Skip to main content

Pose Refinement of Transparent Rigid Objects with a Stereo Camera

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 7870))

Abstract

We propose a new method for refining 6-DOF pose of rigid transparent objects. The algorithm is based on minimizing the distance between edges in a test image and a set of edges produced by the training model with a specific pose. The model is scanned with a monocular camera and a 3D sensor such as a Kinect device. The pose is estimated from a monocular image or a stereo pair. The method does not require a CAD model of the object. We demonstrate experimental results on a set of kitchen items essential for any home and office environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collet, A., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full pose registration from a single image for robotic manipulation. In: IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  2. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), 243–262 (2007)

    Article  Google Scholar 

  3. Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: State of the Art in Transparent and Specular Object Reconstruction. In: STAR Proceedings of Eurographics, pp. 87–108 (2008)

    Google Scholar 

  4. Klank, U., Carton, D., Beetz, M.: Transparent Object Detection and Reconstruction on a Mobile Platform. In: IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  5. Phillips, C., Derpanis, K., Daniilidis, K.: A Novel Stereoscopic Cue for Figure-Ground Segregation of Semi-Transparent Objects. In: 1st IEEE Workshop on Challenges and Opportunities in Robot Perception (2011)

    Google Scholar 

  6. Lysenkov, I., Eruhimov, V., Bradski, G.: Recognition and pose estimation of rigid transparent objects with a kinect sensor. In: Robotics: Science and Systems Conference (2012)

    Google Scholar 

  7. Lagger, P., Salzmann, M., Lepetit, V., Fua, P.: 3d pose refinement from reflections. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2008)

    Google Scholar 

  8. Chang, J., Raskar, R., Agrawal, A.: 3d pose estimation and segmentation using specular cues. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  9. Netz, A., Osadchy, M.: Using specular highlights as pose invariant features for 2d-3d pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  10. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1270–1281 (2007)

    Google Scholar 

  11. Biederman, I., Ju, G.: Surface versus edge-based determinants of visual recognition. Cognitive Psychology 20(1), 38–64 (1988)

    Article  Google Scholar 

  12. Rosenhahn, B.: Pose estimation revisited. PhD thesis, Universität Kiel (September 2003)

    Google Scholar 

  13. Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., Navab, N.: Dominant orientation templates for real-time detection of texture-less objects. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2257–2264 (2010)

    Google Scholar 

  14. Gavrila, D.: A bayesian, exemplar-based approach to hierarchical shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1408–1421 (2007)

    Google Scholar 

  15. Reinbacher, C., Ruther, M., Bischof, H.: Pose estimation of known objects by efficient silhouette matching. In: IEEE International Conference on Pattern Recognition, pp. 1080–1083 (2010)

    Google Scholar 

  16. Lowe, D.: Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31(3), 355–395 (1987)

    Article  Google Scholar 

  17. Liu, M., Tuzel, O., Veeraraghavan, A., Chellappa, R., Agrawal, A., Okuda, H.: Pose estimation in heavy clutter using a multi-flash camera. In: IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  18. Ulrich, M., Wiedemann, C., Steger, C.: CAD-based recognition of 3d objects in monocular images. In: International Conference on Robotics and Automation, vol. 1191 (2009)

    Google Scholar 

  19. Canny, J.: A computational approach to edge detection. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms 184, 87–116 (1987)

    Google Scholar 

  20. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (1992)

    Google Scholar 

  21. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  22. Pulli, K.: Multiview registration for large data sets. In: IEEE Second International Conference on 3-D Digital Imaging and Modeling, pp. 160–168 (1999)

    Google Scholar 

  23. Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-view registration technique. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(5), 540–547 (1996)

    Article  Google Scholar 

  24. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image and Vision Computing (2003)

    Google Scholar 

  25. Hazan, E., Safra, S., Schwartz, O.: On the hardness of approximating k-dimensional matching. In: Electronic Colloquium on Computational Complexity, TR03-020 (2003)

    Google Scholar 

  26. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks. In: Proc. Pacific Symp. Biocomputing, vol. 13, pp. 303–314. Citeseer (2008)

    Google Scholar 

  27. Hubert, M., Rousseeuw, P., Van Aelst, S.: High-breakdown robust multivariate methods. Statistical Science 23(1), 92–119 (2008)

    Article  MathSciNet  Google Scholar 

  28. Rousseeuw, P.: Multivariate estimation with high breakdown point. Mathematical Statistics and Applications 8, 283–297 (1985)

    Article  MathSciNet  Google Scholar 

  29. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973)

    Article  Google Scholar 

  30. Matas, J., Shao, Z., Kittler, J.: Estimation of curvature and tangent direction by median filtered differencing. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 83–88. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  31. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence, 850–863 (1993)

    Google Scholar 

  32. Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, S.G.: The nlopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt

  34. De Las Rivas, J., Fontanillo, C.: Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Computational Biology 6(6), e1000807 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lysenkov, I., Eruhimov, V. (2013). Pose Refinement of Transparent Rigid Objects with a Stereo Camera. In: Gavrilova, M.L., Tan, C.J.K., Konushin, A. (eds) Transactions on Computational Science XIX. Lecture Notes in Computer Science, vol 7870. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39759-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39759-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39758-5

  • Online ISBN: 978-3-642-39759-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics