Skip to main content

Self-Organized Functional Hierarchy Through Multiple Timescales: Neuro-dynamical Accounts for Behavioral Compositionality

  • Chapter
  • First Online:
  • 1222 Accesses

Abstract

Based on the ideas of self-organized functional hierarchy in dynamics of distributed neural activities, we introduce a series of neural modeling studies. The models have been examined through robot experiments for the purpose of exploring novel phenomena appearing in the interaction between neural dynamics and physical actions, which could provide us new insights to understand nontrivial brain mechanisms. Those robot experiments successfully showed us how a set of behavior primitives can be learned with distributed neural activity and how functional hierarchy can be developed for manipulating these primitives in a compositional manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arbib, M., Erdi, P., Szentagothai, J. (1998). Neural organization: structure, function, and dynamics. Cambridge: MIT.

    Google Scholar 

  • Arie, H., Endo, T., Arakaki, T., Sugano, S., Tani, J. (2009). Creating novel goal-directed actions at criticality: a neuro-robotic experiment. New Mathematics and Natural Computation, 5, 307–334.

    Article  MATH  Google Scholar 

  • Baldassarre, G. (2002). A modular neural-network model of the basal ganglia’s role in learning and selecting motor behaviours. Cognitive Systems Research, 3(1), 5–13.

    Article  Google Scholar 

  • Boemio, A., Fromm, S., Braun, A., Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8, 389–395.

    Article  Google Scholar 

  • Botvinick, M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12, 201–208.

    Article  Google Scholar 

  • Evans, G. (1981). chapter Semantic Theory and Tacit Knowledge. In Wittgenstein: to follow a rule (pp. 118–137). London: Routledge and Kegan Paul.

    Google Scholar 

  • Felleman, D., & Van Essen, D. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  Google Scholar 

  • Fuster, J. (2001). The prefrontal cortex–an update: time is of the essence. Neuron, 30, 319–333.

    Article  Google Scholar 

  • Giszter, S., Mussa-Ivaldi, F., Bizzi, E. (1993). Convergent force fields organized in the frog’s spinal cord. Journal of Neuroscience, 13, 467–491.

    Google Scholar 

  • Graziano, M., Taylor, C., Moore, T., Cooke, D. (2002). The cortical control of movement revisited. Neuron, 36, 349–362.

    Article  Google Scholar 

  • Haruno, M., Wolpert, D., Kawato, M. (2001). Mosaic model for sensorimotor learning and control. Neural Computation, 13, 2201–2220.

    Article  MATH  Google Scholar 

  • Hilgetag, C., O’Neill, M., Young, M. (2000). Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philosophical Transactions of the Royal Society of London B, 355, 71–89.

    Article  Google Scholar 

  • Honey, C., Kotter, R., Breakspear, M., Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences USA, 104, 10240–10245.

    Article  Google Scholar 

  • Hubener, M., Shoham, D., Grinvald, A., Bonhoeffer, T. (1997). Spatial relationships among three columnar systems in cat area 17. Journal of Neuroscience, 17, 9270–9284.

    Google Scholar 

  • Huys, R., Daffertshofer, A., Beek, P. (2004). Multiple time scales and multiform dynamics in learning to juggle. Motor Control, 8, 188–212.

    Google Scholar 

  • Ito, M., & Tani, J. (2004). On-line imitative interaction with a humanoid robot using a dynamic neural network model of a mirror system. Adaptive Behavior, 12, 93–115.

    Article  Google Scholar 

  • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science, 304, 78–80.

    Article  Google Scholar 

  • Kording, K., Tenenbaum, J., Shadmehr, R. (2007). The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neuroscience, 10, 779–786.

    Article  Google Scholar 

  • Kuniyoshi, Y., & Sangawa, S. (2006). Early motor development from partially ordered neural-body dynamics – experiments with a cortico-spinal-musculo-skeletal model. Biological Cybernetics, 95, 589–605.

    Article  MATH  Google Scholar 

  • Maass, W., Natschlaeger, T., Markram, H. (2002). Real-time computing without stable states: s new framework for neural computation based on perturbations. Neural Computation, 14, 2531–2560.

    Article  MATH  Google Scholar 

  • Mussa-Ivaldi, F., & Bizzi, E. (2000). Motor learning through the combination of primitives. Philosophical Transactions of the Royal Society of London B, 355, 1755–1769.

    Article  Google Scholar 

  • Namikawa, J., Nishimoto, R., Tani, J. (2011). A neurodynamic account of spontaneous behaviour. PLoS Computational Biology, 7, e1002221.

    Article  Google Scholar 

  • Newell, K., Liu, Y., Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological Review, 108, 57–82.

    Article  Google Scholar 

  • Nishimoto, R., & Tani, J. (2009). Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study. Psychological Research, 73, 545–558.

    Article  Google Scholar 

  • Nolfi, S. (2002). Evolving robots able to self-localize in the environment: the importance of viewing cognition as the result of processes occurring at different time scales. Connection Science, 14, 231–244.

    Article  Google Scholar 

  • Paine, R., & Tani, J. (2005). How hierarchical control self-organizes in artificial adaptive systems. Adaptive Behavior, 13, 211–225.

    Article  Google Scholar 

  • Poeppel, D., Idsardi, W., van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society of London B, Biology Science, 363, 1071–1086.

    Article  Google Scholar 

  • Precup, D., & Sutton, R. (1997). Multi-time models for temporally abstract planning. In Advances in neural information processing systems (vol. 10, pp. 1050–1056). Cambridge: MIT.

    Google Scholar 

  • Sakai, K., Kitaguchi, K., Hikosaka, O. (2003). Chunking during human visuomotor sequence learning. Experimental Brain Research, 52, 229–242.

    Article  Google Scholar 

  • Schiller, P., & Logothetis, N. (1990). The color-opponent and broad-band channels of the primate visual system. Trends Neuroscience, 13, 392–398.

    Article  Google Scholar 

  • Seung, H. (2003). Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron, 40, 1063–1073.

    Article  Google Scholar 

  • Smith, M., Ghazizadeh, A., Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4, e179.

    Article  Google Scholar 

  • Sugita, Y., & Tani, J. (2004). Learning semantic combinatoriality from the interaction between linguistic and behavioral processes. Adaptive Behavior, 13, 33–52.

    Article  Google Scholar 

  • Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks, 16, 11–23.

    Article  Google Scholar 

  • Tani, J., & Ito, M. (2003). Self-organization of behavioral primitives as multiple attractor dynamics: a robot experiment. IEEE Transactions on Systems, Man, and Cybernetics. Part A – Systems and Humans, 33, 481–488.

    Google Scholar 

  • Tani, J., Ito, M., Sugita, Y. (2004). Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using rnnpb. Neural Networks, 17, 1273–1289.

    Article  Google Scholar 

  • Tani, J., Nishimoto, R., Namikawa, J., Ito, M. (2008a). Codevelopmental learning between human and humanoid robot using a dynamic neural-network model. Systems, Man, and Cybernetics, Part B: Cybernetics, 38, 43–59.

    Article  Google Scholar 

  • Tani, J., Nishimoto, R., Paine, R. (2008b). Achieving ‘organic compositionality’ through self-organization: reviews on brain-inspired robotics experiments. Neural Networks, 21, 584–603.

    Article  Google Scholar 

  • Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks, 12, 1131–1141.

    Article  Google Scholar 

  • Thoroughman, K., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Science, 407, 742–747.

    Google Scholar 

  • Tokunaga, K., & Furukawa, T. (2009). Modular network som. Neural Networks, 22, 82–90.

    Article  Google Scholar 

  • Tootell, R., Silverman, M., De Valois, R. (1981). Spatial frequency columns in primary visual cortex. Science, 214, 813–815.

    Article  Google Scholar 

  • Varela, F., Lachaux, J., Rodriguez, E., Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239.

    Article  Google Scholar 

  • Vuilleumier, P., Armony, J., Driver, J., Dolan, R. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6, 624–631.

    Article  Google Scholar 

  • Xie, X., & Seung, H. (2004). Learning in neural networks by reinforcement of irregular spiking. Physical Review E, 69, 041909.

    Article  MathSciNet  Google Scholar 

  • Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Computational Biology, 4, e1000220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamashita, Y., Tani, J. (2013). Self-Organized Functional Hierarchy Through Multiple Timescales: Neuro-dynamical Accounts for Behavioral Compositionality. In: Baldassarre, G., Mirolli, M. (eds) Computational and Robotic Models of the Hierarchical Organization of Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39875-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39875-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39874-2

  • Online ISBN: 978-3-642-39875-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics