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Abstract. In this paper we present the “Sandwich Operators”, an ele-
gant approach to exploit pre-sorting or pre-grouping from clustered stor-
age schemes in operators such as Aggregation/Grouping, HashJoin, and
Sort of a database management system. Thereby, each of these operator
types is “sandwiched” by two new operators, namely PartitionSplit

and PartitionRestart. PartitionSplit splits the input relation into
its smaller independent groups on which the sandwiched operator is ex-
ecuted. After a group is processed PartitionRestart is used to trigger
the execution on the following group. Executing one of these operator
types with the help of the Sandwich Operators introduces minimal over-
head and does not penalty performance of the sandwiched operator as
its implementation remains unchanged. On the contrary, we show that
sandwiched execution of an operator results in lower memory consump-
tion and faster execution time. PartitionSplit and PartitionRestart

replace special implementations of partitioned versions of these operator.
Sandwich Operators also turn blocking operators in streaming operators,
resulting in faster response times for the first query results.
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1 Introduction

Today, data warehouses for various reporting and analytical tasks are typically
characterized by huge data volumes and a desire for interactive query response
times. Over the last few years, many different techniques have been developed to
address these challenges. Examples are techniques to reduce I/O by using colum-
nar data organization schemes and/or data compression, to avoid the I/O bot-
tleneck by keeping the data in memory (in-memory processing), and to exploit
the computing power of modern hardware by using parallelization, vectorization
as well as cache-conscious techniques.

Orthogonal to such improvements in raw query execution performance are
existing techniques like table partitioning, table ordering and table clustering
which are already found in many RDBMS products. Most of the commercial and
open source databases systems support some kind of (horizontal) partitioning
of tables and indexes [15, 9, 2]. Such partitioning is not only useful to support
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parallel access and to allow the query planner to prune unneeded data, but
provides basically a grouping of tuples. Another related technique is clustering
which also stores logically related data together. Examples are Multidimensional
Clustering (MDC) in IBM DB2 [11] or partitioned B-trees [3], which are defined
by distinct values in an artificial leading key column instead of a definition in
the catalog. In the world of column stores, finally, storage in (multiple) ordered
projections also provides a way to access data grouped by order key (range).

Though partitioning is based on a physical data organization whereas sorting
and clustering are more on a logical level within the same data structure, all
these techniques share a common basic concept: grouping of tuples based on
some criteria like (combinations of) attribute values.

Clustering and ordering are currently most considered for indexing and ex-
ploited for accelerating selections: selection predicates on the grouping keys (or
correlated with these) typically can avoid scanning large part of the data. Table
partitioning also leverages this through partition pruning : a query planner will
avoid to read data from table partitions whose data would always be excluded
by a selection predicate. For joins, it holds that these are exploited primarily in
table partitioning, if the partitioning key was fetched over a foreign key. In this
case, for evaluating that foreign key join, only the matching partitions need to
be joined. Partitioning is typically implemented by generating separate scans of
different partitions, and partially replicating the query plan for each partition,
which leads to a query plan blow-up. In [4] a technique is investigated to counter
the ill effects of such blow-up on query optimization complexity.

In this paper we introduce a generalization of the grouping principle that
underlies table partitioning, clustering and ordering, and that allows to elegantly
exploit such grouping in query plans without causing any query plan blow-up.
The basic idea is to not only make join operators, but also aggregation and sort
operators, exploit relevant grouping present in the stream of the tuples they
process. If this grouping is determined by the join, aggregation or sort key, the
operator can already generate all results so far as soon as its finishes with one
group, and the next group starts. Additionally, memory resources held in internal
hash tables can already be released, reducing resource consumption.

The elegance of our approach is found in two key aspects. The first is the
purely logical approach that treats grouping as a tuple ordering property cap-
tured in a synthetic groupID column, rather than physical groups, produced
by separate operators. This avoids the plan blow-up problem altogether (addi-
tionally makes grouping naturally fit query optimization frameworks that ex-
ploit interesting orderings – though for space reasons, query optimization be-
yond this paper’s scope). The second elegant aspect are the Sandwich Opera-
tors we propose, that allow to exploit ordering in join, aggregation and sort
operators without need for creating specialized grouped variant implementa-
tions. This approach sandwiches the grouped operator between PartitionSplit
and PartitionRestart operators that we introduce; and exploit the iterator
model with some sideways information passing between PartitionSplit and
PartitionRestart.
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The remainder of this paper is structured as follows: After introducing pre-
liminaries and basic notions in Sect. 2, we discuss the opportunities and use cases
of the sandwiching scheme in Sect. 3. The new query operators implementing this
sandwiching scheme are presented in Sect. 4. We implemented sandwich opera-
tors in a modified version of Vectorwise [5, 17]1. However, the general approach
can easily be adopted by other systems. In Sect. 5 we discuss necessary steps
and requirements and give an example. Our experiments on microbenchmarks
and all 22 TPC-H queries in Sect. 6 show advantages in speed, reduced memory
consumption and negligible overhead addressing the challenges of realtime data
warehousing. Finally, we conclude in Sect. 8 and point out future work.

2 Preliminaries

For easier understanding we follow two definitions introduced in [16]. The first
defines a physical Relation with the help of the total order BR

Definition 1 (Physical Relation). A physical relation R is a sequence of n
tuples t1 BR t2 BR . . .BR tn, such that “ti BR tj” holds for records ti and tj, if
ti immediately precedes tj, i, j ∈ {1, . . . , n}.

In the following we will use physical relation and tuple stream or input stream
interchangeable. A second definition only given informally in [16] is that of an
order property, which will be sufficient for our purposes here.

Definition 2 (Order Property). For a subset {A1, . . . , An} of Attributes of a
Relation R and αi ∈ {O,G} (αi = O defining an ordering, αi = G defining a
grouping), the sequence

Aα1
1 → Aα2

2 → . . .→ Aαn
n

is an attribute sequence that defines an order property for R, such that the major
ordering/grouping is Aα1

1 , the secondary ordering is Aα2
2 and so on.

Here, ordering (for simplicity only ascending) of an attribute Ai means that
tuples of R will follow the order of the values of column Ai. Grouping of an
attribute Aj is not as strong and only means that tuples with the same value
for attribute Aj will be grouped together in R, but tuples may not be ordered
according to values of Aj . For further reading we refer to [16].

Definition 3 (Group Identifier). A group identifier groupID is an addi-
tional implicit attribute to a relation R, representing the order property Aα1

1 →
Aα2

2 → . . . → Aαn
n of R. The values of attribute groupID are the result of a

bijective mapping function f : (A1, . . . , An)→ {1, . . . ,m}, where a t1. groupID
is smaller than t2. groupID , if and only if t1 precedes t2 in R.

This means, each value of groupID represents a value combination of the
attributes present in the order property. In addition, groupID is reconstructable
from a value combination of these attributes. Explicitly, each single occurrence
of a value of an attribute is reconstructable from groupID .
1 Vectorwise is a further development of X100 [17].
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3 Motivation

Various table storage schemes result in in a form of data organization, where
a subset of all table attributes determine an ordering or grouping of the stored
data. Examples of these schemes are amongst others MDC [11] or ADC [10] or
MDAM [6], where data is organized by a number of dimensions and can be re-
trieved in different orders. Additionally, column stores sometimes stored data in
(multiple, overlapping) sorted projections [14]. These methods have in common,
that data is not physically partitioned but has a physical ordering or group-
ing defined over one or multiple attributes that can be exploited during query
execution. Any index scan results in a relation that contains valuable informa-
tion about an ordering or grouping already present in the tuple stream. Our
sandwich approach is based on having one of these forms of data organization
and is designed to exploit such pre-ordering or pre-grouping. However, even sys-
tems implementing physical partitioning over one or more attributes provide the
same valuable information when multiple partitions are combined into a single
stream. Assuming a tuple stream that has a certain order or suborder defined
over a set of attributes, we can find standard operators and show potential for
optimization.

3.1 Aggregation/Grouping

In case of hash-based Aggregation/Grouping, if any subsetGs of the GROUPBY
keys determines a sub-sequence Aα1

1 → . . .→ Aαk

k of the order Aα1
1 → . . .→ Aαn

n

of the input tuple stream, k ≤ n, we can flush the operator’s hash table and
emit results as soon as the entire group - each group is defined by groupID - is
processed. Effectively, we execute the Aggregation/Grouping as a sequence of
Aggregation/Grouping operators, each of which operating on only one group
of data. This results in the Aggregation/Grouping behaving more like a non-
blocking, pipelined operator, emitting results on a per group basis. Additionally,
memory consumption should drop down, as the hash table only needs to be built
on a subset of all keys. This may cause Aggregation/Grouping to no longer spill
to disk, or its hash-table may become TLB or CPU cache resident. And as a
side effect from the reduced memory consumption we should get an improved
execution time of the Aggregation/Grouping.

3.2 Sort

If a prefix AO1 → . . . → AOk of the input relation’s order AO1 → . . . → AOn
represents the same ordering as a prefix BO1 → . . . → BOl of the requested sort
order BO1 → . . . → BOm, then the tuple stream is already pre-sorted at no cost
for B1, . . . , Bl and only needs to be sorted on the remaining minor sort keys
Bl+1, . . . , Bm. This again results in executing Sort as a sequence of Sorts, each
working only on a fraction of the data. The benefits of a grouped Sort should
be similar to grouped Aggregation/Grouping, but additionally, as data is only
sorted in small groups, the computational complexity also decreases.
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3.3 HashJoin

In case of any kind of HashJoin - this also includes Semi-, Anti- and Outer-Hash-
Joins - if a subset Ks of the join keys determines a prefix Aα1

1 → . . . → Aαk

k

of the order Aα1
1 → . . . → Aαn

n of one input tuple stream, k ≤ n, and Ks also
determines a prefix Bα1

1 → . . . → Bαk

k of the order Bα1
1 → . . . → Bαm

m of the
second input tuple stream, k ≤ m, we can transform the task into multiple Hash-
Joins, where the grouping is already present, and only matching groups induced
by Ks are joined. Similar to sandwiched Aggregation/Grouping, this should
result in smaller hash tables and, thus, less memory consumption for the build
phase and, as a consequence from the reduced memory, better cache awareness
for the build and probe phases, as well as better pipelining performance from
the grouped processing. If, in addition, in both cases αi = O, 1 ≤ i ≤ k, i.e.
there are only orderings involved and groupID is a strictly ascending column,
we can use merge techniques between the groups and skip the execution of the
HashJoin for complete groups if there is no matching groupID .

4 Sandwich Operators

In this section we introduce two new Sandwich operators PartitionSplit and
PartitionRestart that enable the use of (almost) unmodified existing Sort,
Aggregation/Grouping and HashJoin operators to exploit partial pre-ordering
of their input streams. Let this partial order be represented by an extra column
called groupID as introduced in 3.

The following algorithms illustrate our implementation in Vectorwise. Note
that Vectorwise realizes vectorized processing of data [17], where an operator
handles a vector of data at a time instead of just a tuple at a time. This enables
further optimizations but the core ideas of our algorithms are transferable to
tuple-at-a-time pipelining systems.

4.1 Sandwich Algorithms

Instead of implementing a partitioned variant of each physical Sort, Hash-
Join and Aggregation/Grouping operator, we devise a split and restart ap-
proach where the “sandwiched” operator is tricked into believing that the
end-of-group is end-of-stream, but after performing its epilogue action (e.g.
Aggregation/Grouping emitted all result tuples), the operator is restarted to
perform more work on the next group, reusing already allocated data structures.

For this purpose we added two new query operators PartitionSplit(stream,
groupID -col) and PartitionRestart(stream). The basic idea of these opera-

tors is illustrated in Fig.1 for an unary operator, HashAggr(1(a)), and a bi-
nary operator, HashJoin (1(b)). The PartitionSplit operator is inserted below
Sort, HashJoin or Aggregation/Grouping and the PartitionRestart on top.
PartitionSplit is used to detect group boundaries of the input stream using
attribute groupID and to break it up into chunks at the detected boundaries.
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PartitionRestart

HashAggr

PartitionSplit

Scan

(a) Example Sandwich Aggregation

PartitionRestart

HashJoin

PartitionSplit

Scan

PartitionSplit

Scan

(b) Example Sandwich HashJoin

Fig. 1. Sandwich Operators with sideways information passing

PartitionRestart controls the sandwiched operators restart after it finished
producing tuples for a group, passes on the result tuples to the next operator and
notifies its corresponding PartitionSplit operator(s), that the sandwiched op-
erator is ready to process the next group. Note that this communication between
PartitionRestart and PartitionSplit is a form of sideways information pass-
ing, for which PartitionRestart has to know the corresponding Partition-
Split operator(s) in the plan. These are determined during query initialization,
and typically are its grandchildren.

For both operators we outline their Next() methods. We also explain how
Sandwich Operators are used to process the pre-grouped data of a HashJoin in
a merge like fashion, where groups are skipped if group identifiers do not match.

PartitionSplit() controls the amount of tuples that are passed to the sand-
wiched operator. When a group boundary is detected, PartitionSplit stops
producing tuples and signals the sandwiched operator end-of-input while wait-
ing for its corresponding PartitionRestart to signal to produce tuples again.

PartitionSplit uses the following member variables:

run - state of the operator; RUN for producing, STOP at the end of a
group, END when finished with all groups.

net - current potion in the current vector
redo - signal to produce last group once more
veclen - length of current vector
vec - current vector
grp - current group identifier

This means the PartitionSplit.Next() method, as shown in Algorithm 1,
just forwards tuples until a group border is detected. In line 9 SkipVal(this.grp)
finds the number of tuples of the remaining range [this.nxt,this.veclen] of
vector this.grp that belong to the same group, i.e. it finds the position where
the groupID changes. On the next invocation after such a group border has
been reached and all its tuples have been passed, the method has set run=STOP
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// initially: run=RUN nxt=veclen=redo=grp=0
1 if this.run 6= RUN then return 0;
2 if ¬this.redo then
3 if this.nxt = this.veclen then
4 this.veclen ← Child.Next(); // get new tuples
5 this.nxt ← 0;
6 if this.veclen = 0 then
7 this.run ←END; // real end-of-stream
8 return 0;

9 n←this.vec[this.nxt..this.veclen].SkipVal(this.grp);
10 this.nxt ← this.nxt + n;
11 if this.nxt < this.veclen then
12 this.grp ← this.vec [this.nxt ]. groupID ; // advance to next group ID
13 this.run ← STOP; // next group in sight

14 else
15 n← this.redo;
16 this.redo ← 0 // see SkipGrp

17 return n; // return vector of n tuples
Algorithm 1: PartitionSplit.Next()

(line 13) and returns 0 (line 1), signaling (deceivingly) end-of-stream to the par-
ent operator. This will lead an Aggregation/Grouping to emit aggregate result
tuples of the, to this point, aggregated values, i.e. aggregates over the current
group, after which it will pass 0 to its parent, in general PartitionRestart. In
a similar way Sort will produce a sorted stream of the current group and Hash-
Join will either switch from building to probing or produce result tuples for
the current group, depending on which PartitionSplit sent the end-of-stream
signal. When PartitionSplit.Next() is called after it had previously stopped,
it first checks if there are still tuples left in the current vector (line 3) and, if
needed, fetches a new vector (line 4) or switches to run=END (line 7) if the final
vector was processed.

PartitionRestart() controls the restart of the sandwiched operator and its
associated PartitionSplit(s). In addition it applies the merge techniques in
case of a sandwiched HashJoin.

PartitionRestart has the following member variables:

Child - the operator below in the operator tree, usually the sandwiched
operator

lSplit - the corresponding (left, in case of a binary sandwich) Partition-
Split

rSplit - in right PartitionSplit in case of a binary sandwiched operator

The PartitionRestart.Next() method (Algorithm 2) also just passes on tu-
ples (line 9), until it receives an end-of-stream signal from its Child (line 3). For a
unary operator it de-blocks its corresponding PartitionSplit if it was STOPped
(lines 5,6). For a binary operator it calls PartitionRestart.GroupMergeNext()
(line 7) which handles the de-blocking of the two PartitionSplit operators in



8 Baumann, Boncz, Sattler

1 n← 0;
2 while n = 0 do
3 if (n← this.Child.Next()) = 0 then
4 if IsUnarySandwich(this) then
5 if this.lSplit.run = END then break;
6 this.lSplit.run ← RUN; // deblock Split

7 else if ¬GroupMergeNext() then break;
8 this.Child.Restart(); // e.g., flush Aggregation/Grouping hashtable

9 return n; // return vector of n tuples
Algorithm 2: PartitionRestart.Next()

this case. Finally, it restarts the sandwiched child in line 8. If the Partition-
Split operators do not have any more input data for the sandwiched operator,
then the while loop is exited in either line 5 or line 7 and 0 is returned, signaling
end of stream to the operators further up in the tree.

1 while this.lSplit.grp 6= this.rSplit.grp do
2 if this.lSplit.grp > this.rSplit.grp then
3 if ¬this.rSplit.SkipGrp(this.lSplit.grp) then break;

4 else if this.lSplit.grp < this.rSplit.grp then
5 if ¬this.lSplit.SkipGrp(this.rSplit.grp) then break;

6 return this.lSplit.run 6= END and this.rSplit.run 6= END;
Algorithm 3: PartitionRestart.GroupMergeNext()

The group based merge join is implemented in PartitionRestart.Group-
MergeNext() (see Algorithm 3) using a merge-join between the PartitionSplit
operators to match groups from both input streams on its groupID values. Of
course it is necessary here, that groupID is not only an identifier but sorted
ascending or descending on both sides. It is given here for Inner-HashJoin: for
Outer- and Anti-HashJoins it should return matching success even if one of
the sides does not match (i.e. an empty group).

1 n← 0;
2 while this.grp < grp do
3 if this.run 6= END then
4 this.run ←RUN; // force progress
5 n← PartitionSplit.Next();

6 if this.run = END then return FALSE;
7 if this.vec [this.veclen− 1]. groupID < grp then
8 this.nxt ← this.veclen; // vector shortcut to skip search in Next()

9 this.redo ← n;
10 this.run ← RUN // Next() returns vector again
11 return TRUE;

Algorithm 4: PartitionSplit.SkipGrp(grp)
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It uses PartitionSplit.SkipGrp (Algorithm 4) to advance over groups as
long as the current groupID is still smaller than the target groupID . In turn
PartitionSplit.SkipGrp calls PartitionSplit.Next() (line 5) to find the next
groupID (Algorithm 1, line 12). In lines 7-8 a shortcut is used to avoid skipping

over every distinct groupID in the vector (setting this.nxt to the vector length
will trigger the call for the next vector in PartitionSplit.Next(), line 3-4).
The redo variable used in both methods is needed, as the sandwiched operator’s
Next() call needs to receive the last tuple vector once more.

Recall, that in our test implementation in Vectorwise these methods manipu-
late vectors rather than individual tuples, which reduces interpretation overhead
and offers algorithmic optimization opportunities. For instance, the SkipVal()
routine (not shown) uses binary search inside the vector to find the next group
boundary, hence group finding cost is sub-linear. Another example is the vec-
tor shortcut in line 7 of Algorithm 4, where an entire vector gets skipped in
GroupMergeNext() based on one comparison – checking if the last value in the
vector is still too low.

We extended the (vectorized) open(), next(), close() operator API in Vec-
torwise with a restart() method to enable operators to run in sandwich – note
that many existing database systems already have such a method (used e.g. in
executing non-flattened nested query plans). This restart() method has the task
to bring an operator in its initial state; for hash-based operators it typically
flushes the hash table. A workaround could be to re-initialize which may result
in somewhat slower performance.

5 Application of Sandwich Operators

In order to introduce sandwich operators into query plans, the system needs to
be able to generate and detect operator sandwiching opportunities.

5.1 Order Tracking and Analysis.

Table partitioning, indexing, clustering and ordering schemes, can efficiently
produce sorted or grouped tuple streams in a scan. Though these various ap-
proaches, and various systems implementing them, handle this in varied ways,
conceptually (and often practically) it is easy to add a proper groupID col-
umn to such a tuple stream. Note that we make little assumptions on the shape
of this groupID column. It does not need to be a simple integer, since our
PartitionSplit and PartitionRestart operators can in fact trivially work
with multi-column group keys as well. In the following, we abstract this into a
scan called GIDscan, that a) adds some groupID column and b) produces a
stream ordered on groupID .

Such ordering/grouping on groupID from a GIDscan will propagate through
the query plan as described in [16]. In our system Vectorwise, the operators
Project, Select and the left (outer) side of joins preserve order and were used
for order propagation.
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Formally, the original ordering or grouping attributes functionally determine
the groupID column. If the optimizer has metadata about functional dependen-
cies between combinations of attributes, it will be able to infer that other groups
of attributes also determine the groupID column. This order and grouping
tracking and functional dependency analysis during query optimization should
go hand-in-hand with tracking of foreign key joins in the query plan. The order
and grouping tracking allows to identify whether aggregation and sort keys de-
termine a groupID , providing a sandwich opportunity. The additional foreign
key tracking in combination with this, allows a query optimizer to detect that
the join keys on both sides on the join are determined by matching groupID
columns (groups with the same boundaries), such that join results can only come
from matching groupID groups on both sides of a join. This allows to identify
sandwiching opportunities for joins.

5.2 Query Optimization

Sandwiched query operators consume much less memory and run faster due
to better cache locality but also because its reduced memory consumption will
typically eliminate the need for disk spilling, if there was one. Therefore, the
query optimizer, and in particular its cost model, should be made aware of the
cost of sandwiched operators. Note, that estimating the cost of the Partition-
Split and PartitionRestart operators is not the problem here, as they only
bring linear (but low) CPU cost in terms of the amount of tuples that stream
through them. If fact, thanks to the vectorized optimizations that we outlined,
their cost is actually sub-linear: (i) finding group boundaries in Partition-
Split uses binary search, and (ii) the merge join between groups in Partition-
Restart typically only looks at the first and last vector values, thanks to the
skip optimization. Therefore, our cost model just ignores the cost of these two
operators, and focuses on adapting the cost of the sandwiched aggregation, join
and sort operators. The cost model extensions are quite simple and are based on
the number of groups γrel present in an input relation rel. Sort costs decrease
from O(N ·log(N)) to O(N ·log(N/γrel)). For hash-based aggregation and Hash-
Join, one simply reduces the hash table size fed into any existing cost model
(e.g. [7]) by factor γrel.

As for the bigger picture in sandwiched query optimization, we note that in a
multi-dimensional setup such as MDC or any partitioning, indexing, clustering
or ordering scheme with a multi-column key, it may be possible to efficiently
generate tuples in many orders: potentially for any ordering of any a subset of
these keys. The potential to generate such different ordered tuple streams leads to
different, and sometimes conflicting sandwiching opportunities higher up in the
plan. Due to space restrictions, the question how to choose the best orderings is
beyond the scope of this paper, but we can note here that our solution seamlessly
fits into the well known concept of interesting order optimization [13], and on
which we will report in a subsequent paper.
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GIDscan ORDERS
o_orderkey, o_orderdate,

o_custkey
(o_custkey:n_nationkey)O

->(o_orderdate)O

GIDscan LINEITEM
l_orderkey

(l_orderkey:n_nationkey)O

->(l_ordrekey:o_orderdate)O

PartitionRestart()

PartitionRestart()

PartitionSplit(ORDERS._groupId_)

PartitionSplit(LINEITEM._groupId_)

PartitionSplit(LINEITEM._groupId_)

59,986,052

15,000,000

15,000,000

300,750

59,986,052

15,000,000

59,986,052

300,750

Summary
time: 9.15s

MEM: 825.3MB

Summary
time: 7.43s

MEM: 18.83MB

59,986,052

1,500,000

GIDScan CUSTOMER
c_custkey, c_nationkey,

c_mktsegment
(c_nationkey:n_nationkey)O

1,500,000
15,000,000

PartitionRestart()

PartitionSplit(CUSTOMER._groupId_)PartitionSplit(ORDERS._groupId_)
(n_nationkey)O

Scan LINEITEM
l_orderkey

(l_orderkey:n_nationkey)O

->(l_ordrekey:o_orderdate)O

Scan ORDERS
o_orderkey, o_orderdate,

o_custkey
(o_custkey:n_nationkey)O

->(o_orderdate)O

Scan CUSTOMER
c_custkey, c_nationkey,

c_mktsegment
(c_nationkey:n_nationkey)O

 
l_orderkey     o_orderkey

       
o_orderdate, c_nationkey, c_mktsegment

c = count(*)

time: 3.43 s
MEM: 20.66 MBHashAggr

 
l_orderkey        o_orderkey

time: 4.32 s
MEM: 735.34 MBHashJoin time: 3.46 s

MEM: 4.55 MBHashJoin

       
o_orderdate, c_nationkey, c_mktsegment

c = count(*)

time: 2.14 s
MEM: 1.58 MBHashAggr

 
o_custkey     c_custkey

time: 1.08 s
MEM: 68.50MBHashJoin  

o_custkey     c_custkey

time: 0.91 s
MEM: 7.32 MBHashJoin

Fig. 2. Example query with and without sandwich operators.

5.3 An Example

In Figure 2 we demonstrate the use of sandwich operators in the following query
on the TPC-H dataset:
SELECT o orderdate, c nationkey, count(*)
FROM CUSTOMER, ORDERS, LINEITEM
WHERE c custkey=o custkey

AND o orderkey=l orderkey
GROUP BY o orderdate, c nationkey, city(c address)

This query is a simple version of counting the number of lineitems per market
segment of each nation and date. The operators of interest are annotated with
overall memory consumption and execution time, explaining the overall gain as
summarized in the two summary boxes.

Assume the tables to be organized according to the following order properties:
CUSTOMER : c nationkeyO

ORDERS : [o custkey.c custkey].c nationkeyO → o orderdateO

LINEITEM : [l orderkey.o orderkey].[o custkey.c custkey].n nationkeyO

→[l orderkey.o orderkey].o orderdateO
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where [A1, A2] denote a foreign key relationship between two tables, i.e.
[o custkey.c custkey].c nationkeyO means that ORDERS is major sorted ac-
cording to the customer nations.

As there is no information about the order of ORDERS or LINEITEM inside the
nation/date groups , the original plan is still a hash based plan. Same holds for
the ordering of CUSTOMER and ORDERS and ordering information about custkey.

However, as we have ordering properties of the tuple streams we can perform
the following sandwich optimizations:

– HashJoin(ORDERS, CUSTOMER): Both join keys determine the ordering on
n nationkey. Thus, the grouping on CUSTOMER can fully be exploited. Note,
that ORDERS has a more detailed grouping, i.e. in addition to n nationkey also
o orderdate, and for the split only the grouping on n nationkey is taken into
account. This is possible as we constructed groupID in a way that enabled the
extraction of major orderings (see Sect. 2). In order to sandwich the HashJoin,
PartitionRestart is inserted on top and one PartitionSplit per child is
inserted on top of each input stream. PartitionSplit for the ORDERS stream
needs to be provided with an extraction function of only the n nationkey
ordering. This results in 9x reduced memory consumption and 16% speedup.

– HashJoin(LINEITEM, ORDERS): Here, both join keys determine the full order-
ing as given be the order properties, so the sandwich can is over the complete
pre-ordering. PartitionRestart and PartitionSplit are inserted similar to
the first case. As this sandwich operation exploits even more bits, the memory
reduction is even more significant (161x), also the speedup with 20% is higher.

– HashAggr(o orderdate, c nationkey, c city): Two of three grouping keys,
i.e. o orderkey and c nationkey not only determine the ordering of the in-
put stream but also are determined by LINEITEM. groupID . That means the
aggregation can be sandwiched using this pre-ordering and is only performed
on a per city basis. For the HashAggr, again, a PartitionRestart is inserted
on top and a PartitionSplit on LINEITEM. groupID is inserted on top of
its input stream. Reducing the HashAggr to a per city basis accelerates the
operator by 38% and reduces memory needs 13-times.

Note, that in all cases, input data already arrives in a cache friendly order,
i.e. the input streams are grouped in similar ways. This means that for example
in the ORDERS-CUSTOMER join customers as well as orders are already grouped by
nation. This already results in locality for the HashJoin itself, an effect that is
again amplified by the sandwich operators as the hash table size is shrunk.

6 Evaluation of Sandwich Operators

We evaluated on an Intel Xeon E5505 2.00 GHz with 16GB main memory, a
standard 1TB WD Caviar Black hard drive for the operating system, a 64 bit
Debian Linux with kernel version 2.6.32. The system has 4 cores with 32KB L1,
256KB L2 and 4096KB L3 cache per core. Databases were stored on a RAID0
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Fig. 3. Sandwiched HashAggr & HashJoin: Elapsed time, memory usage, DTLB and
last level cache misses for counting the frequency of TPC-H l orderkey and joining
LINEITEM and ORDERS on orderkey using different number of groups.

of 4 Intel X25M SSDs with a stripe size of 128KB (32KB chunks per disk) and
a maximum bandwidth of 1GB/s. As our implementation does not yet support
parallelization, queries are only executed on a single core. Out test database
system is Vectorwise. It is set up to use 4GB of buffer space and 12GB of query
memory. The page size was set to 32KB. The group size of consecutively stored
pages was set to 1, leaving the distribution of pages to the file system.

6.1 Micro Benchmarks

Table setup. For the micro-benchmarks for Aggregation/Grouping and Hash-
Join we used the ORDERS and LINEITEM table as explained in Sect. 5.3. For the
Sort micro benchmark we used an ORDERS table ordered on just o orderdate.
Data was stored uncompressed and hot. In order to get the different number of
groups, we combined two neighboring groups from one run to the next.

Aggregation/Grouping and HashJoin. The aggregation micro-benchmark
scans l orderkey and counts the frequency of each value. As l orderkey deter-
mines the full ordering we can use the full pre-ordering for sandwiched aggrega-
tion. The join micro-benchmark performs a sandwiched hash-join of LINEITEM
with ORDERS on their foreign key relationship [l orderkey, o orderkey], with
the smaller relation ORDERS as build relation. The time to scan the buffered rela-
tions is negligible, i.e. about 0.2s for LINEITEM and 0.05s for ORDERS. The same
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Fig. 4. Sandwiched Sort : Elapsed time vs. pure sorting cost for sorting ORDERS on
o orderdate using different number of groups.

holds for memory consumption, where even in case of 128k groups still 95% of
memory is allocated by the aggregation or join.

Their behavior is nearly identical. The upper part of Figure 3 shows that
with more groups, memory consumption goes down while speed goes up. This is
explained by the lower part: hash table size decreases with higher group numbers,
causing the number of TLB and lowest level cache (LL) misses to drop. At 128
groups cache misses reach a minimum, as the hash table then fits into cache
(15M distinct values; 15M/128 ∗ 32B ≈ 3.6MB).

Again, the reminder, that input relations already arrive in a cache friendly
order and sandwich operators just amplify this cache residency effect. When
comparing the HashJoin experiment to the example given in Section 5.3 where
we can see the execution time and memory for 1 and 128k groups, it is obvious
that a) the case with one group is faster and b) the case with 128k groups is
slower. The explanation for a) are pipelining effects that accelerate the LINEITEM-
ORDERS join in its build phase, as the tuple vectors from the ORDERS-CUSTOMER
join are already in cache, accelerating the build phase by 60%. The explanation
for b) is that more data is handled (two attributed from the customer relation
and o orderdate, that add memory requirement and a penalty to the execution
time, becoming more visible in the cache critical experiment.

Sort. The Sort micro benchmark sorts ORDERS on o orderdate and o custkey
exploiting pre-ordering on o orderdate. Again, neighboring groups were com-
bined to get different granularities. The Sort analysis is a bit different, as cache
miss numbers are between one and two orders of magnitude lower and thus there
is less impact on the execution time (see Fig. 3). Detailed profiling information,
however, show that the Sort operator is dominated by the quick sort routines
(78-82%, depending on the number of groups), and that the actual work by the
CPU in these routines decreases at about the rate the execution time decreases
and savings by memory access are only of minor importance (comp. Fig. 4).

6.2 TPC-H Benchmark

We implemented a prototype z-ordering [8] in Vectorwise and executed the 22
TPC-H queries scale factor SF100 one time using Sandwich Operators and an-
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Fig. 5. Relative execution time and memory consumption for all 22 TPC-H queries
with and without Sandwich Operators.

other time not using them. Besides sandwiching, all other optimizations, e.g.
selection pushdown to scans, were applied in both runs. This leads to Fig. 5,
where we show the differences in execution time and memory consumption for
both runs. Showing clear benefits for the run with the Sandwich Operators for
memory consumption as well as execution time across the query set. In total
Sandwich Operators save about 125 sec and 22.4 GB of memory.

7 Related Work

In [1] special query processing techniques for MDC [11] based on block index
scans are explained, that pre-process existing block-indexes before joins or ag-
gregations and are only very briefly described. [4] techniques focus on processing
partitioned data and, thus, have separate group matching and group process-
ing phases. Both approaches differ from our approach as Sandwich Operators
are fully integrated in the query plan. Systems like [15, 9] generate partition
wise operators, where our approach reuses the same operator, saving memory
and time. Works like [12] focus on dynamic partitioning rather than exploiting
orderings in relations.

8 Conclusion and Outlook

In this paper we introduced the “Sandwich Operators”, an easy and elegant
approach to exploit grouping or ordering properties of relations during query
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processing, that fits many table partitioning, indexing, clustering and ordering
approaches, and though its treatment as grouping as a logical ordering property
avoids plan size explosion as experienced in query optimization for partitioned ta-
bles. We showed how the sandwich operators accelerate Aggregation/Grouping,
HashJoin and Sort and reduce their memory requirements.

As future work we see the combination the sandwich scheme with intra op-
erator and intra query tree parallelization, where a PartitionSplit not only
splits the input relation but distributes the groups for one or more operators
among multiple cores, taking advantage of modern processor architectures.

Additionally, we left untouched the issue of query optimization for sandwich-
ing in multi-dimensional storage schemes, where a query processor can generate
tuple streams efficiently in many orders. Here, the question arises which orders
to use, such that the query plan optimally profits from the sandwiching.
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