, rs, rs are I-regions ando,ry,rg are F-
regions. Further, if the regian corresponds to the subwosd- aabcddcbcdathen its
corresponding alphabet{s, b,c,d} and its order of occurrenceasb, c,d andc,a,d, b
from the left and right, respectively.

w . lllellJz lllJ4 lllJ3
[R %2 Rs R% Rs R{

Fig. 7: Region partitioning ok in w

Region Templates
For a given set of modal formul&s there are only a finite number of possible relative

orderings of defining positions of modal formulakinNe shall call each such ordering,
along with the specification of letter occurrences betwéemtas aegion template
Hence, the set of all possible region templates partitibasset of all words (in which
all formulas ofk are defined) into a finite number of equivalence classes.

Formally, a region templat# (k) of a set of modal subformulas= {1 ---Yn} is
atuple(S <s,1,0,B), where

— Sis afinite set of I-regions and F-regions.
— <gls a strict total ordering on the sBsuch that the I-regions and F-regions alter-
nate.

— 1:S— 2¥is a function which maps the F-regions to the set of subfoaswlhose
defining position corresponds to that region. For evengieer, 1(r) = 0 and for
every F-regiom, 1(r) # 0. Further, for everyy; € K, there exists a unique F-region
r € Ssuch thaty; € 1(r), and this unique region is denotedrag(y;).

— a: S— 2> maps every region to the subset of letters. Note that foryeveegion
r,a(r) is a singleton.

— Bis a function which maps each regioto a pair of ordering relations", <R over
the seta(r). <t and<R are strict total orders.

Given a region templat& (k) = (S <s,T,0,B) and a wordv € £ such that each
Wi € K is defined inw, we say thatZ(k) is the (unique) region template of w farif
there exists a partitioninBart of w such that there exists a bijecti&@yuiv : S— Part
which preserves the ordering relatierg and satisfies the following conditions

— For all F regiong € S, the corresponding subwome Part is a subword with a
single position € domw) such that/¢ € t(r) . dPos,({) =1i.

— For all regionsr € S, the corresponding subwond € Part is such thatva € .
ac a(r) if and only ifa occurs inp.

— For all regiong € S, the corresponding subwompe Part is such that the ordering
relations<" and <R exactly correspond to the ordering of first appearance of the
letters inp from the left and right respectively.

Consider the region partitioning of the wondn Exampld 6 (Figurgl7) and region tem-
plateZ given by the sequen= {r1,r2,r3,ra,rs,rs}, with t(r2) = {W1,Y2), 1(ra) =
Ws, T(re) = W3, tau(ry) = 1(r3) = 1(rs) = 0, and the regions is such that(rz) =
{a,b,c,d},a <. b < c< dandc <r a <r d <gr b(and similarly for other re-
gions as well). Then we may say thatis the region template af for {1, W2, W3, Ya}.

The proposition below may be inferred from the following jpecty: Given a word
w and a modal formulg that is defined imw, there exists a unique defining position of
Yinw.

Proposition 7. Given a set of modal subformulasand any we = such that every
formula ink is defined in w, there existsumiqueregion templateZ such thatZ is the
region template of w fok.

In the remainder of the section, we shall often refer to aargiin a wordw, to
mean the partition in the which corresponds to the(that is given by the equivalence

Equiv).

Parameters) and©

Let ® be aTL[F, P] formula. We shall construct®BL[X,, Ya] formulaTrang®) that is
language-equivalent t®. For the top-level formula, we defingparametersh and©
of @ as follows.A C Sform(®) is a subset of the set of modal subformulashoB is
a function which maps each modal subformyilaf ® to a region template over the set
[form(y)NA.

Definition 3. Given a word we ¥*, w is said toconform toparametersA and 8 if A
is exactly the subset of modal subformulaspofvhich are defined in w and for every
Y € Sform(®), 8(y) is the region template of w for the set | fofyn) N A.

Evaluating Boolean Formulas

Fix parameterd and@ for ®. For a boolean subformutpof ®, we may construct a
setDe f>8(@) which is a set of pair$(r,A)} such thar € SandA C a(r) (andA # 0).
The idea behind the constructionDdé f(@) is to identify exactly the positions whege
will hold. The validity of o= %();) at a positiori in a word depends on the following:

— the relative positioning of with respect to the defining positions of the modal
subformulas i{y; }, and hence the region (in the region partitioning drm(g))
to whichi belongs.

— the letterw(i) at the positioni- to infer the validity of the atomic formulas ifw; }.

Hence, the seDe 29 () exactly indicates in terms df,A) pairs, the positions in a
word where(q) will hold. The construction oDe f29(¢) is formulated in the lemma
below.

Lemma 6. GivenA, 8 of a formula® and a boolean subformula= %(Z;) of ®, the
set De £9(¢) may be constructed such that for all words w tbahform toA, 8, and for
alli € domw), w,i = @if and only if3(r,A) € De f2®(@) such that ic r and w(i) € A.

Proof. Consider a modal subformula= F¢ (or alternativelyPq) such thatp= %({;),
where eacli; is in turn a modal formula or an atomic formula. 8t)) = Z = (S, <s
,T,a,B). The seDe 2 (g) may be constructed by structural inductiongn

— If p=a, thenDef®8(@) = {(r,{a}) | reSA aca(r)}

—If 9= @ A@ thenDef*®(g) = {(LALNAy) | (r,A1) € Def¥ (@) A (1,A2) €
Deff¥(@) A ALNA, # 0}

— If = —@q thenDef*®(g) = {(r,=\ A) | (r,A) c Def*® (@) A A#TZ}

—If o=@ V@ thenDe8 (@) = {(r,ALUA) | (r,A1) € Def®® (@) A (1,A2) €
De f%(g)}

— If @={ where{ = F(¢) then
Def28(q) = {(r,a(r)) | r <sreg(Q) A a(r) #0},if ZcA
Def9(q) = 0, if { ¢ A

— If @={ where{ = P(¢) then
Def29(@) = {(r,a(r)) | r >sregd) A a(r) #0},if ZcA
Def9(q) = 0, if { ¢ A

The correctness of the above construction may be deducedibgtion on the structure
of @using the semantics of the lodit.[F, P], Propositio 6 and the fact thatconforms
to A, 6. The atomic and boolean cases are straightforward. Carthielteresting case
of @ = F@ (=). From Propositiofil6, we know thatholds true at all positions that
are at or beforePos,({). Hence for anyw, sincew conforms toA, 8, we know that
dPosy(¢) = (reg(C)). Therefore we know tha®({) holds at all regions at or before

reg({).

Constructing the ranker fop

Using a bottom-up induction, for every modal subformyil& A, we may construct
a rankerD®® () such that for all wordsv which conform toA, 8, the rankeD?®(y)
accepts atlPos, ().

Given the seDe f28(@), we may construct the rank&®9() for the modal sub-
formulay = F@ or P as follows. Letu be a special ranker which does not accept on
any word. IfDe f28(¢p) = 0, thenD?®(y) = u.

Otherwise, iDe f28(¢) is non-empty, then lenin(De f28(@), <sf andmaxDe f2°(¢), legs)
dencgge the minimal and maximal elements D& f29) wrt the ordering<s of the re-
gion

If Y = Fg, then from Propositioh]6, we know théDe f>-8) must accept at one posi-
tion previous to the maximum position whepdolds. Such a ranker is constructed as
follows:

— Case: IfmaxDe f29(¢), <s) = (r,A) such that is an F-region, them(r) # 0 and
for some(, { € 1(r), then
DA9(y) = D) T
— Case: IfmaxDef*®(@), <s) = (r,A), such that(r) = 0 (i.e.r is an I-region) then
e If r =maxs§, <s), thenr includes the last position in the word. Hence
DAO(y) =EPYY T

wherep = min(Ana(r),<R).
e If r £ maxS, <sg), then ifr’ is the region subsequent tothere exist< such
thatreg({) =r’. Then

D49 (W) = DA(Q);YpWa T
wherep = min(Ana(r),<R).

The ranker for the case df = P@is symmetric to the above.
The correctness of this construction is given by Leriina 7ipart

CheckingA and6

We shall now give the formulas which “check” whether a givesrdwconforms toa
givenA and®. For convenience and ease of readability, we have dropeesliierscript
A, 8.

The formulaDvalid checks ifA holds for the given word.

Dvalid(d) = A (D)) A A (=D(w))

Yea pgA

2In general, given a seék and a total ordering< on A, let min(A, <) andmaxA, <) be the
minimal and maximal elements (respectively)ofvith respect to the ordering.

3 From the construction dDefA=9(<p) it is apparent that for every regid® there is at most one
element withR in De f28(¢).

The formulaT valid checks for the correctness@by checking for each modal subfor-
mulay whetherB(y) is the region template of the word, wrt the sébrm(g) NA.

Tvalid(A,8) = /\ [Rvalid(6,p) A Avalid(6,y) A Bvalid(6,y)]
peSform®)ud

In the above, iB(P) = (S, <s,T,0,B) thenRvalid(6,) checks the consistency efs
andt. Avalid(6, y) andBvalid(0,) respectively check the correctnessoo&ndp in
the given word. They are as given below. Assume that for gaéfiy) = (S, <s,T,a,)
such thaty, - - - rmaxry iS the enumeration of the regions@based on the orderings.
RValid checks the validity of(r;) for all the F-regions; and also the relative or-
dering of the F-regions, which implicitly also verifies theering of I-regions that al-
ternate with the F regions. WhileauChKr;) checks whether the rankers corresponding
to everyC € 1(ri) accept at the same positiddydChkr;) checks the relative ordering
of successive F-regions, using the rankers of the modaldtasrthat are contained in
1(ri). These formulas are as given below.

Rvalid(8,p) = /\ [T1(ri) #0 = (TauChkKr;) A OrdChkci))]
ie{1,--maxRp}

TauChKri)= A [D({);?=(D(§)) A D(&): ?=(D(Q))]
gget(ry)

OrdChKr;) = D(Z); P<(D(¥))

whereC € 1(rj) andg € 1(ri12), (fori < maxR)—2)

The formulaAvalid checks the presence of the lettersiim;) within the regiorr;,
usingChkLe{r;) and at the same time, it checks for the absence of letterdwanénot
in a(ri). This is done using ranker-directionality formulas forkers corresponding to
F-regions.

Avalid(6,p) = /\ [ChkLefr;) AChkNof{rj)]
ie{1,---maxRp}

Caserjis anI-regionand 1< i < maxRy. Let{ e tau(ri_1) andg € T(I’i+1). Then

ChkLetri) = A [D@Q); Xa; P=(D(¥))]

aca(ri)

ChkNofri) = A =[D(Q); Xa;P<(D(3))]
aga(ri)
The other cases wheregis an I-region and it is either the first or last region, orjifs
an F-region, may be worked out similarly.

The formulaBvalid checks for each region, the ordering of the letters within th
region, from the left side (usingOrdChK and from the right side (usingOrdChR.

Bvalid(6,y) = /\ [LOrdChKri) A ROrdChKr;)]
ie{1,--maxRp}

If ri is an F-region then(r;) is a singleton. Hence the interesting case is whésnan
I-region.
Caserjisanl-regionand Xk i < maxRp. Let§ € 1(ri_1), { €1(ri+1) and{bs...bm} €
a(ri).
LOordChk = A [D(E)Xo,: 2= (D(€); Xo,,, T))]
je{l.m}
ROrdChk = /\ [D(Z)ij;£P>(D(Z);ij+1T))]
je{l..m}
Other cases wheie= 1 ori = maxR}, may be worked out similarly.
The following lemma asserts the correctness of the aboveityatheck formulas
for the parameters and also the correctness of the rankstraation for the modal
subformulas.

Lemma7. (i) Given parameterd,® of ®, for all w € =, w conforms toA, 6 if and
only if
e w = Dvalid(A) and
e w = Tvalid(0)
(i) Given parameterd, 6 of ® and a modal subformulés of @, for every we =+ such
that wconforms taA, 8, the ranker () accepts at a positiond domw) if and
only if Y is defined in w and dP@gW) = i.

Proof. Given a modal subformulg of ® such thatp = F/Pg, let Ay, and 6, be the
restrictions ofA and® to ¢. Therefore Ay = AN Sforn() and8y is the restriction of
the functiond to the domairs form{y) U .

We shall prove the lemma by induction on the depth of the sulditas. Consider
a modal subformulg = F/P(¢) of ® such thatp = #({;) where eacli; is a modal
subformula or atomic formula.

— Base Case:

If Iform() = 0thengis a boolean combination of atomic formulas. HeAge= 0
andBy(p) = Z. Here, the only possible region set&fis one which consists of
a single regiorr such thatt(r) = 0. SinceA, = 0, Dvalid trivially holds for all
words. FurtherT Valid checks the region templa8y) = %(0). SinceZ(0) is

a region template with a single regiobe f*»%(¢) is either a singleton o@. In
the former case, the rankBf»%(y)) exactly matches the position corresponding
to thedPosposition of Y. In the latter CaseDA(P’e(P(l]J) = u. Hence part(ii) of the
lemma is verified for the base case.

— Assume that form(y) = {¢;} is non-empty and the lemma holds for evéry.e.,
For every(; = F/Pq, Part(i) of the lemma holds for the restrictiong ,0, and
Part(ii) of the lemma holds fo;. We shall prove that the lemma holds fpr=
B(9).

Fir(st%y, from the correctness of the construction of rasker{;, we may verify the
correctness obvalid(Ay) andTvalid(8y). (Hence Part(i)). Further, from Lemma
[6, we know thaDe qu,,eq,((p) exactly marks the positions (in terms of regions and
letter-occurrences within them) whegeholds. By observing the construction of
rankers, we can infer that the rank2fe%(ys) exactly matches the position corre-
sponding to thelPosposition of P (hence Part(ii)).

Constructing the formula Trari®)

We may now give the language equival@hfXg, Ya] formula for theTL[F, P] formula
®. Let ® = B({Yi,a;}) wherey; are immediate modal subformulas (which are only
of the formF¢ at the top level) and; are atomic formulas. Then from the correctness
of the validity formulas of the parametessd and rankers for the modal subformulas
(LemmdT) we have

Trang®) = \/ [Dvalid(A) A Tvalid() A B(D*®(yi),a))].
lAY:}

Complexity
Consider & L[F, P] formula® of lengthn. Letsbe the size of its alphabet. The number
of modal subformulas op is O(n). For a given set of parameteks,

— For each € Sforn{®) the rankeD®®(y) is of sizeO(n).

— HenceDvalid(A) is of sizeO(n).

— For eachy, the size oRValid(y, 8) is O(n®), and size oRValid(y) andBValid(y)
is O(sr)

— Tvalid checks the region template for eagh Hence the size oT valid(0) is

O(srf

Since the number of possibleand6 are exponential im, Trang®) is anO(2") dis-
junction of formulas whose size is bounded@gsrt").

Time Complexity: For a giver, 8, the time taken to comput@e f2-°(¢) for eachq,

is proportional to the number of regions and the size,dfe. O(n?). Hence, the total
time required to computBe f for all subformulas isO(n®). Further, the time required
to compute the rankers for each modal subformula and thdityatthecking formulas
for A and® is proportional to its size, which is polynomialim Hence we can conclude
that the time taken to compute each disjunct odng®) is also polynomial im.

Theorem 5. Satisfiability of TI[F, P] formulas is decidable with NP-complete complex-
ity.

Proof. For an inpuflL[F, P] formula of sizen, our reduction gives us a language equiv-
alentTL[Xg, Ya] formula of the form \/ @ wherek is exponential inn and each
ie{1-k
disjunct@ has a size polynomial in (a{ssu}ming alphabet size to be a constant). From
Propositior ¥, we know that the set of possible paramétédpartitions=™ into equiv-
alence classes such that each equivalence class is chaettey the parameter to
which the words in that class conform to. By non-determicédly guessing parameters
A and#, a single disjunctp may be constructed in time polynomialmn By checking
the satisfiability (which is in NP) of the resultinfL[X,, Ya] formula, we may check
the satisfiability of th&'L[F, P] formulain NP time. NP-hardness may be inferred from
NP-hardness of propositional logic.

The above construction results in a language equivaetfawhose number of
states is exponential im However, every accepting path in the automaton has at most
O(n*) progress (non-self looping) edges.

7 Recursive LogicTL* Xy, Yy

TL* [Xg, Yg] is the recursive extension 3L [Xa, Ya] logic with deterministic modalities
Xy andYy which are parametrized BYL" [Xy, Y] sub-formulasp. TheTL" [Xy, Y] for-
mulas have a two-part syntax: subformulas maypkgpe or-type. They have the
following syntax:

Vi=alo|yvy |-y

wherea € X and@is of the form

@:=T | SRp | EPp | Xy | Yyo

Hence, thep-type formulas areecursive rankerand theX andY modalities are parametrized
by Y-type formulas which are boolean combinations of recursavdkers. On examin-
ing the above syntax representation, we may make the follpkéy observations:

— The recursive rankerg{type formulas) do not have@as atomic subformulad.

— Every y-type formula is a boolean combination of recursive rankard atomic
formulas.

— The logic TL* [Xy, Yy is @ deterministic logic and hence the subformulas satisfy
the property of Unique Parsing. The unique position at whictubformulan is
evaluated in a given wond is denoted byPosy(n).

The semantics of the recursive modalitiesTaf" Xy, Yo| formulas is as follows:
Wi lE=Xe@iff 3j>1.wjE@AW] E@andvi<k<j.wki@
Wi =Yy @iff 3j<i.wjE@AW|E@andV) <k<i.wkp=@

Example 7.Consider th& L* [Xy, Yy formulag= Xy, Yy, T where; =anYoy T AXT

andy; = X.Hg. When we evaluat@ over the wordv = ccaccbccabbcac®osy (@) = 1.

The first position in the word wheng; holds is 9 henc®osy(Yy, T) = 9. Finally, the
last position before 9 wheng; holds is 4. Hencev € £(9).

For aTL" [Xq, Y] formulay, the recursion levelof any subformula ofp may be
defined inductively as followsievel(y) = 0. If @ = Xy, @ or Yo, @2, thenrlevel(@,) =
rlevel(g) + 1 andrlevel(g,) = rlevel(g). For all other operators, the recursion level re-
mains unchanged. Threcursion levebf a formula is the maximum recursion depth of
its subformulas.

A key property of recursive rankers @nvexity This is stated in the following
lemma, and its proof is similar to that of Lemira 2.

Lemma 8 (Convexity).For any recursive ranker formule, and any word we =¥, if
there existij € domw) such thati< jand wi = @and wj | @, thenvi <k < j, we
have wk = .

4 It can be shown that allowing as an atomic subformula of @type formula increases the
expressive power of the logic

7.1 TL[F,P]to TL*[Xg, Yyl

Consider & L[F, P] formulay in normal form @ = aAAi (Fai) AAj (PBj) A Ak(=FYk) A
A (—PJ)). We construct th&L "Xy, Yy] formulasTransXp) and TransY(y) such that
the following lemma is satisfied.

Lemma 9. If Yis a TUF,P] formula, then there exists a TIXy, Yy| formula Trangy)
such thatvw € =+ and i€ dom(w), w,i = iff w,i = Trangy). Moreover, the size of
Trangy) is linear in the size ofy, and the modal depth of psi is equal to the recursion
depth of Tranay).

Proof. We now give the construction dirang), by structural induction o). The
correctness of the conversion is directly evident from #raantics of the two logics.

— Tranga) =a

— TrangY1 V Y2) = Trang Y1) V Trang W)
— Trang—y) = —Trangy)

- Trans(F(Lp)) = XTranqu)T

- Trans(P(l-p)) = YTrane(lu)T

7.2 ReducingTL" [Xg, Yg] to TL[F, P]

For anyTL"[Xy, Yy formulay, we shall give a bottom-up inductive construction of a
TL[F, P] formulaAt(W) such that the theorem below is satisfied.

Theorem 6. For anyy € TL"[Xy, Yq], we can construct TE, P] formulas Afy) such
thatvwe =+,
Wi = At(Y) iff w,i = .

Proof. The proof is by induction on the structure ¢f (and @). Define At(a) =
A(T) =T andAt(B(@1,...On)) = B(At(@),...At(@m)). It is easy to see that, j =
A(B(@1,...0n)) iff w,j & B(@1,...0m). Now, we give and prove the reduction for
temporal operators.

AlXy (@2)) = FIAUW1) AAL@)] A
—FAL(W1) A -AL@) A FALg2))]

)
At(Yy, (@2)) = PIAt(W1) AAL(@2)] A
—PIA(1) A ~At(@2) A PAL(@2))]

Consider the casp= Xy, (¢2). The other case is similar and omitted. #s= Xy, (¢2)
is a recursive ranker formula, the convexity property hédisp andg, (but not always
for). This is depicted in the figufd 8. Using convexity, from thwifie, the following
property is evident:

w,i = @iff

dj>iwjEwmA@gand Aj >i.wjEUIA-@ATK> jJ.wkE@

iff wi b= F (2 A1) A—F (W A=z AF (¢2))

Wi } t t t t t t t } }
W1 W W1 7] W1 W1
[07]
Fig. 8: Depicting convexity of recursive rankge= Xy, ¢
Complexity

Consider &L "[Xy, Yy| formulay of lengths. We shall analyse the size of the language-
equivalentTL[F, P] formula. From the above construction, we can see that theatod
DAG size of the resulting'L[F, P] formula is linear ins and hence its modal depth is
also linear irs.

Since the translation frofiL[F, P] to po2dfagives an NP-complete satisfiability
procedure foiTL[F,P] formulas, the translation fromML* Xy, Y| to TL[F,P] gives an
NP-complete satisfiability foF L™ [Xy, Y] also.

8 Discussion

The motivation behind this study has been to use the varibasacterizations to help
us in analyzing and answering some fundamental questioteiiag to this language
class. Logic-automata transformations are importanty Tiwg only have practical ap-
plications in the form of model-checking, but also give marsight to the structure
within the language class and its properties. Moreoveectffe translations between
various logics and automata allow us to calculate size-susuccinctness gaps and
decision complexities.

This study of unambiguous languages has also been exteadbd tanguage of
factors (se€ [LPS10]) and to timed words (see [PS10]).

References

DGKO08. Volker Diekert, Paul Gastin, and Manfred Kufleitnérsurvey on small fragments of
first-order logic over finite wordsint. J. Found. Comput. S¢il9(3):513-548, 2008.

DKO7. \Volker Diekert and Manfred Kufleitner. On first-ordelagments for words and
Mazurkiewicz traces. liDevelopments in Language Theppages 1-19, 2007.

DKL10. Luc Dartois, Manfred Kufleitner, and Alexander Laudeankers over infinite words -
(extended abstract). Developments in Language Theppages 148-159, 2010.

EVWO02. Kousha Etessami, Moshe Y. Vardi, and Thomas Wilkerstférder logic with two
variables and unary temporal logimf. Comput, 179(2):279-295, 2002.

LPS08. Kamal Lodaya, Paritosh K. Pandya, and Simoni S. Skrking the chops: an un-
ambiguous temporal logic. IfFIP TCS pages 461-476, 2008.

LPS10. Kamal Lodaya, Paritosh K. Pandya, and Simoni S. SAabund dot depth two. In
Developments in Language Theppages 303-315, 2010.

PS10. Paritosh K. Pandya and Simoni S. Shah. Unambiguitymiect regular languages:
Automata and logics. IFORMATS pages 168-182, 2010.

PW97.

Sch76.

Shal2.

STVO1.

TWO8.

WI07.

Jearkric Pin and Pascal Weil. Polynomial closure and unambigyaduct. Theory
Comput. Syst30(4):383-422, 1997.

M.-P. Schiitzenberger. Sur le produit de concatgnaon ambigu. InSemigroup
Forum, pages 47-75, 1976.

Simoni S. Shablnambiguity and Timed Languages:Automata, Logics, Expreness
(Submitted) PhD thesis, TIFR, Mumbai, 2012.

Thomas Schwentick, Denis Thérien, and Heribernvet. Partially-ordered two-way
automata: A new characterizationDA. In Developments in Language Theppages
239-250, 2001.

Denis Thérien and Thomas Wilke. Over words, two \@és are as powerful as one
quantifier alternation. I5TOGC pages 234-240, 1998.

Philipp Weis and Neil Immerman. Structure theorem sttt alternation hierarchy
for FO? on words. InCSL, pages 343-357, 2007.

	Deterministic Logics for UL

