Skip to main content

Sensory Feedback of a Fish Robot with Tunable Elastic Tail Fin

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Abstract

Many designs that evolved in fish actuation have inspired technical solutions for propulsion and maneuvering in underwater robotics. However, the rich behavioral repertoire and the high adaptivity to a constantly changing environment are still hard targets to reach for artificial systems. In this work, we truly follow the bottom up approach of building intelligent systems capable of exploring their behavioral possibilities when interacting with the environment. The free swimming fish robot Wanda2.0 has just one degree of freedom for actuation, a tail fin with varying elasticity, and various on board sensors. In the data analysis we isolate the minimal set of sensory feedback to distinguish between different swimming patterns and elasticity of the tail fin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sfakiotakis, M., Bruce, L.D.M.J., Davis, C.: Review of fish swimming modes for aquatic locomotion. Journal of Oceanic Engineering 24, 237–252 (1999)

    Article  Google Scholar 

  2. Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: A review. Journal of Oceanic Engineering 29, 660–673 (2004)

    Article  Google Scholar 

  3. Blake, R.W.: Fish functional design and swimming performance. Journal of Fish Biology 65(5), 1193 (2004)

    Article  Google Scholar 

  4. Lauder, G.V., Tytell, E.D.: Hydrodynamics of undulatory propulsion. Fish Physiology 23, 425–468 (2006)

    Article  Google Scholar 

  5. Fish, F., Lauder, G.: Passive and active flow control by swimming fishes and mammals. Annual Review of Fluid Mechanics 38(1), 193 (2006)

    Article  MathSciNet  Google Scholar 

  6. McHenry, M.J., Pell, C., Long, J.H.: Mechanical control of swimming speed: Stiffness adn axial wave form in undulating fish models. Journal of Experimental Biology 198, 2293–2305 (1995)

    Google Scholar 

  7. Kobayashi, S., Ozaki, T., Nakabayashi, M., Morikawa, H., Itoh, A.: Bioinspired aquatic propulsion mechnisms with real-time variable apparent stiffness fins. In: IEEE Robotics and Biomimetics (2006)

    Google Scholar 

  8. Nakabayashi, M., Kobayashi, K.R.S., Morikawa, H.: A novel propulsion mechanism using a fin with a variable-effective-length spring. In: IEEE Robotics and Biomimetics (2008)

    Google Scholar 

  9. Mazumdar, A., Valdivia, P., Alvarado, Y., Youcef-Toumi, K.: Maneuverability of a robotic tuna with compliant body. In: IEEE Robotics and Automation (2008)

    Google Scholar 

  10. Liu, J., Hu, H.: Biological inspiration: From carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering 7, 35–48 (2010)

    Article  MathSciNet  Google Scholar 

  11. Liu, J., Hu, H.: Biological inspired behaviour design for autonomous robotic fish. Journal of Automation and Computing 4, 336–347 (2006)

    Article  Google Scholar 

  12. Ziegler, M., Iida, F., Pfeifer, R.: “cheap” underwater locomotion: Roles of morphological properties and behavioural diversity. In: CLAWAR (2006)

    Google Scholar 

  13. Ziegler, M., Hoffmann, M., Carbajal, J., Pfeifer, R.: Varying body stiffness for aquatic locomotion. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2705–2712 (May 2011)

    Google Scholar 

  14. Pfeifer, R., Gómez, G.: Creating Brain-like Intelligence: Challenges and Achievements. In: Sendhoff, B., Körner, E., Sporns, O., Ritter, H., Doya, K. (eds.) Creating Brain-Like Intelligence. LNCS, vol. 5436, pp. 66–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Iida, F., Gomez, G., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings of the 12th Int. Conf. on Advanced Robotics (ICAR 2005), Seattle, U.S.A, pp. 229–235 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ziegler, M., Pfeifer, R. (2013). Sensory Feedback of a Fish Robot with Tunable Elastic Tail Fin. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics