
HAL Id: hal-03792684
https://hal.science/hal-03792684

Submitted on 3 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forward Self-Combined Method Fragments
Noelie Bonjean, Marie-Pierre Gleizes, Christine Maurel, Frédéric Migeon

To cite this version:
Noelie Bonjean, Marie-Pierre Gleizes, Christine Maurel, Frédéric Migeon. Forward Self-Combined
Method Fragments. 13th International Workshop on Agent Oriented Software Engineering (AOSE
2012), Jun 2012, Valencia, Spain. pp.168-178, �10.1007/978-3-642-39866-7_10�. �hal-03792684�

https://hal.science/hal-03792684
https://hal.archives-ouvertes.fr


Forward Self-combined Method Fragments

Noélie Bonjean, Marie-Pierre Gleizes, Christine Maurel, and Frédéric Migeon

IRIT, Université Paul Sabatier
F-31062 Toulouse cedex 9, France

Firstname.Name@irit.fr

Abstract. Developing complex systems is generally simplified if de-
signer is guided by method from Software Engineering. However a single
engineering process is often not enough to cover all the possible require-
ments due to different levels of expertise and systems to design. Cur-
rently, Agent Oriented Software Engineering methods aim at providing
an adaptive engineering process. The method processes have been bro-
ken up into different parts called fragments, enabling the mix of different
engineering processes’ parts to get better adequacy between the system
to be done and the process. But some difficulties still remain concern-
ing the expertise needed to compose these fragments when the amount
of fragments prevents the composition to be done by hand. This paper
presents an Adaptive Multi-Agent Systems (AMAS) to deal with a new
paradigm of automated fragments combining. This process is made from
both the characteristics of users and system and the known fragments.
Thanks to their information, agents of the AMAS self-organise and de-
sign a tailored method process. The developed system is described and
then usual tests are depicted.

1 Introduction

Software reuse is generally considered as one of the most effective ways of 
increasing productivity and improving quality of software. To make software 
reuse happens, however, there is a change in the way engineers develop software: 
software is currently developed for reuse and with reuse. Component-based soft-
ware engineering [1] is a software engineering paradigm in which applications 
are developed by integrating existing components. Reuse of software engineer-
ing is becoming more and more important in a variety of aspects of software 
engineering.

In the same way, in Agent-Oriented Software Engineering (AOSE), a lot of 
different methods, each with its advantages and its drawbacks [2]. Methods have 
to deal with these characteristics and capabilities of agents or systems. An at-
tempt is to benefit from different methods by combining their particular features. 
For example, attempts have been made to combine requirements analysis in 
TROPOS and self-adaptation in ADELFE [3].

Coming from Situational Method Engineering, decomposing processes into 
pieces has interested the AOSE community because of the expected benefits of 
flexibility. The aim is to adapt the process to the characteristics of the business



problem and to the level of expertise of engineer teams by proposing to assemble
pieces of methods, named fragments, of various processes. In a first step, several
teams have to split up methods into fragments and provide a precise description
of them (ADELFE[4], INGENIAS [5], PASSI [6], TROPOS [7] ...). Two main
results have been obtained from this step: (i) a means to precisely compare the
different methods and (ii) a potential repository of fragments that will serve the
community to compose new processes [8]. This kind of work is mainly done in
the Foundation for Intelligent Physical Agents1 (FIPA) context.

Currently some propositions to combine fragments have been already made,
but they are mainly based on the know-how of the method engineer. In this
paper, we propose a first step forward an automatic way to design a method
process based on MAS technology. The process is constructed by combining
fragments ”on the fly” to be adapted to the specific situations of the projects
at hand. The new process is based on both fragment compatibility and user
characteristics. In order to respond to this need, the presented work details the
use of an Adaptive Multi-Agent Systems (AMAS) which relies the cooperation
of its agents to work together, making this approach especially suited to deal
with highly dynamic systems such as the design of an interactive and adaptive
Software Engineering Process (SEP) [4]. In this work, an AMAS is built by
modelling fragments as autonomous entities.

This paper is organized as follows. First, section 2 explain the aim of this
system. Then, section 3 introduces the system of Self-Combining fRagments
(SCoRe) and details the behaviour of the involved agents as well as their inter-
actions. Section 4 focuses on some usual tests and explain the results obtained.
Finally, section 5 describes related works before concluding in section 6.

2 Why Such a System?

Request of Tailored Method. While the demand for specific, complex and
varied system continues to grow, current methods in the MAS domain remain
limited and sometimes not well adapted. For example, in order to propose
a simulation-based process for the development of MASs which incorporates
a simulation phase for the prototyping of the MAS being developed and for
functional and non-functional validation, PASSIM was obtained by integrating
method fragments from the PASSI for carrying out the analysis, design and cod-
ing phases, and the Distilled State Charts (DSC)-based simulation method for
supporting the simulation phase [9]. The need for well-defined guidelines that
will make the development process more efficient and more effective has become
crucial. Currently, there is no single methodology that can be uniquely pointed
as ”the best”. Until now methodology adjustments to the specific requirements
and constraints are mixed in ”local” adaptations and modifications. In order to
succeed in creating good situational methodologies, i.e., methodologies that best
fit given situations, fragment representation and cataloguing are very important

1 http://www.fipa.org



activities. In particular, the fragments (sometimes addressed as process frag-
ments, method fragments or chunks) have to be represented in a uniform way
that includes all the necessary information that may influence their retrieval and
assembling.

Fragment Standardisation. Method fragments are first identified by examin-
ing existing methods. These method fragments are made according to templates
defined by repository designers. Therefore the choice of fragments granularity re-
lies on designers. According to the RUP [10], the methods are defined following
different levels of granularity: phase, activity and step. The granularity issue of
these method fragments poses important challenges. The ”step” level involves a
specific and fiddly task but also requires perfect knowledge of methods and long
work. This fragmentation is very fine-grained and provides a greater number of
fragments. For instance, in ADELFE, the analysis phase is composed of four
activities, the first of which is Analysis of domain. Analysis of domain consists
of two steps: Identify the active and passive entities and Study interactions be-
tween the entities. These steps are related and interdependent. This low level
of granularity is therefore useless and inaccurate in this situation. On the other
hand, the ”phase” level of granularity could form huge complete fragments. The
coarse-grained granularity promotes the redundancy issue. The duplication of
activities or steps may occur with high granularity. An activity or step may be
included in different fragments. The risk that happens grows up with the level
of granularity. In addition, the joining possibilities are therefore minimized.

Amount of Fragments. Currently, ten AOSE methods are fragmented, each
one composed of approximately twenty fragments. Such fragments constitute
the root constructs of the methodology itself and they have been extracted by
considering a precise granularity criterion: each group of activities (composing
the fragment) should significantly contribute to the production/refinement of
one of the main artefacts of the methodology (for instance, a diagram or a set
of diagrams of the same type). Following this assumption, fragments obtained
from different methodologies are based on a similar level of granularity.

Besides, to design a process manually means studying for the compatibility
of each fragment with the others i.e. approximately twenty thousand possible
combinations. Although this number can be decreased by the knowledge and
the know-how of process engineers, the work remains long and irksome. It is
why we propose the automated combining of fragments.

Assist Designer. In our approach, a new complete process is firstly self-
designed contingent on situation. The complete process enables engineers to
visualise all activities and to have a whole view of the process. Then, we focus
on adaptation during process execution. In every step the development team is
advised on its next fragment choice according to the running features. If the fea-
tures evolve, this advice may therefore differ from the following fragment initially
suggested.



The studied solution resides in fragments agentification in order to design an
adaptive process. This choice is justified by the problem complexity which is
mainly due to the huge number of fragments. Indeed, a complex system cannot
currently be designed without bugs from designers. Assist the designer during
the system utilization would reduce the number of bugs and make the system
most suitable to the current situation. The adaptation is therefore required.
As components assembling, fragments assembling needs assembling features. In
our approach, a fragments assembling is based on MAS Metamodel Elements
(MMME). Two fragments are therefore assembling if one produces the MMMEs
required by another.

3 Combining Method Fragments with an Adaptive
Multi-agent System

The general structure of the Self-Combined method fRagments system (SCoRe)
proposed is described in this section, before detailing the behaviours and the
interactions of the agents composing it.

3.1 General Structure of SCoRe

We consider a method process as a set of assembled method fragments which are
linked through their own required or produced MMMEs. Establishing a method
process consists in linking some of the fragments toward user-defined objectives
and knowledge. So, the main goal of SCoRe is to suggest a tailored process. For
that, SCoRe learns the context to apply on fragments, in order to sustain this
evolution. SCoRe has to act without relying on a model of the processes, meaning
that it is only able to take into account the users’ knowledge and needs, and to
observe the evolution of the running process on which MMMEs are available, in
order to decide on the fragments to add. The best possible running process is
therefore designing according to a situation and the best adapted fragment has
to be found at any moment.

SCoRe is composed of four distinct kinds of agents following a perception-
decision-action lifecycle which cooperate according to the AMAS theory de-
scribed in [11]. The basic idea underlying this cooperation consists, for every
agent in an AMAS, in always trying to help the agent which encounters the
most critical situation from its own point of view. Figure 1 gives the structure
of a SCoRe system designing a method process. The different types of agents in-
volved are shown, as well as the links modelling the existing interactions between
them. Actually, our system is made up of:

• MAS Metamodel Element (MMME): required or produced by a Run-
ning Fragment, its aim is to decide fragments whom it will be linked.

• Waiting Fragment (WF): its purpose is to be integrate in a process once
it is in an adequate situation.

• Running Fragment (RF): it aims at finding its place inside the running
process.



• Context (C): related to a fragment, it aims at evaluate its pertinence ac-
cording to the MMMEs already involved in the running process and the
users’ needs and knowledge.

Next sections will provide a more in-depth description of these agents and
interactions.

Fig. 1. Example of agents and their relationships in SCoRe

3.2 Behaviour of Agents

MMME Agents. The MMME agents represent the links between the running
fragment agents. Their goal is to be incorporated in the running process. The
MMMEs behaviour is represented by an automaton with two states: non incor-
porated and incorporated. The non incorporated state corresponds to a MMME
linked to at least one running fragment which produces or consumes it. In this
state, it requests fragments (consumer or producer). It is looking for a fragment
at which it can be linked. It receives some answers from fragments with their
relevancy. The most relevant fragment will be single out by the MMME agent
for being put it forward as a candidate to be added in the running process. Fur-
thermore, these agents are able to evaluate their own criticality. This criticality
estimates the difference between the current and expected designed process and
represents the degree of satisfaction of an agent. Therefore, the MMME agents
cooperate on the selection of the most relevant fragment among the ones sug-
gested according to their own criticality.

The incorporated state is reached when the MMME agent is linked with at
least two fragments: one consumer and one producer. The given or required
MMMEs by the designer have only to be linked respectively to at least one
consumer and one producer.



Waiting Fragment Agents. The waiting fragment agents are reactive agents.
Actually their goal is to notify the other agents of any requests from MMMEs.
They receive messages from MMMEs which are looking for a fragment. If the
waiting fragment agent considers himself as a potential solution then it forward
the request to his context agents. It waits the answer from their context agent
and answers his relevancy to the MMME. Should the opposite occur, the waiting
fragment agent sends an answer to MMME with no relevance. Besides, when the
waiting fragment agent receive a message from the MMME to inform it that it
is selected, it transmits the information to the context agents. Then the waiting
fragment agent spreads to create a running fragment agent.

Running Fragment Agents. The running fragment agent is created by the
waiting fragment agent which represents in the running process. It is introduced
on time in the process. His aim is to be incorporated in the method process.
His behaviour changes according to his current state and his perception. The
current state of a running fragment agent corresponds to non incorporated and
incorporated. Actually, a running fragment agent is said incorporated when all the
required MMMEs are in the incorporated state and at least one of the provided
MMMEs is incorporated. Otherwise his state is non incorporated and the running
fragment agent makes links with each MMME agent existing in the running
process on which a link is physically possible. If some MMME agents are missing
in the running process, the running fragment agent adds them. Furthermore,
these agents are able to evaluate their own criticality. This criticality estimates
the difference between the current and expected method process. It is calculated
from the criticality of required or produced MMME(s) and their current state.

Context Agents. The context agents have the most complex behaviour in the
SCoRe system. Their goal is to represent a situation leading to a specific method
process. They do not aim to model what is happening inside the system, but
rather aim at selecting the fragment to add in the current situation to reach the
objectives. When such an agent finds itself in its triggering situations, it notifies
the waiting fragment agent, by submitting its confidence according to its own
knowledge.

In order to know when the fragment is relevant, a context agent relies on two
different sets of information. First, a collection of input values represents the set
of user and system characteristics. This element enables the context agent to
know if it has to be triggered or not. Then, a context agent possesses a set of
forecasts, which describes the impact of the action proposed on the criticality
of the different variables of the system. Then, a context agent possesses a set
of metrics, which describes the impact of the action proposed on the running
process [12]. Those input values are modified during the life of a context agent.
According to its behaviour, a context agent therefore adjusts its confidence from
different feedback that it receives.



Finally, the behaviour of a context agent is represented by an automaton.
Each state relates its current role in the MAS. A total of three different states
exist: disabled, enabled and selected. The context agent can switch from a state
to another thanks to the messages it receives from other agents in the system. A
disabled context agent considers itself non-relevant in this specific situation. An
enabled context agent thinks that it is relevant and potentially deserves to be
selected. It then computes its confidence and sends them to the corresponding
waiting fragment agent. Finally, a selected context agent is validated by a waiting
fragment agent and its associated fragment is added in the running process. This
selected context agent has then to observe the consequences of its action in order
to reinforce or update its confidence.

4 Usual Tests

Considering the large number of existing method fragments, the volume of sup-
porting studies and the users’ profile, the need arises for a designed method. The
designed method is conceived of not as a single interdependent entity but as a
set of disparate fragments. Therefore, in order to show the rightness of a new
method process, the method process has to be evaluated by several engineers
for some specific system. The experience results of empirical studies that have
been conducted by many practitioners and researchers. This kind of experience
is complex and can take a long time to obtain sufficient results. Therefore, we
firstly focus on the functional adequacy and the dynamic adaptation to specific
situation.

We defined test sets corresponding on the one hand to the feasibility of this
system and on the other hand to the specific situations encountered and solved
by cooperation between agents. The first test is based on a set of fragments
from current methods such as ADELFE2, INGENIAS3 and PASSI4. Fragments
description can be found respectively on corresponding research team site. This
first test aims at verifying that the system self-designs and proposes a complete
method process. The sets of fragments from ADELFE, INGENIAS and PASSI
enables to show the accurate behaviour of agents and their right assembling. In
this case, at the set-up, all fragments are provided without order and the process
is built up again. According to the users and system characteristics, one of them
is therefore built up and suggested to the designer. The system is therefore able
to propose the known processes.

The following test set uses fictive fragments to highlight accurate configura-
tions. Two processes named A and B are defined. A is broken in four fragments
a1, a2, a3, a4 where all fragments are sequential except for a2 and a3 which are
alternative. The process B is broken in four sequential fragments b1, b2, b3 and
b4. Moreover, the two processes are totally disjointed (except for last test case).
They do not share MMMEs. For these tests, we chose to provide few fragments

2 ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/
3 http://grasia.fdi.ucm.es/main/node/241
4 http://www.pa.icar.cnr.it/cossentino/FIPAmeth/docs/



Fig. 2. Test Cases: Context Adaptation (left); Dynamic Adaptation (middle); Pro-
cesses Combination (right)

for better readability and to show the system adaptation by cooperation between
agents which are in particular situations. Moreover, in the following tests, the
both processes are shown but the most accurate method process is only designed.

The second test verifies adaptation according to users and system charac-
teristics. Indeed, in any situation, it controls that the system advises the most
adapted process. In this case, the waiting fragment agents represent only the
fragments from the independent fictive processes A and B. As a result, one is
chosen as the most adapted for the specified situation. This test is showed in the
figure 2 (left). The double borderline around a fragment shows the process A as
being the most accurate process.

The third test is about dynamic adaptation. Considering open systems, wait-
ing fragment agents are added or removed in system during runtime. The system
has to take into account these modifications and reorganises itself according to
its new state. The initial conditions are the same as in the previous test. A
new waiting fragment agent named b3a is then introduced in the system. This
fragment more accurate for the situation is an alternative fragment to b3. It is
therefore included in the running process and a new process is defined. Figure 2
(middle) shows system adaptation after the introduction of a new fragment.

The last test case shows combining processes. In this case, fragments from dif-
ferent processes are assembled in order to obtain a new process more adapted.
In this test case, we supposed that the provided fragments from A and B are
compatible. The required MMMEs are also provided by a fragment from another
process. The system is therefore able to produce a new process based on frag-
ments from both initial processes in addition to processes already known. Figure
2 (right) shows this test where the new process composed of a1, b2, a3 and b4
is advised as the most accurate.



5 Related Works

In the MAS community, the first works on fragments, their definition and their
composition have been started by the working group ”Methodology Technical
Committee” in 2003 [8]. Currently, the working group named ”Design Process
Documentation and Fragmentation Working Group” aims at providing IEEE
FIPA specification of fragments. The working group approach is based on SPEM
extension of OMG [13], and tailored to needs of agents and MAS.

The objective of SME approach in agent oriented engineering field is to pro-
pose the most accurate process in development context. The PRoDe (PRocess
for the Design of Design PRocesses) [14] approach proposes to use the MAS
metamodel as a central element for selecting and assembling fragments. PRoDe
contains three phases: process analysis, process design and process deployment.
The analysis phase elicits requirements and leads to MAS metamodel definition.
The design phase helps designer to select fragments to assemble in a new pro-
cess. Finally in the process deployment phase, the new process is used to solve
a specific problem.

Based on PRoDe approch, MEnSA5 project dissents to it from analysis phase.
Indeed, in this phase, requirements are used to chose fragments and fragments
contribute to metamodel definition [15]. The fragments repository includes frag-
ments from the following agent oriented methods: PASSI, GAIA, TROPOS and
SODA.

The OPEN framework [16] is object oriented method based on reusable meth-
ods components. It was extend to take into account agent oriented methods and
come to FAME (Framework for Agent-oriented Method) conception. FAME is
an agent oriented methods repository containing for example GAIA, TROPOS
or PROMOTHEUS [17].

Tools are also developed in order to make easier the methods designing by
combination of fragments, as MetaMeth [18]. It is a computer-aided process
engineering tool (CAPE tool) and plug-ins to assist designer during process
design from available fragments included data base.

As presented approaches, ours is based on current data base of fragments
and on MAS metamodel. On the other hand, it is original because it proposes
an automation of fragments composition. The designer is less called upon than
ProDe or MEnSA approach because the most accurate fragments are presented
to him already placed in the process. Moreover, in running development, our
approach can take into account process adaptation according to development
context.

6 Conclusion and Future Works

This paper presented an Adaptive Multi-Agent System to design a tailored pro-
cess by linking fragments together. Each agent composing the AMAS follows a
local and cooperative behaviour, driven by the use of their confidence. The four

5 http://apice.unibo.it/xwiki/bin/view/MEnSA/



different kinds of agents composing SCoRe were designed in order to self-design
a tailored method process without relying on the method engineer. The resulting
behaviour of SCoRe is the ability to design a process and adjust the proposed
process according to the characteristics of application domain and users profile.
This first prototype allowed to enhance our experience about practical problems
such as metamodel compatibility, parameters composition or fragments adapta-
tion to specific field.

However, there is still room from improvements in some aspects of this ap-
proach. For example, the inter-operability and the semantic matching of frag-
ments from different methods are still missing. In this problem, some works
axis on standardisation of fragments notion and of their description. The meta-
model definition or ontologies for software process could be used. Another ap-
proach from model-driven engineering is the Model Transformation By Example
(TTBE). The concept is to make easier model transformation writing without
generic model in favour of requested generated transformation. Thus fragments
drawing on similar metamodels could be made up automatically.

Moreover, another important point is the evaluation of the designed process.
Actually, despite the proposal of elaborate tailored method processes, methods
are built intuitively by adopting some fragments from different methods. It is
therefore difficult to evaluate and compare methods. In order to made a right
choice, it is necessary to evaluate the method.

Finally, this SCoRe system will be confronted to real users’ problems with
known method fragments, in order to allow its comparison with existing methods.

References

[1] CBSE: Component-based software engineering, 13th international symposium,
Prague, Czech Republic (June 2010)

[2] Bergenti, F., Gleizes, M., Zambonelli, F.: Methodologies and Software Engineering
for Agent Systems: The Agent-oriented Software Engineering Handbook. Kluwer
Academic Pub. (2004)

[3] Morandini, M., Migeon, F., Gleizes, M.P., Maurel, C., Penserini, L., Perini, A.:
A goal-oriented approach for modelling self-organising MAS. In: Aldewereld, H.,
Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 33–48. Springer,
Heidelberg (2009)

[4] Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Adaptive Multi-
Agent Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini,
P. (eds.) Agent-Oriented Methodologies, pp. 172–202. Idea Group Pub, NY (2005)
ISBN 1-59140-581-5

[5] Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: Agent Oriented Methodologies, pp. 236–276.

[6] Cossentino, M.: From requirements to code with the PASSI methodology. In:
Agent Oriented Methodologies, pp. 79–106.

[7] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems 8(3), 203–236 (2004)



[8] Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent Oriented Software Engineering 1(1), 91–121 (2007)

[9] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: A simulation-
based process for the development of multi-agent systems. International Journal
on Agent Oriented Software Engineering, IJAOSE (2008)

[10] Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

[11] Capera, D., Georg, J.P., Gleizes, M.P., Glize, P.: The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents. In: International
Workshop on Theory And Practice of Open Computational Systems (TAPOCS at
IEEE 12th International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE 2003) (TAPOCS), Linz, Austria, June 9-11,
pp. 389–394. IEEE Computer Society (2003), http://www.computer.org

[12] Bonjean, N., Chella, A., Cossentino, M., Gleizes, M.P., Migeon, F., Seidita, V.:
Metamodel-Based Metrics for Agent-Oriented Methodologies (regular paper). In:
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), June 4-6, Valencia (2012)

[13] OMG: Software Process Engineering Metamodel. Version 2.0. Object Management
Group (March 2007)

[14] Seidita, V., Cossentino, M., Galland, S., Gaud, N., Hilaire, V., Koukam, A., Gaglio,
S.: The metamodel: a starting point for design processes construction. Interna-
tional Journal of Software Engineering and Knowledge Engineering 20(4), 575–608
(2010)

[15] Puviani, M., Cossentino, M., Cabri, G., Molesini, A.: Building an agent method-
ology from fragments: the mensa experience. In: SAC, pp. 920–927 (2010)

[16] Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-
duction. Addison-Wesley (2002)

[17] Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the
creation of agent-oriented methodologies. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 142–152. Springer, Heidelberg
(2005)

[18] Cossentino, M., Sabatucci, L., Seidita, V.: A collaborative tool for designing and
enacting design processes. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M.
(eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), vol. 2,
pp. 715–721. ACM, Honolulu (December 8, 2009)


