
Ontology-Based Data Access with Databases:
A Short Course

Roman Kontchakov1, Mariano Rodŕıguez-Muro2 and Michael Zakharyaschev1

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, U.K.

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Abstract. Ontology-based data access (OBDA) is regarded as a key
ingredient of the new generation of information systems. In the OBDA
paradigm, an ontology defines a high-level global schema of (already
existing) data sources and provides a vocabulary for user queries. An
OBDA system rewrites such queries and ontologies into the vocabulary
of the data sources and then delegates the actual query evaluation to a
suitable query answering system such as a relational database manage-
ment system or a datalog engine. In this chapter, we mainly focus on
OBDA with the ontology language OWL2QL, one of the three profiles
of the W3C standard Web Ontology Language OWL2, and relational
databases, although other possible languages will also be discussed. We
consider different types of conjunctive query rewriting and their succinct-
ness, different architectures of OBDA systems, and give an overview of
the OBDA system Ontop.

1 Introduction

Do you like movies? Do you want to know more about stars, directors, writers,
casts, etc.? Then you should probably query IMDb, the Internet Movie Database
available at www.imdb.com. You do not know how to use databases. But you have
already taken the ‘Introduction to Description Logics’ course. Then what you
need is ontology-based data access (OBDA, for short). There is a simple movie
ontology MO at www.movieontology.org describing the application domain in
terms of concepts (classes), such as mo:Movie and mo:Person, and roles and
attributes (object and datatype properties), such as mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− v mo:Person, etc.

And you can query the IMDb data in terms of concepts and roles of the MO
ontology; for example,

q(t, y) = ∃m
(
mo:Movie(m) ∧mo:title(m, t) ∧mo:year(m, y) ∧ (y > 2010)

)
is a conjunctive query asking for the titles (the variable t) of recent movies
with their production year (the variable y). An OBDA system such as Ontop

available at ontop.inf.unibz.it will automatically rewrite your query into
the language of IMDb, optimise the rewriting and use a conventional relational
database management system (RDBMS) to find the answers. (We will return to
the IMDb example in Section 6.)

The idea of OBDA was explicitly formulated in 2008 [17, 27, 56], though query
answering over description logic knowledge bases has been investigated since at
least 2005. Nowadays, OBDA is often deemed to be an important ingredient of
the new generation of information systems as it (i) gives a high-level conceptual
view of the data, (ii) provides the user with a convenient vocabulary for queries,
(iii) allows the system to enrich incomplete data with background knowledge,
and (iv) supports queries to multiple and possibly heterogeneous data sources.

One can distinguish between several types of OBDA depending on the ex-
pressive power of description logics (DLs).

OBDA with databases: some DLs, such as the logics of the DL-Lite family
(and OWL2QL), allow a reduction of conjunctive queries over ontologies to
first-order queries over standard relational databases [11, 56, 4, 38];

OBDA with datalog engines: other DLs encompassing logics in the EL fam-
ily (OWL2EL), Horn-SHIQ and Horn-SROIQ, support a datalog reduc-
tion and can be used with datalog engines [65, 46, 52, 18];

OBDA with expressive DLs such as ALC or SHIQ require some special
techniques for answering conjunctive queries; see [28, 47, 51, 22, 19, 13, 34]
and references therein for details.

In this chapter, we give a brief and easy introduction to the theory and practice
of OBDA with relational databases, assuming that the reader has some basic
knowledge of description logic. Our plan is as follows. In Section 2, we introduce
and discuss the DLs supporting first-order rewritability of conjunctive queries.
Then, in Section 3, we show how to compute first-order and nonrecursive dat-
alog rewritings of conjunctive queries over OWL2QL ontologies. The size of
rewritings is discussed in Section 4. In Section 5, we introduce the basics of the
combined approach to OBDA. Finally, in Section 6, we present the OBDA sys-
tem Ontop, which is available as a plugin for the Protégé 4 ontology editor as
well as OWLAPI and Sesame libraries and a SPARQL end-point.

2 Description Logics for OBDA with Databases

The key notion of OBDA with databases is query rewriting. The user formu-
lates a query q in the vocabulary of a given ontology T . (Such a pair (T , q) is
sometimes called an ontology-mediated query.) The task of an OBDA system is
to ‘rewrite’ q and T into a new query q′ in the vocabulary of the data such that,
for any possible data A (in this vocabulary), the answers to q over (T ,A) are
precisely the same as the answers to q′ over A. Thus, the problem of querying
data A (the structure of which is not known to the user) in terms of the ontology
T (accessible to the user) is reduced to the problem of querying A directly. As
witnessed by the 40 years history of relational databases, RDBMSs are usually

very efficient in query evaluation. Other query answering systems, for example
datalog engines can also be employed. In this section, we consider the ontology
languages supporting query rewriting. To be more focused, we concentrate on
description logics (DLs) as ontology formalisms and only provide the reader with
references to languages of other types. We also assume in this section that A
is simply a DL ABox stored in a relational database (proper databases will be
considered in Section 6).

Example 1. Consider the query q(x) = ∃y
(
R(x, y) ∧ A(y)

)
that asks for the

individuals x in the ABox such that R(x, y) and A(y), for some y (which does
not have to be an ABox individual). Suppose also that we are given the DL
ontology (or TBox)

T = { B v A, C v ∃S, ∃S− v A, ∃R− v ∃R, S v R },

where A and B are concept names and R and S are role names (thus, the second
axiom says that C is a subset of the domain of S, and the third that the range of
S is a subset of A). It takes a moment’s thought to see that we obtain R(x, y),
for some y, if we have one of R(x, y), S(x, y) or C(x) (in the last case y may not
even exist among the ABox individuals). It follows from T that, in the second
case, A(y) also holds, and, in the third case, there exists some y such that R(x, y)
and A(y). Similarly, we obtain A(y) if we have one of A(y), B(y) or S(z, y), for
some z. These observations give the following first-order rewriting of q and T :

q′(x) = ∃y
[
R(x, y) ∧

(
A(y) ∨B(y) ∨ ∃z S(z, y)

)]
∨ ∃y S(x, y) ∨ C(x).

Now, suppose A = {R(a, b), B(b), R(b, c), C(c) }. It is easy to compute the an-
swers to q′(x) over A: these are x = a and x = c. What about the answers
to q over (T ,A)? We can compute them by first applying the axioms of T to
A, always creating fresh witnesses for the existential quantifiers ∃R and ∃S if
they do not already exist, and then evaluating q(x) over the resulting (possibly
infinite) structure known as the canonical model of (T ,A). The canonical model
is illustrated in the picture below (where the fresh witnesses are shown as ◦).
Taking into consideration that we only need answers from the data (the individ-
uals from A), we see again that they are x = a and x = c.

A b

B,A
a

R C

c

R

A

S,R

AR AR

Formulas such as q(x) in Example 1 are called conjunctive queries (CQs, for
short). CQs are the most basic type of database queries, also known as Select-
Project-Join SQL queries. More precisely, in the context of OBDA over DL
ontologies, a CQ q(x) is a first-order formula ∃y ϕ(x,y), where ϕ is a conjunction

of atoms of the form A(t1) or P (t1, t2), and each ti is a term (an individual or
a variable in x or y). The variables in x are called answer variables and those
in y existentially quantified variables. Formulas such as q′(x) in Example 1 can
also use disjunctions and are called positive existential queries (PE-queries).
If all Boolean connectives (conjunction, disjunction and negation) as well as
both quantifiers, ∀ and ∃, are allowed then we call the queries first-order (FO-
queries). FO-queries (more precisely, domain-independent FO-queries) roughly
correspond to the class of queries expressible in SQL. A query q(x) is called
Boolean if x = ∅.

A tuple a of individuals in A (of the same length as x) is a certain answer
to q(x) over (T ,A) if I |= q(a) for all models I of (T ,A); in this case we write
(T ,A) |= q(a). In other words, a is a certain answer to q(x) over (T ,A) if q(a)
follows logically from A and T . For a Boolean q, the certain answer is ‘yes’ if
q holds in all models of (T ,A), and ‘no’ otherwise. Finally, an FO-rewriting of
q(x) and T is an FO-query q′(x) such that (T ,A) |= q(a) iff A |= q′(a), for
any ABox A and any tuple a ⊆ ind(A), where ind(A) is the set of individuals
in A.

For the purposes of OBDA we are naturally interested in maximal ontol-
ogy languages that ensure FO-rewritability of CQs. To distinguish between DLs
with and without FO-rewritability, we require a few facts from the computa-
tional complexity theory. For details, the reader is referred to [3, 29, 40, 44]. The
hierarchy of the complexity classes we use in this chapter is shown below:

AC0 $ NLogSpace ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime.

It is also known that P $ ExpTime and NLogSpace $ PSpace (whether the
remaining inclusions are proper is a major open problem in computer science).
Consider, for example, the problem of evaluating a (Boolean) FO-query over
relational databases: given an ABox A and a query q, decide whether A |= q.
If both A and q are taken as an input, then the problem is PSpace-complete
for FO-queries (due to alternation of quantifiers), and NP-complete for CQs and
PE-queries. In this case, we refer to the combined complexity of query answering.
If only the ABox is an input (and the query is fixed), the problem is in AC0 in
data complexity (this is regarded as an appropriate measure in databases because
the database instance is much smaller than the query).

Returning to FO-rewritability of CQs q and DL TBoxes T , we observe that
if the problem ‘(T ,A) |= q?’ is at least NLogSpace-hard for data complexity
(that is, with fixed T and q), then q and T cannot be FO-rewritable. Indeed,
if there was an FO-rewriting then this problem could be solved in AC0. This
observation allows us to delimit the DL constructs that ruin FO-rewritability.

Example 2. A typical example of an NLogSpace-complete problem is the reach-
ability problem for directed graphs: given a directed graph G = (V,R) with ver-
tices V and arcs R and two distinguished vertices s, t ∈ V , decide whether there
is a directed path from s to t in G. We represent the input by means of the ABox

AG,s,t = {R(v1, v2) | (v1, v2) ∈ R } ∪ {A(s), B(t)}.

Consider now the following TBox and Boolean CQ

T = { ∃R.B v B }, q = ∃y (A(y) ∧B(y)).

It is readily seen that (T ,AG,s,t) |= q iff there is a path from s to t in G. As T and
q do not depend on G, s and t, the problem ‘(T ,AG,s,t) |= q?’ is NLogSpace-
hard for data complexity, and so q and T cannot be FO-rewritable.

In other words, TBoxes capable of computing the transitive closure of some
relations in ABoxes do not allow FO-rewritability.

Example 3. The path system accessibility problem is an example of a P-complete
problem [21]: given a finite set V of vertices and a relation E ⊆ V × V × V with
a set of source vertices S ⊆ V and a terminal vertex t ∈ V , decide whether t
is accessible, where all v ∈ S are accessible, and if (v1, v2, v) ∈ E, for accessible
inputs v1 and v2, then v is also accessible. The path system can be encoded by
an ABox A in the following way:

{A(v) | v ∈ S} ∪ { P1(e, v1), P2(e, v2), R(v, e) | e = (v1, v2, v) ∈ E }.

Consider now the TBox T and Boolean CQ q given by

T = { ∃P1.A u ∃P2.A v B, ∃R.B v A }, q = A(t).

It should be clear that (T ,A) |= A(v) iff v is accessible (and that (T ,A) |= B(e)
iff both inputs of e are accessible, that is, both belong to A). Therefore, the
answer to q is ‘yes’ iff t is accessible. Thus, the problem ‘(T ,A) |= q’ is P-hard
for data complexity, and so q and T cannot be FO-rewritable.

Note that the TBox T in Example 3 is formulated in the DL EL.

Example 4. A good example of an NP-complete problem is graph 3-colouring :
given an (undirected) graph G = (V,E), decide whether each of its vertices can
be painted in one of three given colours in such a way that no adjacent vertices
have the same colour. We represent the input graph G by means of the ABox

AG = {R(v1, v2) | {v1, v2} ∈ E }.

Consider now the Boolean CQ q = ∃y N(y) and the following TBox

T = {> v C1 t C2 t C3 } ∪ {Ci u Cj v N | 1 ≤ i < j ≤ 3 } ∪
{Ci u ∃R.Ci v N | 1 ≤ i ≤ 3 },

where the Ci are concept names representing the given three colours. It is not
hard to see that the answer to q over (T ,AG) is ‘no’ iff G is 3-colourable. It
follows that the problem ‘(T ,AG) |= q?’ is coNP-hard for data complexity, and
so q and T are not FO-rewritable.

The moral of this example is that to allow FO-rewritability, TBoxes should
not contain axioms with disjunctive information (which can be satisfied in es-
sentially different ways when applied to ABoxes). The TBox in Example 4 is
formulated in the DL ALC.

The data complexity of answering CQs over ontologies formulated in various
DLs has been intensively investigated since 2005; see, e.g., [12, 41, 11, 51, 4]. Thus,
answering CQs over EL ontologies is P-complete for data complexity, while for
ALC it is coNP-hard. One of the results of this research was the inclusion in the
current W3C standard Web Ontology Language OWL2 of a special sublanguage
(or profile) that is suitable for OBDA with databases and called OWL2QL. The
DLs underlying OWL2QL belong to the so-called DL-Lite family [11, 4]. Below,
we present OWL2QL in the DL parlance rather than the OWL2 syntax.

The language of OWL2QL contains individual names ai, concept names Ai,
and role names Pi (i = 1, 2, . . .). Roles R, basic concepts B and concepts C are
defined by the grammar:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ∃R,
C ::= B | ∃R.B

(here P−i is the inverse of Pi and ∃R is regarded as an abbreviation for ∃R.>).
An OWL2QL TBox, T , is a finite set of concept and role inclusions of the form

B v C, R1 v R2

and concept and role disjointness constraints of the form

B1 uB2 v ⊥, R1 uR2 v ⊥.

Apart from this, T may contain assertions stating that certain roles Pi are
reflexive and irreflexive. Note that symmetry and asymmetry of a role R can be
expressed in OWL2QL as, respectively,

R v R− and R uR− v ⊥.

An OWL2QL ABox, A, is a finite set of assertions of the form Ak(ai) and
Pk(ai, aj) and inequality constraints ai 6= aj for i 6= j. T and A together consti-
tute the knowledge base (KB) K = (T ,A).

It is to be noted that concepts of the form ∃R.B can only occur in the right-
hand side of concept inclusions in OWL2QL. An inclusion B′ v ∃R.B can be
regarded as an abbreviation for three inclusions:

B′ v ∃RB , ∃R−B v B and RB v R,

where RB is a fresh role name. Thus, inclusions of the form B′ v ∃R.B are
just convenient syntactic sugar. To simplify presentation, in the remainder of
this chapter we consider the sugar-free OWL2QL, assuming that every concept
inclusion is of the form B1 v B2, where both B1 and B2 are basic concepts.

Unlike standard DLs, OWL2 does not adopt the unique name assumption
(UNA, for short) according to which, for any interpretation I = (∆I , ·I) and
any distinct individual names ai and aj , we must have aIi 6= aIj . That is why
OWL2QL has inequality constraints ai 6= aj in its syntax.

Theorem 1 ([11, 4]). (i) The satisfiability problem for OWL2QL knowledge
bases is NLogSpace-complete for combined complexity and in AC0 for data
complexity.

(ii) CQs and OWL2QL TBoxes are FO-rewritable, and so CQ answering
over OWL2QL TBoxes is in AC0 for data complexity.

We will explain how one can compute FO-rewritings for CQs over OWL2QL
TBoxes in the next section. Meanwhile, we are going to illustrate the expressive
power of the language and discuss whether it can be extended without losing
FO-rewritability. The following example shows what can and what cannot be
represented in OWL2QL TBoxes. As the primary aim of OWL2QL is to facili-
tate OBDA with relational databases, our example is from the area of conceptual
data modelling.

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..1

1..*

boss

projectName: String

Project
3..*

1..1

1..1

worksOn

manages

1..*

{disjoint, complete}

Example 5. Consider the UML class diagram in the picture above representing
(part of) a company information system. According to the diagram, all managers
are employees and are partitioned into area managers and top managers. In
OWL2QL, we can write

Manager v Employee,

AreaManager v Manager , TopManager v Manager ,

AreaManager u TopManager v ⊥.

However, the covering constraint Manager v AreaManager t TopManager uses
union t, which is not allowed in OWL2QL. Each employee has two attributes,
empCode and salary, with integer values. Unlike OWL, here we do not distinguish
between abstract objects and data values (there are, however, approaches based

on concrete domains [5, 66]). Hence we model a datatype, such as Integer , by a
concept, and an attribute, such as employee’s salary, by a role:

Employee v ∃salary , ∃salary− v Integer .

However, the constraint ≥ 2salary v ⊥ (saying that the attribute salary is
functional) is not allowed. The attribute empCode with values in Integer is
represented in the same way. The binary relation worksOn has Employee as its
domain and Project as its range:

∃worksOn v Employee, ∃worksOn− v Project .

The relation boss with domain Employee and range Manager is treated similarly.
Of the constraints that each employee works on a project and has exactly one
boss, and a project must involve at least three employees, we can only capture
the following:

Employee v ∃worksOn, Employee v ∃boss.

Both cardinality constraints ≥ 2 boss v ⊥ and Project v≥ 3worksOn− require
a more powerful language. Finally, we have to say that a top manager manages
exactly one project and also works on that project, while a project is managed
by exactly one top manager. In OWL2QL, we can only write:

∃manages v TopManager , ∃manages− v Project ,

TopManager v ∃manages, Project v ∃manages−,

manages v worksOn,

but not ≥ 2manages v ⊥ and ≥ 2manages− v ⊥. We cannot, obviously, repre-
sent constraints such as CEO u (≥ 5 worksOn) u ∃manages v ⊥ (no CEO may
work on five projects and be a manager of one of them) either.

As we saw in the example above, some constructs that are important for con-
ceptual modelling are not available in OWL2QL. Can we add these constructs
to the language without destroying FO-rewritability?

Let us recall from Example 2 that we cannot extend OWL2QL with the
construct ∃R.B in the left-hand side of concept inclusions or with transitivity
constraints (stating that certain roles are interpreted by transitive relations).
Example 4 shows that t in the right-hand side can be dangerous. On the other
hand, we can safely use concept and role inclusions with u in the left-hand side:

B1 u · · · uBn v B, R1 u · · · uRm v R, for m,n ≥ 1.

Unqualified number restrictions ≥ k R, for k ≥ 2, are a bit trickier. As OWL2QL
does not adopt the UNA, an axiom such as (≥ 3R v ⊥) over an ABox containing
the atoms R(a, bi), for i ≥ 3, means that some of the bi must coincide, and
there are various ways to make it so by identifying some of the bi. In fact,

unqualified number restrictions added to OWL2QL make it coNP-hard for data
complexity; and even role functionality makes it P-hard for data complexity [4].

One can argue, however, that in the context of OBDA it is more natural and
important to adopt the UNA. Indeed, after all, databases do respect the UNA.
It turns out that if we stipulate that the UNA is respected in OWL2QL, then
unqualified number restrictions are ‘harmless’ provided that we do not use both
axioms (≥ k R v B), for k ≥ 2, and R′ v R in the same TBox (consult [4] for a
more precise condition).

The results discussed so far guarantee that if our ontology is formulated in a
DL with the help of such and such constructs then it can safely be used for OBDA
with databases. A different approach to understanding the phenomenon of FO-
rewritability has recently been suggested [49]: it attempts to classify all TBoxes
T in some master DL, say ALCI, according to the complexity of answering CQs
over T .

Finally, we note that another family of ontology languages suitable for OBDA
with databases has been designed by the datalog community. We refer the reader
to the recent papers [10, 9] for a survey. Connections of query answering via DL
ontologies with disjunctive datalog and constraint satisfaction problems have
been established in [7].

In the next section, we shall see how one can construct FO-rewritings of CQs
and OWL2QL TBoxes.

3 Tree-Witness Rewriting

A standard architecture of an OBDA system over relational data sources can be
represented as follows:

CQ q

TBox T

FO q′

mapping

SQL

data DABox A

+

rewriting

+

unfolding

+

ABox virtualisation

The user is given an OWL2QL TBox T and can formulate CQs q(x) in the
signature of T . The system rewrites q(x) and T into an FO-query q′(x) such
that (T ,A) |= q(a) iff A |= q′(a), for any ABox A and any tuple a of individuals
in A. The rewriting q′ is called a PE-rewriting if it is a PE-query and an NDL-
rewriting if it is an NDL-query.

The rewriting q′(x) is formulated in the signature of T and has to be further
transformed into the vocabulary of the data source D before being evaluated.
For instance, q′(x) can be unfolded into an SQL query by means of a mapping
M relating the signature of T to the vocabulary of D. We consider unfolding in
Section 6, but before that we assume the data to be given as an ABox (say, as
a universal table in a database or as a triple store) with a trivial mapping.

A number of different rewriting techniques have been proposed and imple-
mented for OWL2QL (PerfectRef [56], Presto/Prexto [64, 63], Rapid [16]) and
its extensions ([37], Nyaya [23], Requiem/Blackout [54, 55], Clipper [18]). In this
section, we discuss the tree-witness rewriting [33].

3.1 Canonical Model

All types of FO-rewritings are based on the fact that, if an OWL2QL KB
K = (T ,A) is consistent, then there is a special model of K, called a canonical
model and denoted CK, such that K |= q(a) iff CK |= q(a), for any CQ q(x)
and any a ⊆ ind(A). We have already seen one canonical model in Example 1.
Intuitively, the construction of CK is pretty straightforward: we start with A
and then apply to it recursively the axioms of T wherever possible. The only
nontrivial case is when we apply an axiom of the form B v ∃R to some w ∈ B.
Then either we already have an R-arrow starting from w, in which case we do
not have to do anything, or such an R-arrow does not exist, and then we create a
fresh individual, say wR, in the model under construction and draw an R-arrow
from w to wR.

Formally, let

[R] = { S | T |= R v S and T |= S v R }.

We write [R] ≤T [S] if T |= R v S; thus, ≤T is a partial order on the set of
equivalence classes [R], for roles R in T . For each [R], we introduce a witness
w[R] and define a generating relation ;K on the set of these witnesses together
with ind(A) by taking:

a;K w[R] if a ∈ ind(A) and [R] is ≤T -minimal such that K |= ∃R(a) and
K 6|= R(a, b) for any b ∈ ind(A);

w[S] ;K w[R] if [R] is ≤T -minimal with T |= ∃S− v ∃R and [S−] 6= [R].

A K-path is a finite sequence aw[R1] · · ·w[Rn], n ≥ 0, such that a ∈ ind(A) and,
if n > 0, then a;K w[R1] and w[Ri] ;K w[Ri+1], for i < n. Denote by tail(σ) the

last element in the path σ. The canonical model CK = (∆CK , ·CK) is defined by
taking ∆CK to be the set of all K-paths and setting:

aCK = a, for all a ∈ ind(A),

ACK = {a ∈ ind(A) | K |= A(a)} ∪
{σ · w[R] | T |= ∃R− v A}, for all concept names A,

P CK = {(a, b) ∈ ind(A)× ind(A) | R(a, b) ∈ A with [R] ≤T [P]} ∪
{(σ, σ · w[R]) | tail(σ) ;K w[R], [R] ≤T [P]} ∪
{(σ · w[R], σ) | tail(σ) ;K w[R], [R] ≤T [P−]}, for all role names P.

We call ind(A) the ABox part of CK, and ∆CK \ ind(A) the anonymous part.

Example 6. Consider the KB K = (T ,A), where

T = { A v ∃Q, ∃Q− v B, Q v S, ∃S− v ∃R, ∃R− v ∃R, B v ∃P },
A = { A(a), B(b), P (b, a), S(d, b) }.

The canonical model CK for K is depicted below:

A

b

B
d

S bw[R]

R

bw[R]w[R]

R

bw[R]w[R]w[R]

R

A
a

P

aw[Q]

Q,S

aw[Q]w[R]

R

aw[Q]w[P]

P

aw[Q]w[R]w[R]

R

Theorem 2. For any consistent OWL2QL KB K = (T ,A), any CQ q(x) and
any a ⊆ ind(A), we have K |= q(a) iff CK |= q(a).

Thus, to compute certain answers to q(x) over K = (T ,A), it is enough to
find answers to q(x) in the canonical model CK. To do this, we have to check
all possible homomorphisms from q to CK that map the answer variables x to
the ABox part of CK. More precisely, let us regard q(x) = ∃y ϕ(x,y) as simply
the set of atoms in ϕ, so we can write A(x) ∈ q, P (x, y) ∈ q, etc. If P (x, y) ∈ q
then we also write P−(y, x) ∈ q. By a homomorphism (or a match) from q(x)
to CK we understand any map h : x∪ y ∪ ind(A)→ ∆CK such that the following
conditions hold:

– h(a) = aCK , for every a ∈ ind(A),

– h(x) ∈ ind(A), for every x in x,

– if A(z) ∈ q then h(z) ∈ ACK ,

– if P (z, z′) ∈ q then (h(z), h(z′)) ∈ P CK .

In this case we write h : q → CK (a homomorphism is easily extended from
terms to the set of atoms of q). It is readily seen that CK |= q(a) iff there is a
homomorphism h : q → CK such that h(x) = a. We are now fully equipped to
introduce the tree-witness rewriting of a CQ q(x) and an OWL2QL TBox T .

3.2 PE-rewritings

Following the divide and conquer strategy, we first define our rewriting in two
simplified cases.

Flat TBoxes. To begin with, let us assume that the given TBox T is flat in
the sense that it contains no axioms of the form B v ∃R. This means that the
anonymous part of the canonical model CK, for any K = (T ,A), is empty, and
so we have to look for homomorphisms into to the ABox part of the canonical
model. Recall that the canonical model CK is constructed by extending A with
all the consequences of A with respect to T . For example, if P (a, b) ∈ A and
T contains ∃P v A, then A is extended with the atom A(a). So, to obtain
an FO-rewriting of q and T , it is enough to replace every atom α in q with a
disjunction of all atoms that imply α over T . More precisely, for any concept
name A and role name P , we take the formulas:

extA(u) =
∨

T |=A′vA

A′(u) ∨
∨

T |=∃RvA

∃v R(u, v), (1)

extP (u, v) =
∨

T |=RvP

R(u, v). (2)

We define a PE-query qext(x) as the result of replacing every atom A(u) in q
with extA(u) and every atom P (u, v) in q with extP (u, v). It is not hard to see
that, for any ABox A and any a ⊆ ind(A), we have CK |= q(a) iff A |= qext(a).
Thus, we arrive at the following:

Proposition 1. For any CQ q(x) and any flat OWL2QL TBox T , qext(x) is
a PE-rewriting of q and T .

Thus, in the flat case, it is really easy to compute PE-rewritings.

Example 7. Consider the CQ q(x) = ∃y
(
A(x) ∧ P (x, y)

)
and the flat TBox T

with the axioms

A′ v A, ∃P v A, ∃R′ v A′,
R− v P, R′ v P, S v R.

Then

extA(x) = A(x) ∨A′(x) ∨ ∃z P (x, z) ∨ ∃z R′(x, z) ∨ ∃z R(z, x) ∨ ∃z S(z, x),

extP (x, y) = P (x, y) ∨R(y, x) ∨R′(x, y) ∨ S(y, x).

Therefore, the PE-rewriting is as follows:

qext(x) = ∃y
[(
A(x)∨A′(x)∨∃z P (x, z)∨∃z R′(x, z)∨∃z R(z, x)∨∃z S(z, x)

)
∧(

P (x, y) ∨R(y, x) ∨R′(x, y) ∨ S(y, x)
)]
.

H-complete ABoxes. In the second simplified case, we assume that all the ABoxes
for which we have to construct an FO-rewriting of q(x) and (not necessarily flat)
T are H-complete with respect to T in the sense that

A(a) ∈ A if A′(a) ∈ A and T |= A′ v A,
A(a) ∈ A if R(a, b) ∈ A and T |= ∃R v A,

P (a, b) ∈ A if R(a, b) ∈ A and T |= R v P,

for all concept names A,A′, roles R and role names P . An FO-query q′(x) is an
FO-rewriting of q and T over H-complete ABoxes if, for any H-complete (with
respect to T) ABox A and any a ⊆ ind(A), we have (T ,A) |= q(a) iff A |= q′(a).
Note that if T is flat then q itself can clearly serve as a rewriting of q and T
over H-complete ABoxes. The following example illustrates the notions we need
in order to introduce the tree-witness rewriting over H-complete ABoxes.

Example 8. Consider an ontology T with the axioms

RA v ∃worksOn.Project, (3)

Project v ∃isManagedBy.Prof, (4)

worksOn− v involves, (5)

isManagedBy v involves (6)

and the CQ asking to find those who work with professors:

q(x) = ∃y, z
(
worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)

)
,

or graphically:

q(x)
x y

Prof
zworksOn involves

Observe that if the canonical model CK of K = (T ,A), for some ABoxA, contains
individuals a ∈ RACK and b ∈ ProjectCK , then CK must also contain the following
fragments:

a

RA Project

u

Prof

vworksOn

involves−

isManagedBy

involves

b

Project Prof

wisManagedBy

involves

Here the vertices ◦ are either named individuals from the ABox or anonymous
witnesses for the existential quantifiers (generated by the axioms (3) and (4)).
It follows then that a is an answer to q(x) if a ∈ RACK because we have the
following homomorphism from q to CK:

q(x)
x y

Prof
zworksOn involves

a
RA Project

u
Prof

v

worksOn

involves− isManagedBy

involves

Alternatively, if a is in both RACK and Prof CK , then we obtain the following
homomorphism:

q(x)
x

y
Prof

z

worksOn

involves

a
RA Project

u
Prof

vworksOn

involves− isManagedBy

involves

Another option is to map x and y to ABox individuals, a and b, and if b is in
ProjectCK , then the last two atoms of q can be mapped to the anonymous part:

q(x)
x y

Prof
zworksOn involves

b
Project

Prof
wisManagedBy

involves

Finally, all the atoms of q can be mapped to ABox individuals. The possible
ways of mapping parts of q to the anonymous part of the canonical model are
called tree witnesses. The tree-witnesses for q found above give the following
tree-witness rewriting qtw of q and T over H-complete ABoxes:

qtw(x) = ∃y, z
[(

worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)
)
∨

RA(x) ∨
(
RA(x) ∧ Prof(x)

)
∨
(
worksOn(x, y) ∧ Project(y)

)]
.

We now give a general definition of tree-witness rewriting over H-complete
ABoxes. For every role name R in T , we take two fresh concept names AR, AR−
and add to T the axioms AR ≡ ∃R and AR− ≡ ∃R−. We say that the resulting
TBox is in normal form and assume, without loss of generality, that every TBox
in this section is in normal form.

Let K = (T ,A). Every individual a ∈ ind(A) with K |= AR(a) is a root of
a (possibly infinite) subtree CRT (a) of CK, which may intersect another such tree
only on their common root a. Every CRT (a) is isomorphic to the canonical model
of (T , {AR(a)}).

a1 : AR1 a2 : AR1 , AR2
a3

CR1
T (a1) CR1

T (a2) CR2
T (a2)

P1, P
−
2 P2

Suppose now that there is a homomorphism h : q → CK. Then h splits q into
the subquery mapped by h to the ABox part and the subquery mapped to the
anonymous part of CK, which is a union of the trees CRT (a). We can think of a
rewriting of q and T as listing possible splits of q into such subqueries.

Suppose q′ ⊆ q and there is a homomorphism h : q′ → CRT (a), for some a,
such that h maps all answer variables in q′ to a. Let tr = h−1(a) and let ti be
the remaining set of (existentially quantified) variables in q′. Suppose ti 6= ∅. We
call the pair t = (tr, ti) a tree witness for q and T generated by R if the query q′

is a minimal subset of q such that, for any y ∈ ti, every atom in q containing y
belongs to q′. In this case, we denote q′ by qt. By definition, we have

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

Note that the same tree witness t = (tr, ti) can be generated by different roles
R. We denote the set of all such roles by Ωt and define the formula

twt =
∨
R∈Ωt

∃z
(
AR(z) ∧

∧
x∈tr

(x = z)
)
. (7)

(From a practical point of view, it is enough to take only AR for ≤T -maximal
roles R.)

Tree witnesses t and t′ are called consistent if qt ∩ qt′ = ∅. Each consistent
set Θ of tree witnesses (in which any pair of distinct tree witnesses is consistent)
determines a subquery qΘ of q that comprises all atoms of the qt, for t ∈ Θ.
The subquery qΘ is to be mapped to the CRT (a), whereas the remainder, q \ qΘ,
obtained by removing the atoms of qΘ from q, is mapped to ind(A). The following
PE-query qtw is called the tree-witness rewriting of q and T over H-complete
ABoxes:

qtw(x) =
∨

Θ consistent

∃y
(

(q \ qΘ) ∧
∧
t∈Θ

twt

)
. (8)

Example 9. Consider the KB K = (T , {A(a)}), where

T =
{
A v ∃R, A v ∃R−, AR ≡ ∃R, AR− ≡ ∃R−

}
,

and the CQ q(x1, x4) = {R(x1, y2), R(y3, y2), R(y3, x4) } shown in the picture
below alongside the canonical model CK (with AR and AR− omitted).

t1

t2
x1

y2

y3

x4

R R R

A
a

R−R

CK

There are two tree witnesses for q and T : t1 = (t1r , t
1
i) generated by R, and

t2 = (t2r , t
2
i) generated by R−, with

t1r = {x1, y3}, t1i = {y2}, twt1 = ∃z (AR(z) ∧ (x1 = z) ∧ (y3 = z)),

t2r = {y2, x4}, t2i = {y3}, twt2 = ∃z (AR−(z) ∧ (x4 = z) ∧ (y2 = z)).

We have qt1 = {R(x1, y2), R(y3, y2)} and qt2 = {R(y3, y2), R(y3, x4)}, so t1 and
t2 are inconsistent. Thus, we obtain the following tree-witness rewriting over
H-complete ABoxes:

qtw(x1, x4) = ∃y2, y3
[
(R(x1, y2) ∧R(y3, y2) ∧R(y3, x4)) ∨

(R(y3, x4) ∧ twt1) ∨ (R(x1, y2) ∧ twt2)
]
.

Theorem 3 ([33]). For any ABox A that is H-complete with respect to T and
any a ⊆ ind(A), we have C(T ,A) |= q(a) iff A |= qtw(a).

Tree-witness rewriting. Finally, to obtain an FO-rewriting of q(x) and T over
arbitrary ABoxes, it is enough to take the tree-witness rewriting qtw over H-
complete ABoxes and replace every atom α(u) in it with extα(u).

3.3 NDL-rewritings

Next, we show how the tree-witness rewriting can be represented as an NDL-
query. We remind the reader that a datalog program, Π, is a finite set of Horn
clauses (or rules) of the form

∀x (γ1 ∧ · · · ∧ γm → γ0),

where each γi is an atom P (x1, . . . , xl) with xi ∈ x (see e.g., [1]). The atom γ0 is
called the head of the clause, and γ1, . . . , γm its body. In the datalog literature, a
standard agreement is to omit the universal quantifiers, replace ∧ with a comma,
and put the head before the body; thus, the rule above is written as

γ0 ← γ1, . . . , γm.

All variables occurring in the head must also occur in the body. We will also
assume that the heads do not contain constant symbols. A predicate P depends
on a predicate Q in Π if Π contains a clause whose head is P and whose body
contains Q. Π is called nonrecursive if this dependence relation for Π is acyclic.
For example, we can define the ext predicates (1) and (2) by a nonrecursive
datalog program with the following rules:

extA(x)← A′(x), for a concept name A with T |= A′ v A, (9)

extA(x)← R(x, y), for a concept name A with T |= ∃R v A, (10)

extP (x, y)← R(x, y), for a role name P with T |= R v P. (11)

(Note that ∀x, y (R(x, y)→ extA(x)) is equivalent to ∀x (∃y R(x, y)→ extA(x)).)
Let q(x) be a CQ and T an OWL2QL TBox. For a nonrecursive datalog

program Π and an atom q′(x), we say that (Π, q′) is an NDL-rewriting of q(x)
and T (over H-complete ABoxes) in case (T ,A) |= q(a) iff Π,A |= q′(a), for any
(H-complete) ABox A and any a ⊆ ind(A). An NDL-rewriting over arbitrary
ABoxes can clearly be obtained from an NDL-rewriting over H-complete ABoxes
by plugging in the ext rules above (at the price of a polynomial blowup).

Let us see how the tree-witness PE-rewriting (8) will look like if we represent
it as an NDL-rewriting over H-complete ABoxes. Suppose t = (tr, ti) is a tree
witness for q and T with tr = {t1, . . . , tk}, k ≥ 0. We associate with t a k-ary
predicate twt defined by the following set of rules:

twt(x, . . . , x)← AR(x), for R ∈ Ωt. (12)

If tr 6= ∅ then (12) makes all the arguments of twt equal; otherwise, tr = ∅ and
twt is a propositional variable, with x being existentially quantified in the body
of (12). As the arguments of twt play identical roles, we can write twt(tr) without

specifying any order on the set tr. We obtain an NDL-rewriting (Π, qtw(x)) of
q(x) and T over H-complete ABoxes by taking Π to be the nonrecursive datalog
program containing the rules of the form (12) together with the rules

qtw(x)← (q \ qΘ), twt1(t1r), . . . , twtk(tkr), for consistent Θ = {t1r , . . . , tkr }. (13)

Example 10. Let q and T be the same as in Example 9. Denote by Π the datalog
program given below:

qtw(x1, x4) ← R(x1, y2), R(y3, y2), R(y3, x4),

qtw(x1, x4) ← R(y3, x4), twt1(x1, y3),

qtw(x1, x4) ← R(x1, y2), twt2(y2, x4),

twt1(x, x) ← AR(x),

twt2(x, x) ← AR−(x).

Then (Π, qtw(x1, x4)) is an NDL-rewriting of q and T over H-complete ABoxes.
To obtain an NDL-rewriting over arbitrary ABoxes, we replace all predicates
in the rules above with their ext counterparts and add the appropriate set of
rules (9)–(11).

4 Long Rewritings, Short Rewritings

The attractive idea of OBDA with databases relies upon the empirical fact that
answering CQs in RDBMSs is usually very efficient in practice. A complexity-
theoretic justification for this fact is as follows. In general, to evaluate a Boolean
CQ q with existentially quantified variables y over a database instance D, we
require—in the worst case—time O(|q| · |D||y|), where |q| is the number of atoms
in q. The problem of CQ evaluation is W [1]-complete [53], and so can be really
hard for RDBMSs if the input queries are large. However, if q is tree-shaped (of
bounded treewidth, to be more precise)—which is often the case in practice—it
can be evaluated in polynomial time, poly(|q|, |D|) in symbols [36, 15, 26].

In the context of OBDA, an RDBMS is evaluating not the original CQ q
but an FO-rewriting of q and the given OWL2QL TBox T . All standard FO-
rewritings are of size O((|q| · |T |)|q|) in the worst case. For example, the size of
the tree-witness rewriting (8) is |qtw| = O(|Ξ| · |q| · |T |), where Ξ is the collection
of all consistent sets of tree witnesses for q and T (the |T | factor comes from
the twt-formulas and multiple roles that may generate a tree witness). Thus,
in principle, if there are many consistent sets of tree witnesses for q and T ,
the rewriting qtw may become prohibitively large for RDBMSs. Recall also that
qtw is a rewriting over H-complete ABoxes; to obtain a rewriting over arbitrary
ABoxes, we have to replace each atom α in qtw with the respective extα. This
will add another factor |T | to the size of qtw. RDBMSs are known to be most
efficient for evaluating CQs and unions of CQs (UCQs for short) of reasonable
size. But transforming a PE-rewriting to the UCQ form can cause an exponential
blowup in the size of the query (consider, for example, the PE-rewriting qext(x)

in Example 7 and imagine that the original CQ q contains many atoms). These
observations put forward the followings questions:

– What is the overhead of answering CQs via OWL2QL ontologies compared
to standard database query answering in the worst case?

– What is the size of FO-rewritings of CQs and OWL2QL ontologies in the
worst case?

– Can rewritings of one type (say, FO) be substantially shorter than rewritings
of another type (say, PE)?

– Are there interesting and useful sufficient conditions on CQs and ontologies
under which rewritings are short?

In this section, we give an overview of the answers to the above questions ob-
tained so far [32, 35, 33, 24, 31].

In general, succinctness problems such as the second and third questions
above can be very hard to solve. Perhaps one of the most interesting and im-
portant examples is succinctness of various formalisms for computing Boolean
functions such as propositional formulas, branching programs and circuits, which
has been investigated since Shannon’s seminal work of 1949 [67], where he sug-
gested the size of the smallest circuit computing a Boolean function as a measure
of the complexity of that function.

We remind the reader (see, e.g., [3, 30] for more details) that an n-ary Boolean
function, for n ≥ 1, is a function f : {0, 1}n → {0, 1}. An n-input Boolean circuit,
C, for n ≥ 1, is a directed acyclic graph with n sources (inputs) and one sink
(output). Every non-source vertex of C is called a gate; it is labelled with either
∧ or ∨, in which case it has two incoming edges, or with ¬, in which case there
is one incoming edge. The number of vertices in C will be denoted by |C|. We
think of a Boolean formula as a circuit in which every gate has at most one
outgoing edge. If x ∈ {0, 1}n, then C(x) is the output of C on input x. We say
that C computes a Boolean function f if C(x) = f(x), for every x ∈ {0, 1}n.

In the circuit complexity theory, we are interested in families of Boolean func-
tions, that is, sequences f1, f2, . . . , where each fn is an n-ary Boolean function.
For example, we can consider the family Cliquen,k(e) of Boolean functions of
n(n−1)/2 variables ejj′ , 1 ≤ j < j′ ≤ n, that return 1 iff the graph with vertices
{1, . . . , n} and edges {{j, j′} | ejj′ = 1} contains a k-clique, for some fixed k.

Given a function T : N→ N, by a T -size family of circuits we mean a sequence
C1,C2, . . . , where each Cn is an n-input Boolean circuits of size |Cn| ≤ T (n).
Every family fn of Boolean functions can clearly be computed by circuits of size
n ·2n (take disjunctive normal forms representing the fn). The class of languages
that are decidable by families of polynomial-size circuits is denoted by P/poly.
It is known that P $ P/poly. Thus, one might hope to prove that P 6= NP by
showing that NP 6⊆ P/poly. In other words, to crack one of the most important
problems in computer science and mathematics,1 it is enough to find a family of
Boolean functions in NP that cannot be computed by a polynomial-size family

1 It is actually one of the seven Millennium Prize Problems worth of $1 000 000 each;
consult www.claymath.org/millennium.

of circuits. This does not look like a particularly hard problem! After all, it
has been known since 1949 that the majority of Boolean functions can only be
computed by exponential-size circuits. Yet, so far no one has managed to find a
concrete family of functions in NP that need circuits with more than 4.5n−o(n)
gates [42].

Investigating restricted classes of Boolean circuits has proved to be much
more successful. The class that is relevant in the context of PE-rewritings con-
sists of monotone Boolean functions, that is, those computable by monotone
circuits with only ∧- and ∨-gates. For example, the function Cliquen,k(e) is
monotone. As Cliquen,k is NP-complete, the question whether Cliquen,k can
be computed by polynomial-size circuits is equivalent to the open NP ⊆ P/poly
problem. A series of papers, started by Razborov’s [59], gave an exponential

lower bound for the size of monotone circuits computing Cliquen,k: 2Ω(
√
k) for

k ≤ 1
4 (n/ log n)2/3 [2]. For monotone formulas, an even better lower bound was

obtained: 2Ω(k) for k = 2n/3 [58]. It follows that, if we assume NP 6⊆ P/poly,
then no polynomial-size family of (not necessarily monotone) circuits can com-
pute Cliquen,k.

A few other interesting examples of monotone functions have also been found.
Thus, [57] gave a family of monotone Boolean functions that can be computed
by polynomial-size monotone circuits, but any monotone formulas computing
this family are of size 2n

ε

, for some ε > 0. Or there is a family of monotone
functions [58, 8] showing that non-monotone Boolean circuits are in general su-
perpolynomially more succinct than monotone circuits.

Boolean circuits

monotone Boolean circuits

monotone Boolean formulas

superpolynomially
more succinct

exponentially
more succinct

Let us now return to rewritings of CQs and OWL2QL TBoxes. As we
shall see later on in this section, there is a close correspondence between (ar-
bitrary) Boolean formulas and FO-rewritings, monotone Boolean formulas and
PE-rewritings, and between monotone Boolean circuits and NDL-rewritings:

Boolean formulas ≈ FO-rewritings
monotone Boolean circuits ≈ NDL-rewritings

monotone Boolean formulas ≈ PE-rewritings

To begin with, we associate with the tree-witness (PE- or NDL-) rewritings
qtw certain monotone Boolean functions that will be called hypergraph functions.

A hypergraph H = (V,E) is given by its vertices v ∈ V and hyperedges e ∈ E,
where E ⊆ 2V . We call a subset X ⊆ E independent if e∩e′ = ∅, for any distinct
e, e′ ∈ X. The set of vertices that occur in the hyperedges of X is denoted by VX .

With each vertex v ∈ V and each hyperedge e ∈ E we associate propositional
variables pv and pe, respectively. The hypergraph function fH for a hypergraph
H is computed by the Boolean formula

fH =
∨

X independent

(∧
v∈V \VX

pv ∧
∧
e∈X

pe

)
. (14)

This definition is clearly inspired by (8). The PE-rewriting qtw of q and T defines
a hypergraph whose vertices are the atoms of q and hyperedges are the sets qt, for
tree witnesses t for q and T . We denote this hypergraph by HqT . The formula (14)
defining fHq

T
is basically the same as the rewriting (8) with the atoms S(z) in

q and tree witness formulas twt treated as propositional variables. We denote
these variables by pS(z) and pt (rather than pv and pe), respectively.

Example 11. Consider again the CQ q and TBox T from Example 9. The hy-
pergraph HqT and its hypergraph function fHq

T
are shown below:

R(x1, y2)

R(y3, y2)

R(y3, x4)

t1 t2

fHq
T

= (pR(x1,y2) ∧ pR(y3,y2) ∧ pR(y3,x4)) ∨

(pR(y3,x4) ∧ pt1) ∨ (pR(x1,y2) ∧ pt2).

Suppose now that the hypergraph function fHq
T

is computed by some Boolean
formula χHq

T
. Consider the FO-formula χ̂Hq

T
obtained by replacing each pS(z) in

χHq
T

with S(z), each pt with twt, and adding the prefix ∃y. By comparing (14)

and (8), we see that the resulting FO-formula is a rewriting of q and T over
H-complete ABoxes. A monotone circuit computing fHq

T
can be converted to an

NDL-rewriting of q and T over H-complete ABoxes. This gives us the following:

Theorem 4. (i) If the function fHq
T

is computed by a Boolean formula χHq
T

,
then χ̂Hq

T
is an FO-rewriting of q and T over H-complete ABoxes.

(ii) If fHq
T

is computed by a monotone Boolean circuit C, then there is an

NDL-rewriting of q and T over H-complete ABoxes of size O(|C| · (|q|+ |T |)).

Thus, the problem of constructing short rewritings is reducible to the prob-
lem of finding short Boolean formulas or circuits computing the hypergraph
functions. We call a hypergraph H representable if there are a CQ q and an
OWL2QL TBox T such that H is isomorphic to HqT .

Let us consider first hypergraphs of degree ≤ 2, in which every vertex belongs
to at most two hyperedges. There is a striking correspondence between such
hypergraphs and OWL2QL TBoxes T of depth one, which cannot have chains
of more than 1 point in the anonymous part of their canonical models (more
precisely, whenever aw[R1] · · ·w[Rn] is an element of some canonical model for T
then n ≤ 1). As observed above, PE-rewritings of CQs and flat TBoxes (that is,
TBoxes of depth 0) can always be made of polynomial size.

Theorem 5 ([31]). (i) If q is a CQ and T a TBox of depth one, then the
hypergraph HqT is of degree ≤ 2.

(ii) The number of distinct tree witnesses for q and T does not exceed the
number of variables in q.

(iii) Any hypergraph H of degree ≤ 2 is representable by means of some CQ
and TBox of depth one.

Here we only consider (iii). Suppose that H = (V,E) is a hypergraph of
degree ≤ 2. To simplify notation, we assume that any vertex in H belongs to
exactly 2 hyperedges, so H comes with two fixed maps i1, i2 : V → E such that
i1(v) 6= i2(v), v ∈ i1(v) and v ∈ i2(v), for any v ∈ V . For every e ∈ E, we take
an individual variable ze and denote by z the vector of all such variables. For
every v ∈ V , we take a role name Rv and define a Boolean CQ qH by taking:

qH = ∃z
∧
v∈V

Rv(zi1(v), zi2(v)).

For every hyperedge e ∈ E, let Ae be a concept name and Se a role name.
Consider the TBox TH with the following inclusions, for e ∈ E:

Ae ≡ ∃Se,
Se v R−v , for v ∈ V with i1(v) = e,

Se v Rv, for v ∈ V with i2(v) = e.

We claim that the hypergraph H is isomorphic to H
qH
TH and illustrate the proof

by an example.

Example 12. Let H = (V,E) with V = {v1, v2, v3, v4} and E = {e1, e2, e3},
where e1 = {v1, v2, v3}, e2 = {v3, v4}, e3 = {v1, v2, v4}. Suppose also that

i1 : v1 7→ e1, v2 7→ e3, v3 7→ e1, v4 7→ e2,

i2 : v1 7→ e3, v2 7→ e1, v3 7→ e2, v4 7→ e3.

The hypergraph H is shown below, where each vertex vi is represented by an
edge, i1(vi) is indicated by the circle-shaped end of the edge and i2(vi) by the
diamond-shaped one; the hyperedges ej are shown as large grey squares:

e2

e1

e3

v1
v2

v4

v3

hy
pe

rg
ra

ph
H

tree witness te1

ze1

ze2 , ze3

Ae1

Se1R
− v 3

R
v
2

R
− v 1

Then

qH = ∃ze1ze2ze3
(
Rv1(ze1 , ze3) ∧Rv2(ze3 , ze1) ∧Rv3(ze1 , ze2) ∧Rv4(ze2 , ze3)

)
and the TBox TH contains the following inclusions:

Ae1 ≡ ∃Se1 , Se1 v R−v1 , Se1 v Rv2 , Se1 v R−v3 ,
Ae2 ≡ ∃Se2 , Se2 v Rv3 , Se2 v R−v4 ,
Ae3 ≡ ∃Se3 , Se3 v Rv1 , Se3 v R−v2 , Se3 v Rv4 .

The canonical model CSe1

TH (a) is shown on the right-hand side of the picture above.
We observe now that each variable ze uniquely determines the tree witness te

with qte = {Rv(zi1(v), zi2(v)) | v ∈ e}; qte and qte′ are consistent iff e∩ e′ 6= ∅. It
follows that H is isomorphic to H

qH
TH .

It turns out that answering the CQ qH over TH and certain single-individual
ABoxes amounts to computing the Boolean function fH . Let H = (V,E) be a
hypergraph of degree 2 with V = {v1, . . . , vn} and E = {e1, . . . , em}. We denote
by α(vi) the i-th component of α ∈ {0, 1}n and by β(ej) the j-th component of
β ∈ {0, 1}m. Define an ABox Aα,β with a single individual a by taking

Aα,β = {Rvi(a, a) | α(vi) = 1} ∪ {Aej (a) | β(ej) = 1}.

Theorem 6 ([31]). Let H = (V,E) be a hypergraph of degree 2. Then, for any
tuples α ∈ {0, 1}|V | and β ∈ {0, 1}|E|,

(TH ,Aα,β) |= qH iff fH(α,β) = 1.

What is so special about hypergraphs of degree ≤ 2? First, one can show
that all hypergraph functions of degree ≤ 2 can be computed by polynomial-
size monotone Boolean circuits—in fact, by polynomial-size monotone nonde-
terministic branching programs (NBPs), also known as switching-and-rectifier
networks [30]. Moreover, the converse also holds: if a family of Boolean func-
tions is computable by polynomial-size NBPs then it can be represented by a
family of polynomial-size hypergraphs of degree ≤ 2. As a consequence of this
fact, we obtain a positive result on the size of NDL-rewritings:

Theorem 7 ([31]). For any CQ q and any TBox T of depth one, there is an
NDL-rewriting of q and T of polynomial size.

On the ‘negative’ side, there are families of Boolean functions fn that are
computable by polynomial-size monotone NBPs, but any monotone Boolean
formulas computing fn are of superpolynomial size, at least 2Ω(log2 n), to be
more precise. For example, Grigni and Sipser [25] consider functions that take
the adjacency matrix of a directed graph of n vertices with a distinguished
vertex s as input and return 1 iff there is a directed path from s to some vertex of
outdegree at least two. Can we use this lower bound to establish a corresponding

superpolynomial lower bound for the size of PE-rewritings? The answer naturally
depends on what syntactical means we can use in our rewritings.

Let us assume first that the FO- and NDL-rewritings of CQs q and OWL2QL
TBoxes T can contain equality (=), any non-predifined predicates and only
those constant symbols that occur in q. Thus, we do not allow new constants
and various built-in predicates in our rewritings. Such rewritings are sometimes
called pure.

As any NBP corresponds to a polynomial-size hypergraph of degree ≤ 2, we
obtain a sequence Hn of polynomial hypergraphs of degree 2 such that fn = fHn .
We take the sequence of CQs qn and TBoxes Tn associated with the hypergraphs
of degree ≤ 2 for the sequence fn of Boolean functions chosen above. We show
that any pure PE-rewriting q′n of qn and Tn can be transformed into a monotone
Boolean formula χn computing fn and having size ≤ |q′n|.

To define χn, we eliminate the quantifiers in q′n in the following way: take a
constant a and replace every subformula of the form ∃xψ(x) in q′n with ψ(a),
repeating this operation as long as possible. The resulting formula q′′n is built
from atoms of the form Ae(a), Rv(a, a) and Se(a, a) using ∧ and ∨. For every
ABox A with a single individual a, we have (Tn,A) |= qn iff A |= q′′n. Let χn be
the result of replacing Se(a, a) in q′′n with ⊥, Ae(a) with pe and Rv(a, a) with
pv. Clearly, |χn| ≤ |q′n|.

By the definition of Aα,β and Theorem 6, we then obtain:

χn(α,β) = 1 iff Aα,β |= q′′n iff Aα,β |= q′n iff

(Tn,Aα,β) |= qn iff fHn(α,β).

It remains to recall that |q′n| ≥ |χn| ≥ 2Ω(log2 n). This gives us the first super-
polynomial lower bound for the size of pure PE-rewritings.

Theorem 8 ([31]). There is a sequence of CQs qn and TBoxes Tn of depth
one such that any pure PE-rewriting of qn and Tn (over H-complete ABoxes) is

of size ≥ 2Ω(log2 n).

Why are the PE-rewritings in Theorem 8 so large? Let us have another look
at the tree-witness rewriting (8) of q and T . Its size depends on the number of
distinct consistent sets of tree witnesses for q and T . In view of Theorem 5 (ii),
qn and Tn in Theorem 8 have a polynomial number of tree witnesses. However,
many of them are not consistent with each other (see Example 12), which makes
it impossible to simplify (8) to a polynomial-size PE-rewriting.

For TBoxes of depth two, we can obtain an even stronger ‘negative’ result:

Theorem 9 ([31]). There exists a sequence of CQs qn and TBoxes Tn of depth
two, such that any pure PE- and NDL-rewriting of qn and Tn is of exponential
size, while any FO-rewriting of qn and Tn is of superpolynomial size (unless
NP ⊆ P/poly).

This theorem can be proved by showing that the hypergraphsHn,k computing

Cliquen,k are representable as subgraphs of H
qn,k

Tn,k
for suitable qn,k and Tn,k,

and then applying quantifier elimination over single-individual ABoxes as above.

Using TBoxes of unbounded depth, one can show that pure FO-rewritings
can be superpolynomially more succinct than pure PE-rewritings:

Theorem 10 ([35]). There is a sequence of CQs qn of size O(n) and TBoxes Tn
of size O(n) that has polynomial-size FO-rewritings, but its pure PE-rewritings

are of size ≥ 2Ω(2log
1/2 n).

We can also use the machinery developed above to understand the overhead of
answering CQs via OWL2QL ontologies compared to standard database query
answering:

Theorem 11 ([32]). There is a sequence of CQs qn and OWL2QL TBoxes
Tn such that the problem ‘A |= qn?’ is in P, while the problem ‘(Tn,A) |= qn?’
is NP-hard (for combined complexity).

On the other hand, answering tree-shaped CQs (or CQs of bounded treewidth)
over TBoxes without role inclusions can be done in polynomial time [6]. On the
other hand, a sufficient condition on CQs and OWL2QL TBoxes that guarantees
the existence of polynomial-size pure PE-rewritings can be found in [33].

We conclude this section with a few remarks on ‘impure’ rewritings that can
use new constant symbols not occurring in the given CQ. To prove the superpoly-
nomial and exponential lower bounds on the size of pure rewritings above, we
established a connection between monotone circuits for Boolean functions and
rewritings for certain CQs and OWL2QL TBoxes. In fact, this connection also
suggests a way of making rewritings substantially shorter. Indeed, recall that al-
though no monotone Boolean circuit of polynomial size can compute Cliquen,k,
we can construct such a circuit if we are allowed to use advice inputs. Indeed,
for any family f1, f2, . . . of Boolean functions in NP, there exist polynomials p
and q and, for each n ≥ 1, a Boolean circuit Cn with n+ p(n) inputs such that
|Cn| ≤ q(n) and, for any α ∈ {0, 1}n, we have

fn(α) = 1 iff Cn(α,β) = 1, for some β ∈ {0, 1}p(n).

The additional p(n) inputs for β in the Cn are called advice inputs. These advice
inputs make Boolean circuits nondeterministic (in the sense that β is a guess)
and, as a result, exponentially more succinct—in the same way as nondetermin-
istic automata are exponentially more succinct than deterministic ones [50]. To
introduce corresponding nondeterministic guesses into query rewritings, we can
use additional existentially quantified variables—provided that the domain of
quantification contains at least two elements. For this purpose, we can assume
that all relevant ABoxes contain two fixed individuals (among others).

Theorem 12 ([24, 35]). For any CQ q and OWL2QL TBox T , there are im-
pure polynomial-size PE- and NDL-rewritings of q and T over ABoxes contain-
ing two fixed constants; the rewritings use O(|q|) additional existential quanti-
fiers.

This polynomial-size impure rewriting hides the superpolynomial and expo-
nential blowups in the case of pure rewritings behind the additional existential
quantification over the newly introduced constants.

5 The Combined Approach

A different approach to OBDA has been suggested in [46, 38, 39]. It is known
as the combined approach and aims at scenarios where one can manipulate the
database. Suppose we are given a CQ q and a TBox T , and we want to query
an ABox A. So far, we have first constructed an FO-rewriting q′ of q and T ,
independently of A, and then used an RDBMS to evaluate q′ over A. The ad-
vantage of this ‘classical’ approach is that it works even when we cannot modify
the data in the data source. However, as we saw above, the rewriting q′ can be
too large for RDBMSs to cope.

But let us assume that we can manipulate the given ABox A. In this case, a
natural question would be: why cannot we first apply T to A and then evaluate
q over the resulting canonical model? However, many OWL2QL TBoxes are of
infinite depth, and so the canonical model of K = (T ,A) can be infinite; even if
T is of bounded depth, the canonical model of K can be of exponential size.

Example 13. Consider the OWL2QL TBox

T = { A v ∃T, ∃T− v B, B v ∃R, ∃R− v A }.

The infinite canonical model of CK, for K = (T , {A(a)}), looks as follows:

CK
A

a

B

aw[T]

T A

aw[P]w[R]

R B

aw[T]w[R]w[T]

T

But what if we fold the infinite chain of alternating R- and T -arrows in a simple
cycle such as in the picture below?

GK
A

a

B

w[T]T

A

w[R]
R

T

Note that GK is still a model of K. Now, consider the CQ

q(x) = ∃y, z (T (x, y) ∧R(y, z) ∧ T (z, y)).

Clearly, we have GK |= q(a), but CK 6|= q(a). Observe, however, that to get rid
of this spurious answer a, it is enough to slightly modify q by adding to it the
‘filtering conditions’ (z 6= w[R]), (y 6= w[R−]), (y 6= w[T]) and (z 6= w[T−]) as
conjuncts (in the scope of ∃y, z). Indeed, it is not hard to see that q and T have
no tree witnesses, and so the variables y and z cannot be mapped anywhere in
the anonymous part of the canonical model.

It turns out that this idea works perfectly well at least for the case when
OWL2QL TBoxes do not contain role inclusions. Suppose T is such a TBox

and A an arbitrary ABox. We define the generating model GK of K = (T ,A) by
taking:

∆GK = {tail(σ) | σ ∈ ∆CK},
aGK = a, for all a ∈ ind(A),

AGK = {tail(σ) | σ ∈ ACK}, for all concept names A,

PGK = {(tail(σ), tail(σ′)) | (σ, σ′) ∈ P CK}, for all role names P,

where CK is the standard canonical model of K. It is not hard to see that the
map tail : ∆CK → ∆GK is a homomorphism from CK onto GK, and CK can be
viewed as the ‘unraveling’ of GK. The generating model GK can be constructed
in polynomial time in |K|. As positive existential queries are preserved under
homomorphisms, we obtain:

Theorem 13 ([38]). For any consistent OWL2QL KB K = (T ,A), which does
not contain role inclusion axioms, any CQ q(x) and any tuple a ⊆ ind(A), if
CK |= q(a) then GK |= q(a) (but not the other way round).

Suppose now that we are given a CQ q(x) = ∃y ϕ(x,y). Our aim is to rewrite
q to an FO-query q†(x) in such a way that CK |= q(a) iff GK |= q†(a), for any
tuple a ⊆ ind(A), and the size of q† is polynomial in the size of q and T . (Note
that the rewriting given in [38, 39] does not depend on T because of a different
definition of tree witness.) We define the rewriting q† as a conjunction

q†(x) = ∃y (ϕ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3),

where ϕ1, ϕ2 and ϕ3 are Boolean combinations of equalities t1 = t2, and each
of the ti is either a term in q or a constant of the form w[R]. The purpose of the
conjunct

ϕ1 =
∧
x∈x

∧
R a role in T

(x 6= w[R])

is to ensure that the answer variables x receive their values from ind(A) only.
The conjunct ϕ2 implements the matching dictated by the tree witnesses.

Suppose t = (tr, ti) is a tree witness for q and T generated by R. If R(t, t′) ∈ q
and t′ is mapped to w[R], then all the variables in tr are to be mapped to the
same point as t:

ϕ2 =
∧

R(t,t′)∈q
there is a tree witness t with R ∈ Ωt

(
(t′ = w[R])→

∧
s∈tr

(s = t)
)
.

If there is no tree witness t generated by R and such that R(t, t′) ∈ qt, then t′

cannot be mapped to the witness w[R] at all. This is ensured by the conjunct

ϕ3 =
∧

R(t,t′)∈q
no tree witness t with R ∈ Ωt exists

(
t′ 6= w[R]

)
.

Theorem 14 ([38]). For any consistent OWL2QL KB K = (T ,A) containing
no role inclusion axioms, any CQ q(x) and any tuple a ⊆ ind(A), we have
CK |= q(a) iff GK |= q†(a).

The rewriting q† can be computed in polynomial time in q and T and is of
size O(|q| · |T |).

A slightly different idea was proposed in [48] to extend the combined approach
to unrestricted OWL2QL TBoxes. As before, given a CQ q(x), an OWL2QL
TBox T and an ABox A, we first construct a polynomial-size interpretation
G′K representing the (possibly infinite) canonical model CK (in fact, G′K is more
involved than GK). Then we use an RDBMS to compute the answers to the
original CQ q(x) over G′K stored in the RDBMS. As we saw above, some of
the answers can be spurious. To eliminate them, instead of ϕ1, ϕ2 and ϕ3, one
can use a ‘filtering procedure’ that is installed as a user-defined function in the
RDBMS. This procedure takes as input a match of the query in G′K and returns
‘false’ if this match is spurious (that is, cannot be realised in the real canonical
model CK) and ‘true’ otherwise. The filtering procedure runs in polynomial time,
although it may have to run exponentially many times (to check exponentially
many matches for the same answer tuple) in the worst case.

6 OBDA with Ontop

In this final section, we consider the architecture of the OBDA system Ontop
(ontop.inf.unibz.it) implemented at the Free University of Bozen-Bolzano
and available as a plugin for the ontology editor Protégé 4, a SPARQL end-
point and OWLAPI and Sesame libraries.

In OBDA with databases, the data comes from a relational database rather
than an ABox. From a logical point of view, a database schema [1] contains
predicate symbols (with their arity) for both stored database relations (also
known as tables) and views (with their definitions in terms of stored relations)
as well as a set Σ of integrity constraints (in the form of functional and inclusion
dependencies; for example, primary and foreign keys). Any instance I of the
database schema must satisfy its integrity constraints Σ.

The vocabularies of the database schema and the given TBox are linked
together by means of mappings produced by a domain expert or extracted
(semi)automatically. There are different known types of mappings: LAV (local-
as-views), GAV (global-as-views), GLAV, etc.; consult, e.g., [43] for an overview.
Here we concentrate on GAV mappings because they guarantee low complexity
of query answering (in what follows we call them simply mappings). A mapping,
M, is a set of rules of the form

S(x)← ϕ(x, z),

where S is a concept or role name in the ontology and ϕ(x, z) a conjunction
of atoms with database relations (both stored and views) and a filter, that is,
a Boolean combination of built-in predicates such as = and <. (Note that, by

including views in the schema, we can express any SQL query in mappings, which
is important from the practical point of view.)

Given a mapping M from a database schema to an OWL2QL TBox T and
an instance I of this schema, the ground atoms

S(a), for S(x)← ϕ(x, z) in M and I |= ∃z ϕ(a, z),

comprise the ABox, AI,M, which is called the virtual ABox for M over I [61]
(this ABox is just a convenient presentational tool and does not have to be
materialised by the system). We can now define certain answers to a CQ q over
T linked by M to I as certain answers to q over (T ,AI,M).

As an illustration, we consider a (simplified) database IMDb (www.imdb.
com/interfaces), whose schema contains relations title[m, t, y] with information
about movies (ID, title, production year), and castinfo[p,m, r] with information
about movie casts (person ID, movie ID, person role). Thus, a data instance I
of this schema may contain the tables

title

m t y

728 ‘Django Unchained’ 2012

castinfo

p m r

n37 728 1
n38 728 1

The users are not supposed to know the structure of the database. Instead,
they are given an ontology, say MO (www.movieontology.org), describing the
application domain in terms of, for example, concepts mo:Movie and mo:Person,
and roles mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− v mo:Person.

A mappingM that relates the ontology terms to the database schema contains,
for example, the following rules:

mo:Movie(m)← title(m, t, y), (15)

mo:title(m, t)← title(m, t, y), (16)

mo:year(m, y)← title(m, t, y), (17)

mo:cast(m, p)← castinfo(p,m, r), (18)

mo:Person(p)← castinfo(p,m, r). (19)

Then the virtual ABox AI,M for M over I consists of the ground atoms

mo:Movie(728), mo:title(728, ‘Django Unchained’),mo:year(728, 2012),

mo:Person(n37), mo:cast(728,n37),

mo:Person(n38), mo:cast(728,n38).

Given a CQ q and an ontology T , one could first construct a rewriting q′

of q and T over arbitrary ABoxes. The rewriting q′ could then be unfolded
into an SQL query by using partial evaluation [45], which exhaustively applies

SLD-resolution to q′ and the mapping M and returns those rules whose bodies
contain only database atoms. Consider the simple CQ q(x) = mo:Movie(x). An
obvious rewiring of q and the TBox above (over arbitrary ABoxes) contains the
following three rules:

q′(x)← mo:Movie(x), (20)

q′(x)← mo:title(x, y), (21)

q′(x)← mo:cast(x, y). (22)

The unfolding applies the SLD-resolution procedure to these three rules and the
mapping M and produces the rules:

q′(x)← title(x, t, y), (20+15)

q′(x)← title(x, t, y), (21+16)

q′(x)← castinfo(p, x, r). (22+18)

The resulting union of Select-Project-Join queries could then be forwarded
for execution to an RDBMS.

One can achieve the same result by using the tree-witness rewriting qtw of
q and T over H-complete ABoxes introduced in Section 3. An obvious way to
construct H-complete ABoxes is to take the composition ofM and the inclusions
in T , that is, a mapping MT given by

A(x)← ϕ(x, z), if A′(x)← ϕ(x, z) ∈M and T |= A′ v A,
A(x)← ϕ(x, y, z), if R(x, y)← ϕ(x, y,z) ∈M and T |= ∃R v A,

P (x, y)← ϕ(x, y, z), if R(x, y)← ϕ(x, y,z) ∈M and T |= R v P.

(Recall that we do not distinguish between P−(y, x) and P (x, y).) Thus, for any
I and any tuple a of individuals in AI,M, we have:

(T ,AI,M) |= q(a) iff AI,MT |= qtw(a). (23)

So, to compute the answers to q over T linked by M to I, one can unfold the
tree-witness rewriting qtw over H-complete ABoxes with the help of the compo-
sitionMT . However, the resulting query will produce duplicating answers if the
ontology axioms express the same properties of the application domain as the in-
tegrity constraints of the database [60]. For example, the IMDb schema contains
a foreign key: movie ID in castinfo references movie ID in title, and therefore the
unfolded rewriting above will return the same movie many times—once from
title and once for each of the cast members of the movie in castinfo. Such a
duplication is clearly an undesirable feature of this straightforward approach.

For this reason, before applying MT to unfold the tree-witness rewriting,
Ontop optimises the mapping using the database integrity constraints Σ. This
allows us to (a) reduce redundancy in answers, and (b) substantially shorten
the SQL queries, which makes the OBDA system more efficient. The process of
query rewriting and unfolding in Ontop with all optimisations is shown in the

picture below (the dashed lines illustrate processes that do not take place):

CQ q

ontology T

UCQ qtw

T -mapping
mapping M

dependencies Σ

SQL

data D

ABox A

H-complete ABox A

+

tw-rewriting Ê

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

ABox completion

+

completion Ë
SQO Ì SQ

O

Í

The key ingredients of the architecture of Ontop are as follows:

Ê the tree-witness rewriting qtw assumes the virtual ABoxes to be H-complete;
it separates the topology of q from the taxonomy defined by T , is fast in
practice and produces short UCQs as demonstrated for real-world ontologies
and queries [62];

Ë the T -mapping combines the system mapping M with the taxonomy of T
to ensure H-completeness of virtual ABoxes;

Ì the T -mapping is simplified using the Semantic Query Optimisation (SQO)
technique and SQL features; the T -mapping is constructed and optimised
for the given T and Σ only once, and is used for unfolding all rewritings qtw;

Í the unfolding algorithm uses SQO to produce small and efficient SQL queries.

We illustrate the last three items in the remainder of this section.

6.1 T -mappings

We say that a mapping M is a T -mapping over dependencies Σ if the ABox
AI,M is H-complete with respect to T , for any data instance I satisfying Σ.
The compositionMT defined above is trivially a T -mapping over any Σ. Ontop
starts withMT and then applies a series of optimisations to construct a simpler
T -mapping.

Inclusion Dependencies. Suppose M∪ {S(x)← ψ1(x, z)} is a T -mapping over
Σ. If there is a more specific rule than S(x) ← ψ1(x, z) in M, then M itself
will also be a T -mapping. To discover such ‘more specific’ rules, we run the
standard query containment check (see, e.g., [1]) taking account of the inclusion
dependencies. For example, since T |= ∃mo:cast v mo:Movie in our running
example, the compositionMMO of the mappingM given above and MO contains

the following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

The latter rule is redundant since IMDb contains the foreign key (an inclusion
dependency)

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
.

Disjunctions in SQL. Another way to reduce the size of a T -mapping is to
identify pairs of rules whose bodies are equivalent up to filters with respect to
constant values. This optimisation deals with the rules introduced due to the so-
called type (discriminating) attributes [20] in database schemas. For example, the
mappingM for IMDb and MO contains six rules for sub-concepts of mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),

· · ·
mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

Then the compositionMMO contains six rules for mo:Person that differ only in
the last condition (r = k), 1 ≤ k ≤ 6. These can be reduced to a single rule:

mo:Person(p)← castinfo(c, p,m, r), (r = 1) ∨ · · · ∨ (r = 6).

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

Materialised ABoxes and Semantic Index. In addition to working with proper
relational data sources, Ontop also supports ABox storage in the form of struc-
tureless universal tables: a binary relation CA[id, concept-id] and a ternary re-
lation RA[id1, id2, role-id] represent concept and role assertions. The universal
tables give rise to trivial mappings, and Ontop implements a technique, the se-
mantic index [61], that takes advantage of SQL features in T -mappings for this
scenario. The key observation is that, since the IDs in the universal tables CA
and RA can be chosen by the system, each concept and role in the TBox T
can be assigned a numeric index and a set of numerical intervals in such a way
that the resulting T -mapping contains simple SQL queries with interval filter
conditions. For example, in IMDb, we have

mo:Actor v mo:Artist,

mo:Artist v mo:Person,

mo:Director v mo:Person,

so we can choose indexes and intervals for these concepts as in the table below:

concept index interval
mo:Actor 1 [1,1]
mo:Artist 2 [1,2]
mo:Director 3 [3,3]
mo:Person 4 [1,4]

mo:Person (4) [1,4]

mo:Director (3) [3,3] mo:Artist (2)[1,2]

mo:Actor (1)[1,1]

It can be seen that these intervals respect the concept inclusions of the TBox:
e.g., [1,1] for mo:Actor is a subset of [1,2] for mo:Artist. This will generate a
T -mapping with

mo:Actor(p)← CA(p, concept-id), (concept-id = 1),

mo:Artist(p)← CA(p, concept-id), (1 ≤ concept-id ≤ 2),

mo:Director(p)← CA(p, concept-id), (concept-id = 3),

mo:Person(p)← CA(p, concept-id), (1 ≤ concept-id ≤ 4).

Thus, by choosing appropriate concept and role IDs, we effectively construct
H-complete ABoxes without the expensive forward chaining procedure (and the
need to store large amounts of derived assertions). On the other hand, the se-
mantic index T -mappings are based on range expressions that can be evaluated
efficiently by RDBMSs using standard B-tree indexes [20].

6.2 Unfolding with Semantic Query Optimisation

Ontop applies the Semantic Query Optimisation (SQO) [14] to rules obtained
at the intermediate steps of unfolding. In particular, this eliminates redundant
Join operations caused by reification of database relations by means of concepts
and roles. Consider, for example, the CQ

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010).

It has no tree witnesses, and so qtw = q. By straightforwardly applying the
unfolding to qtw and the T -mapping M above, we obtain the query

q′tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, by using
the primary key m of title:

∀m∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(a functional dependency with determinant m), we reduce two Join operations
in the first three atoms of q′tw to a single atom title(m, t, y):

q′′tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations.

6.3 Why Does It Work?

The techniques above prove to be very efficient in practice. Moreover, they of-
ten automatically produce queries that are similar to those written by human
experts. To understand why, we briefly review the process of designing database
applications [20]. It starts with conceptual modelling which describes the appli-
cation domain in such formalisms as ER, UML or ORM. The conceptual model
gives the vocabulary of the database and defines its semantics by means of hi-
erarchies, cardinality restrictions, etc. The conceptual model is turned into a
relational database by applying a series of standard procedures that encode the
semantics of the model into a relational schema. These procedures include:

– amalgamating many-to-one and one-to-one attributes of an entity to a sin-
gle n-ary relation with a primary key identifying the entity (e.g., title with
mo:title and mo:year);

– using foreign keys over attribute columns when a column refers to the entity
(e.g., title and castinfo);

– using type (discriminating) attributes to encode hierarchical information
(e.g., castinfo).

As this process is universal, the T -mappings created for the resulting databases
are dramatically simplified by the Ontop optimisations, and the resulting UCQs
are usually of acceptable size and can be executed efficiently by RDBMSs.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, 1987.

3. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

4. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. Journal of Artificial Intelligence Research (JAIR), 36:1–69,
2009.

5. A. Artale, V. Ryzhikov, and R. Kontchakov. DL-Lite with attributes and
datatypes. In Proc. of the 20th European Conf. on Artificial Intelligence
(ECAI 2012), volume 242 of Frontiers in Artificial Intelligence and Applications,
pages 61–66. IOS Press, 2012.

6. M. Bienvenu, M. Ortiz, M. Šimkus, and G. Xiao. Tractable queries for lightweight
description logics. In Proc. of the 23 Int. Joint Conf. on Artificial Intelligence
(IJCAI 2013), 2013.

7. M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: A
study through disjunctive Datalog, CSP and MMSNP. arXiv:1301.6479, 2013.

8. A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and gcd com-
putations. In Proc. of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 65–71, 1982.

9. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. Journal of Web Semantics, 14:57–83,
2012.

10. A. Cal̀ı, G. Gottlob, and A. Pieris. Towards more expressive ontology languages:
The query answering problem. Artificial Intelligence, 193:87–128, 2012.

11. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning, 39(3):385–429, 2007.

12. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pages
260–270, 2006.

13. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. View-based query
answering in description logics: Semantics and complexity. Journal of Computer
and System Sciences, 78(1):26–46, 2012.

14. U. S. Chakravarthy, D. H. Fishman, and J. Minker. Semantic query optimization
in expert systems and database systems. Benjamin-Cummings Publishing Co., Inc.,
1986.

15. C. Chekuri, and A. Rajaraman. Conjunctive query containment revisited. Theor.
Comput. Sci. 239, 2, 211–229, 2000.

16. A. Chortaras, D. Trivela, and G. Stamou. Optimized query rewriting for OWL 2
QL. In Proc. of the 23rd Int. Conf. on Automated Deduction (CADE-23), volume
6803 of LNCS, pages 192–206. Springer, 2011.

17. J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg, K. Srinivas, and X. Sun.
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In Proc. of the 7th Int. Semantic Web Conf. (ISWC 2008), volume
5318 of LNCS, pages 403–418. Springer, 2008.

18. T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. Query rewriting for
Horn-SHIQ plus rules. In Proc. of the 26th AAAI Conf. on Artificial Intelligence
(AAAI 2012). AAAI Press, 2012.

19. T. Eiter, M. Ortiz, and M. Šimkus. Conjunctive query answering in the description
logic SH using knots. Journal of Computer and System Sciences, 78(1):47–85, 2012.

20. R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-Wesley,
6th edition, 2010.

21. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

22. B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. Journal of Artificial Intelligence Research (JAIR),
31:157–204, 2008.

23. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimiza-
tion. In Proc. of the 27th Int. Conf. on Data Engineering (ICDE 2011), pages 2–13.
IEEE Computer Society, 2011.

24. G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecur-
sive datalog programs. In Proc. of the 13th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2012). AAAI Press, 2012.

25. M. Grigni and M. Sipser. Monotone separation of logarithmic space from logarith-
mic depth. Journal of Computer and System Sciences, 50(3):433–437, 1995.

26. M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunc-
tive queries tractable? In Proc. on 33rd Annual ACM Symposium on Theory of
Computing (STOC’01), pages 657–666. ACM, 2001.

27. S. Heymans, L. Ma, D. Anicic, Z. Ma, N. Steinmetz, Y. Pan, J. Mei, A. Fokoue,
A. Kalyanpur, A. Kershenbaum, E. Schonberg, K. Srinivas, C. Feier, G. Hench,
B. Wetzstein, and U. Keller. Ontology reasoning with large data repositories.
In Ontology Management, Semantic Web, Semantic Web Services, and Business
Applications, volume 7 of Semantic Web And Beyond Computing for Human Ex-
perience, pages 89–128. Springer, 2008.

28. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics by a reduction
to disjunctive datalog. Journal of Automated Reasoning, 39(3):351–384, 2007.

29. N. Immerman. Descriptive Complexity. Springer, 1999.
30. S. Jukna. Boolean Function Complexity — Advances and Frontiers, volume 27 of

Algorithms and combinatorics. Springer, 2012.
31. S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. Query rewriting

over shallow ontologies. In Proc. of the 2013 International Workshop on Descrip-
tion Logics (DL 2013), 2013.

32. S. Kikot, R. Kontchakov, and M. Zakharyaschev. On (In)Tractability of OBDA
with OWL 2 QL. In Proc. of the 2011 International Workshop on Description
Logics (DL 2011), volume 745 of CEUR-WS, 2011.

33. S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query answering
with OWL 2 QL. In Proc. of the 13th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2012). AAAI Press, 2012.

34. S. Kikot, D. Tsarkov, M. Zakharyaschev, and E. Zolin. Query answering via modal
definability with FaCT++: First blood. In Proc. of the 2013 International Work-
shop on Description Logics (DL 2013), 2013.

35. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. Exponential
lower bounds and separation for query rewriting. In Proc. of the 39th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2012,),
volume 7391 of LNCS, pages 263–274. Springer, 2012.

36. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. In Proc. of the 17th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’98). ACM Press, 205–213.

37. M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. A sound and complete
backward chaining algorithm for existential rules. In Proc. of the 6th Int. Conf.
on Web Reasoning and Rule Systems (RR 2012), volume 7497 of LNCS, pages
122–138. Springer, 2012.

38. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The com-
bined approach to query answering in DL-Lite. In Proc. of the 12th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press,
2010.

39. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The com-
bined approach to ontology-based data access. In Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI-2011), pages 2656–2661. AAAI Press, 2011.

40. D. Kozen. Theory of Computation. Springer, 2006.
41. A. Krisnadhi and C. Lutz. Data complexity in the EL family of description logics.

In Proc. of the 2007 International Workshop on Description Logics (DL 2007),
volume 250 of CEUR-WS, pages 88–99, 2007.

42. O. Lachish and R. Raz. Explicit lower bound of 4.5n− o(n) for Boolean circuits.
In Proc. on 33rd Annual ACM Symposium on Theory of Computing (STOC’01),
pages 399–408. ACM, 2001.

43. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’02), pages 233–246. ACM, 2002.

44. L. Libkin. Elements Of Finite Model Theory. Springer, 2004.
45. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. The

Journal of Logic Programming, 11(3-4):217–242, 1991.
46. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description

logic EL using a relational database system. In Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI 2009), pages 2070–2075, 2009.

47. C. Lutz. The complexity of conjunctive query answering in expressive description
logics. In Proc. of the 4th Int. Joint Conf. on Automated Reasoning (IJCAR 2008),
number 5195 in LNAI, pages 179–193. Springer, 2008.

48. C. Lutz, I. Seylan, D. Toman, and F. Wolter. The combined approach to OBDA:
taming role hierarchies using filters. In Proc. of the Joint Workshop on Scalable
and High-Performance Semantic Web Systems (SSWS+HPCSW 2012), volume
943 of CEUR-WS, 2012.

49. C. Lutz and F. Wolter. Non-uniform data complexity of query answering in de-
scription logics. In Proc. of the 13th Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR 2012). AAAI Press, 2012.

50. A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars,
and formal systems. In Proc. of the 12th Annual Symposium on Switching and
Automata Theory (SWAT’71), pages 188–191, 1971.

51. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in ex-
pressive description logics via tableaux. Journal of Automated Reasoning, 41(1):61–
98, 2008.

52. M. Ortiz, S. Rudolph, and M. Simkus. Query answering in the Horn fragments of
the description logics SHOIQ and SROIQ. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI-2011), pages 1039–1044. AAAI Press, 2011.

53. C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries.
In Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 97), pages 12–19. ACM Press, 1997.

54. H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewriting
techniques for DL-lite. In Proc. of the 2009 International Workshop on Description
Logics (DL 2007), volume 477 of CEUR-WS, 2009

55. H. Pérez-Urbina, E. Rodŕıguez-Dı́az, M. Grove, G. Konstantinidis, and E. Sirin.
Evaluation of query rewriting approaches for OWL 2. In Proc. of the Joint Work-
shop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW
2012), volume 943 of CEUR-WS, 2012.

56. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. Journal on Data Semantics, X:133–173, 2008.

57. R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In Proc.
of the 38th Annual Symposium on Foundations of Computer Science (FOCS’97),
pages 234–243, 1997.

58. R. Raz and A. Wigderson. Monotone circuits for matching require linear depth.
Journal of the ACM, 39(3):736–744, 1992.

59. A. Razborov. Lower bounds for the monotone complexity of some Boolean func-
tions. Dokl. Akad. Nauk SSSR, 281(4):798–801, 1985.

60. M. Rodŕıguez-Muro. Tools and Techniques for Ontology Based Data Access in
Lightweight Description Logics. PhD thesis, KRDB Research Centre for Knowledge
and Data, Free University of Bozen-Bolzano, 2010.

61. M. Rodŕıguez-Muro and D. Calvanese. Dependencies: Making ontology based data
access work. In Proc. of the 5th A. Mendelzon Int. Workshop on Foundations of
Data Management (AMW 2011), volume 749 of CEUR-WS, 2011.

62. M. Rodŕıguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontop at work. In
Proc. of the 10th OWL: Experiences and Directions Workshop (OWLED 2013),
2013.

63. R. Rosati. Prexto: Query rewriting under extensional constraints in DL-Lite. In
Proc. of EWSC 2012, volume 7295 of LNCS, pages 360–374. Springer, 2012.

64. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies.
In Proc. of the 12th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2010). AAAI Press, 2010.

65. R. Rosati. On conjunctive query answering in EL. In Proc. of the 2007 Interna-
tional Workshop on Description Logics (DL 2007), volume 250 of CEUR Workshop
Proceedings. CEUR-WS.org, 2011

66. O. Savkovic and D. Calvanese. Introducing datatypes in DL-Lite. In Proc. of
the 20th European Conf. on Artificial Intelligence (ECAI 2012), volume 242 of
Frontiers in Artificial Intelligence and Applications, pages 720–725. IOS Press,
2012.

67. C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems
Technical Journal, 28:59–98, 1949.

