
Evaluating User Privacy in Bitcoin

Elli Androulaki1, Ghassan O. Karame2, Marc Roeschlin1,
Tobias Scherer1, and Srdjan Capkun1

1 ETH Zurich, 8092 Zuerich, Switzerland
elli.androulaki@inf.ethz.ch, romarc@student.ethz.ch,

schereto@student.ethz.ch, capkuns@inf.ethz.ch
2 NEC Laboratories Europe, 69115 Heidelberg, Germany

ghassan.karame@neclab.eu

Abstract. Bitcoin is quickly emerging as a popular digital payment system. How-
ever, in spite of its reliance on pseudonyms, Bitcoin raises a number of privacy
concerns due to the fact that all of the transactions that take place are publicly
announced in the system.
In this paper, we investigate the privacy provisions in Bitcoin when it is used as
a primary currency to support the daily transactions of individuals in a university
setting. More specifically, we evaluate the privacy that is provided by Bitcoin (i)
by analyzing the genuine Bitcoin system and (ii) through a simulator that faith-
fully mimics the use of Bitcoin within a university. In this setting, our results
show that the profiles of almost 40% of the users can be, to a large extent, recov-
ered even when users adopt privacy measures recommended by Bitcoin. To the
best of our knowledge, this is the first work that comprehensively analyzes, and
evaluates the privacy implications of Bitcoin.

1 Introduction

Bitcoin [6] is an emerging digital currency that is currently being integrated across a
number of businesses [1] and exchange markets.

Bitcoin is a Proof-of-Work (PoW) based currency that allows users to generate dig-
ital coins by performing computations. Bitcoin users execute payments by digitally
signing their transactions and are prevented from double-spending their coins (i.e.,
signing-over the same coin to two different users) through a distributed time-stamping
service [6]. This service operates on top of the Bitcoin Peer-to-Peer (P2P) network and
ensures that all transactions and their order of execution are available to the public.
To strengthen the privacy of its users, Bitcoin users participate in transactions using
pseudonyms—referred to as Bitcoin addresses. Generally, each user has hundreds of
different Bitcoin addresses that are all stored and transparently managed by its client.

In spite of the reliance on pseudonyms, the public timestamping mechanism of Bit-
coin raises serious concerns with respect to the privacy of users. In fact, given that
Bitcoin transactions basically consist of a chain of digital signatures, the expenditure of
individual coins can be publicly tracked [16].

In this work, we evaluate the privacy that is provided by Bitcoin when it is used
to support the daily transactions of individuals in a university setting. This is achieved

(i) by investigating the behavior of Bitcoin client and exploiting its properties, and (ii)
through a novel simulator that mimics the use of Bitcoin as the primary currency within
a university setting. Finally, we discuss possible measures that can be used to enhance
the privacy of users in Bitcoin. To the best of our knowledge, this is the first work
that analyzes, and evaluates the privacy provisions in Bitcoin. More specifically, our
contributions in this paper can be summarized as follows:

- We adapt existing privacy notions to the Bitcoin context and we investigate the privacy-
enhancing measures that are used in current Bitcoin implementations.

- We design and implement a simulator that faithfully emulates the functionality of Bit-
coin. Our simulator also provides us with “ground truth” information that corresponds
to the use of Bitcoin in a university setting.

- We investigate the privacy provisions of Bitcoin in a realistic university setting through
our simulator. Our results show that the profiles of 40% of the university users can be
constructed using behavior-based clustering techniques with 80% accuracy, even in
the case when users manually transfer their Bitcoins among their addresses in an at-
tempt to enhance their privacy.

- We discuss possible measures that can be used by Bitcoin developers to enhance the
privacy of users in Bitcoin.

The remainder of this paper is organized as follows. In Section 2, we present a back-
ground on Bitcoin. In Section 3, we introduce metrics that we use to measure privacy
in Bitcoin. In Section 4, we present our Bitcoin simulator and our evaluation results. In
Section 5, we discuss the implications of our findings and we explore possible counter-
measures for enhancing privacy in Bitcoin. In Section 6, we overview the related work
and we conclude the paper in Section 7.

2 Background on Bitcoin

Bitcoin is a decentralized P2P payment system [6] that relies on PoW. Payments are
performed by generating transactions that transfer Bitcoin coins (BTCs) between Bit-
coin users. Users participate in transactions using pseudonyms—referred to as Bitcoin
addresses. Generally, each user has hundreds of different Bitcoin addresses that are all
stored and managed by its (digital) wallet. Each address is mapped through a transfor-
mation function to a unique public/private key pair. These keys are used to authorize
the transfer of the ownership of BTCs among addresses.

Transactions: Users transfer coins (BTCs) to each other by issuing a transaction. A
transaction is formed by digitally signing a hash of the transaction through which a BTC
was acquired. Given that in Bitcoin there is one-to-one correspondence between signa-
ture public keys and addresses, a transaction taking place between two addresses aS and
aR has the following form: τ(aS → aR) = {source, B, aR, SIGskaS

(source, B, aR)}.
Here, SIGskaS

is the signature using the private key skaS that corresponds to the pub-
lic key associated with the aS, B is the amount of BTCs transferred, and source is a
reference to the most recent transaction that aS acquired the B BTCs from. After their
creation, Bitcoin transactions are released in the Bitcoin network. Once the validity of τ

is confirmed (as described later in this section), aR can subsequently use this transaction
as a reference to spend the acquired BTCs. Consequently, Bitcoin transactions form a
public record and any user can verify the authenticity of a BTC by checking the chain
of signatures of the transactions in which the BTC was involved.

In the case where aS needs to spend a value that exceeds the maximum value of a
BTC that it possesses, then its Bitcoin client will automatically combine a number of
its BTCs as multiple inputs of the same outgoing transaction. We analyze the impact of
“multi-input” transactions on the privacy of users in Bitcoin in Section 4.1. Figure 4 in
Appendix A depicts an example of multiple-input transactions.

Shadow Addresses: In the current implementation of Bitcoin, a new address—the
“shadow” address [1]—is automatically created and used to collect back the “change”
that results from any transaction issued by the user. Besides the reliance on pseudonyms,
shadow addresses constitute the only mechanism adopted by Bitcoin to strengthen the
privacy of its users.

Confirmation of Transactions: As mentioned before, transactions are broadcasted in
the Bitcoin network and are subject to validity checks by users in the system. Valid
transactions are included by a special type of users, the miners, in Bitcoin blocks that are
also broadcasted in the network. More specifically, to generate a new block, miners must
find a nonce value that, when hashed with additional fields (i.e., the Merkle hash of all
valid and received transactions, the hash of the previous block, and a timestamp), results
in a value below a given threshold. If such a nonce is found, miners then include it in
a block thus allowing any entity to verify the PoW. Upon successful block generation,
a miner is granted a number of new BTCs. This provides an incentive for miners to
continuously support Bitcoin. Table 2 in Appendix B shows the information included in
Bitcoin block number 80,000 as reported in the Bitcoin block explorer [2]. The resulting
block is forwarded to all users in the network, who can then check its correctness by
verifying the hash computation. If the block is deemed to be “valid”3, then the users
append it to their previously accepted blocks, thus growing the Bitcoin block chain.
Bitcoin relies on this mechanism to resist double-spending attacks; for malicious users
to double-spend a BTC without being detected, they would not only have to redo all the
work required to compute the block where that BTC was spent, but also they need to
recompute all the subsequent blocks in the chain.

3 Modelling Privacy in Bitcoin

In this section, we introduce our adversarial model and we define a number of metrics
that can be used to quantify privacy in Bitcoin.

3.1 Adversarial Model

We observe the public log of Bitcoin, denoted by pubLog, within a period of time ∆t.
During this period, nU users, U = {u1, u2, . . . , unU

}, participate in pubLog through a
3 That is, the block contains correctly formed transactions that have not been previously spent,

and has a correct PoW.

set of nA addresses: A = {a1, a2, . . . , anA
}. We assume that within ∆t, nT transac-

tions have taken place as follows: T = {τ1(S1 → R1), . . . , τnT
(SnT

→ RnT
)}, where

τi(Si → Ri) denotes a transaction with (unique) ID number i and Si and Ri denote the
sets of senders’ addresses and recipients’ addresses, respectively.

We assume that the adversary A is motivated to acquire information about the ad-
dresses/transactions pertaining to all or a subset of Bitcoin users. As such, A does not
only have access to pubLog, but is also part of the Bitcoin system and can also incur one
or more transactions through Bitcoin. Furthermore, we assume that A can have access
to the (public) addresses of some vendors along with (statistical) information such as
the pricing of items or the number of their clients within a specified amount of time.
We, however, assume that A is computationally bounded and as such cannot construct
ill-formed Bitcoin blocks, double-spend confirmed transactions, or forge signatures, etc.

Throughout this paper, we consider the “privacy” measures adopted by existing
Bitcoin clients. Namely, we assume that (i) new shadow addresses are used to collect
change that results from issued transactions, (ii) users own many Bitcoin addresses, and
(iii) users are encouraged to frequently change their addresses (by transferring some
of their BTCs to newly created addresses); this conforms with the current practices
adopted in Bitcoin.

3.2 Quantifying Privacy in Bitcoin

In this section, we introduce two different notions of Bitcoin privacy, activity unlinka-
bility and profile indistinguishability and we provide metrics to appropriately quantify
these notions.

Activity unlinkability refers to the fact that an adversaryA should not be able to link
two different addresses (address unlinkability) or transactions (transaction unlinkabil-
ity) pertaining to a user of her choice. By design, ifA can link two Bitcoin addresses to
the same user, then she can also link all the transactions that these addresses participate
in. Therefore, we focus our analysis on address unlinkability. On the other hand, profile
indistinguishability refers to the (in-)ability of A to reconstruct the profiles of all the
users that participate in pubLog. Profiles, here, consist of the set of addresses (address-
based profiles) or set of transactions (transaction-based profiles) of Bitcoin users. As
such, profile indistinguishability property is a stronger privacy notion than the activity
unlinkability as it assesses the concealment of the profiles of all users in Bitcoin. Unlike
the activity unlinkability case, here we also account for transaction-based profiles. This
is due to the fact that address-based and transaction-based profiles are not equivalent
when it comes to modeling user profiles in Bitcoin4.

In the following, we provide definitions on both privacy notions, and we rely on
these definitions to provide metrics for them. In particular, we define address unlink-
ability and profiling indistinguishability through the AddUnl and the ProfInd games,
respectively. We quantify these notions by assessing the advantage of an adversary A
in winning these games over an adversary who responds to all game challenges with

4 An adversary can perform well in address-based profiling but not in transaction-based pro-
filing: she may correctly profile addresses of users that are involved in few transactions and
“miss-classify” few addresses who participate in many transactions.

random guesses,AR. We assume thatA has access to pubLog and that bothA andAR
have gathered (the same) a-priori knowledgeKA with respect to correlations of a subset
of addresses (i.e., whether these addresses belong to the same user or not).

Activity Unlinkability (Address Unlinkability): We construct the address unlinkabil-
ity game in Bitcoin, AddUnl, as follows. A chooses an address a0 ∈ pubLog chosen
among the addresses that appear in pubLog and sends it to the challenger C. If the owner
of a0 does not have any other Bitcoin address, then A wins. Otherwise, the challenger
C randomly chooses a bit b. If b = 1, then C randomly chooses another address a1
∈ pubLog such that a0, a1 belong to the same user; otherwise, C randomly chooses a1
such that the two addresses are owned by different users. The challenger sends 〈a0, a1〉
to A, who responds with her estimate b ′ on whether the two addresses belong to the
same user. A wins the game if she answers correctly, i.e., b = b ′. We say that Bitcoin
satisfies address unlinkability if for all p.p.t. adversaries A and ∀〈a0, a1〉, A has only a
negligible advantage over AR in winning, i.e., if:

Prob[b ′ ← A(pubLog,KA) : b = b ′]− Prob[b ′ ← AR(KA) : b = b ′] ≤ ε,

where ε is negligible.

Quantifying Address Unlinkability: In Section 4.1, we show that due to inherent prop-
erties of the Bitcoin protocol and client, A can succeed with a considerable probability
in winning the above AddUnl game. In what follows, we measure the degree to which
Bitcoin addresses can be linked to the same user.

To do so, we express the estimate of A through an nA × nA matrix, Elink, where
Elink[i, j] = {pi,j}i,j∈[1,nA]. That is, that for every address ai, A assesses the probabil-
ity pi,j with which ai is owned by the same user as every other address aj in pubLog.
Note that Elink incorporates KA, and any additional information that A could extract
from pubLog (e.g., by means of clustering, statistical analysis, etc.). Similar to [15], we
quantify the success of A in the AddUnl game as follows. Let GTlink denote the gen-
uine address association matrix, i.e., GTlink[i, j] = 1, if ai and aj are of the same user
and GTlink[i, j] = 0 otherwise for all i, j ∈ [1,nA]. For each address ai we compute the
error in A’s estimate, i.e., the distance of Elink[i, ∗] from the genuine association of ai
with the rest of the addresses in pubLog, ||Elink[i, ∗]−GTlink[i, ∗]||,where ||·|| denotes
norm-L1 of the corresponding row-matrix. Thus, the success of A in AddUnl, SuccA,
can then be assessed throughA’s maximum error: max

∀ai /∈KA
(||Elink[i, ∗]−GTlink[i, ∗]||).

Similarly, we represent the estimate of AR in the AddUnl game for all possi-
ble pairs of addresses by the nA × nA matrix ERlink which is constructed as follows.
ER[i, j] = πi,j if 〈ai, aj〉 ∈ KA, and ERlink[i, j] = ρ + (1 − ρ) 12 otherwise. Here, πi,j
represents the probability that addresses ai aj correspond to the same user according
to KA, and ρ refers to the fraction of addresses in {pubLog-KA} that cannot be asso-
ciated to other addresses (i.e., when their owners have only one address)5. For pairs of
addresses that are not included in KA, this probability equals to ρ+ (1− ρ) 12 .

5 In our experiments in Section 4, we assume that ρ is negligible since there are at least two
addresses per user in Bitcoin (a real address and a “shadow” address).

Given this, we measure the degree of address unlinkability in Bitcoin against A
by measuring address linkability, i.e., by evaluating the additional success that A can
achieve from pubLog, when compared toAR. We call this advantage LinkabsA : LinkabsA =

SuccA − SuccAR , and its normalized version LinkA: LinkA =
SuccA−SuccAR

SuccAR .6

User Profile Indistinguishability: The profile indistinguishability property is a stronger
privacy notion than the activity unlinkability as it refers to the concealment of all Bit-
coin user profiles. Here, we require that an adversary is not able to group addresses
or transactions corresponding to Bitcoin users correctly. As mentioned before, we ac-
count for the indistinguishability of the profiles of users, assuming address-based and
transaction-based profiles.

We construct the ProfInd game as follows. Here, the challenger C sends to A the
number of users nU in pubLog-KA. A responds with nU (non-overlapping) sets of ad-
dresses (or transactions) and with Eprof = {gi}nU

i=1 representing the estimate on the
profile of all users in the system. Let GTprof = {gti}

nU
i=1 represent the genuine group-

ing of addresses (or transactions) to users. That is, GTprof = {aui}
nU
i=1 for address-

based profiles, and GTprof = {τui}
nU
i=1, for transaction-based profiles, where aui and

τui represent the sets of addresses and transactions respectively of user ui. Clearly, A
wins if she guesses correctly, i.e., if Eprof ≡ GTprof .

We say that a system satisfies the profile indistinguishability property if there is no
p.p.t. adversary A who wins the ProfInd game with better probability than AR, i.e.:
∀ p.p.t. A: Prob[Eprof ← A(pubLog,nU) : Eprof ≡ GTprof]−

Prob[ERprof ← A
R(nU) : E

R
prof ≡ GTprof] ≤ ε.

Quantifying User Profile Indistinguishability: We now proceed to quantify A’s advan-
tage in winning the ProfInd game by measuring the similarity of A’s estimate Eprof

from the genuine grouping of profiles GTprof , Sim(Eprof ,GTprof), where the simi-
larity function Sim ranges in [0, 1]. As in address unlinkability, we measure profile
indistinguishability against A by measuring the degree of profile distinguishability that
A can achieve, i.e., we assess the advantage ofA in approximating GTprof overAR by
ProfA = Sim(Eprof ,GTprof)− Sim(ERprof ,GTprof).

7

We quantify Sim(Eprof ,GTprof) and ProfA by relying on two commonly used en-
tropy based distance metrics, namely: the Normalized Mutual Information (NMI) and
the Adjusted Mutual Information, (AMI). NMI assesses the similarity of two group-
ings of the same items (in our case, Eprof and GTprof), and takes higher values (1) the
more identical the groupings are [19, 20]. On the other hand, AMI assesses the advan-
tage of A in winning the ProfInd game. More specifically, given the two groupings
Eprof and GTprof AMI approaches 0 when Eprof is close to random assignment of ad-
dresses/transactions to groups, i.e., ERprof , and is 1 when Eprof matches GTprof [19,20].

6 We say that Bitcoin satisfies µ-address unlinkability if ∀ p.p.t. algorithms A and the corre-
sponding AR : Prob[Elink ← A(pubLog,KA),ER

link ← AR(KA) : LinkA ≥ 1− µ] ≤ ε.
7 We say that a system offers µ-profile indistinguishability, and we write µ-ProfInd, if ∀ p.p.t.
A: Prob[Eprof ← A(pubLog, nU),E

R ← AR(nU) : ProfA ≥ 1− µ] ≤ ε.

Assuming address-based profiles, NMI and AMI are computed as follows:

NMI =
I(Eprof ,GTprof)

max(H(Eprof),H(GTprof))
, AMI =

I(Eprof ,GTprof)− E
max(H(Eprof),H(GTprof))− E

,

where:
I(Eprof ,GTprof) =

nU∑
i=1

nU∑
j=1

n(i,j)

nA
log(

n(i,j)·nA

n(i,∗)n(∗,j)
),

H(Eprof) = −
nU∑
i=1

n(i,∗)
nA

log(
n(i,∗)
nA

), H(GTprof) = −
nU∑
j=1

n(∗,j)
nA

log(
n(∗,j)
nA

),

E =
nU∑
i=1

nU∑
j=1

∑
n∈M

n
nA

log(nAn
n(i,∗)n(∗,j)

)
n(i,∗)!n(∗,j)!(nA−n(i,∗))!(nA−n(∗,j))!

nA!(n(i,∗)−n)!(n(∗,j)−n)!(nA−n(i,∗)−n(∗,j)−n)!
.

Here, nA is the number of Bitcoin addresses, n(i,j) is the number of ui’s addresses,
which are assigned to group gj , n(i,∗) and n(∗,j) are the number of addresses of ui
and gj respectively. E reflects the expected mutual information between GTprof and
a random grouping of addresses (ERprof). Also, M = [max(n(i,∗) + n(∗,j) − nA, 0),
min(n(i,∗), n∗,j)]. Similar calculations can be derived to compute NMI and AMI for
transaction-based profiles.

Remark 1. Although NMI and AMI represent sufficiently well the success of A in
profiling all the users in the system, they do not measure the success of the adversary
on the profiling of a particular user ui. In Section 4.4, we measure the success of A in
profiling ui by assessing the maximum similarity of the addresses (or transactions) of
each user ui with each adversarial cluster gj i.e., max

∀j
(Sim(aui , gj)).

4 Evaluating Privacy in Bitcoin

In what follows, we show how the adversary, given pubLog, can gather some knowledge
about Bitcoin users by exploiting the properties of existing Bitcoin client implementa-
tions. We then evaluate, by means of our Bitcoin simulator, the success of the adversary
in the aforementioned privacy games given this knowledge.

4.1 Exploiting Existing Bitcoin Client Implementations

Current Bitcoin client implementations enable A to link a fraction of Bitcoin addresses
that belong to the same user.

Heuristic I—Multi-input Transactions: As mentioned earlier, multi-input transac-
tions occur when u wishes to perform a payment, and the payment amount exceeds the
value of each of the available BTCs in u’s wallet. In fact, existing Bitcoin clients choose
a set of BTCs from u’s wallet (such that their aggregate value matches the payment) and
perform the payment through multi-input transactions. It is therefore straightforward to
conclude that if these BTCs are owned by different addresses, then the input addresses
belong to the same user. Note that, currently, Bitcoin clients do not provide support for
different users to participate in a single transaction; to achieve this, users would have to

modify the Bitcoin client implementation themselves.

Heuristic II—“Shadow” Addresses: As mentioned earlier, Bitcoin generates a new
address, the “shadow” address [1], on which each sender can collect back the “change”.

This mechanism suggests a distinguisher for shadow addresses. Namely, in the case
when a Bitcoin transaction has two output addresses, aRn , aRo , such that aRn is a new
address (i.e., an address that has never appeared in pubLog before), and aRo corresponds
to an old address (an address that has appeared previously in pubLog), we can safely
assume that aRn constitutes a shadow address for ai. Note that, in the current Bitcoin
implementation, users rarely issue transactions to two different users.

Evaluating Heuristics I and II: In what follows, we evaluate the implications of these
heuristics on the user-privacy in Bitcoin. Given the absence of recent statistical data
on the number of Bitcoin users, we rely on an estimate of the number of Bitcoin users
performed in September 2011; at that time, Bitcoin users amounted to 60,000 users [1].
We then created a C++ parser that parses the first 140,000 blocks (till August 2011) in
the Bitcoin block explorer [2].

Our C++ parser extracts all the addresses in each block and categorizes them in clus-
ters of Generic Addresses, GAs, given the two aforementioned heuristics. The parser
then outputs a list of addresses organized in different GAs. Our results show that there
were 1,632,648 unique addresses in the first 140,000 blocks. Given Heuristic I, we could
classify these addresses into 1,069,699 distinct GAs. Given Heuristic II, this number
decreases to 693,051 GAs; this corresponds to grouping approximately 58% of Bit-
coin addresses with an average of 11.55 addresses per GA. This clearly shows that A’s
advantage in the AddUnl game is considerable given Heuristics I and II.

4.2 Behavior-Based Analysis

Besides exploiting current Bitcoin implementations,A could also make use of behavior-
based clustering techniques, such as K-Means (KMC), and the Hierarchical Agglom-
erative Clustering (HAC) algorithms. Let U be the set of users populating Bitcoin and
(GA1, . . . ,GAnGA

) denote the GAs that A has obtained by applying the two aforemen-
tioned heuristics on pubLog, respectively. Given this, the goal ofA is to output a group
of clusters of addresses Eprof = {g1, . . . , gnU

} such that Eprof best approximates U.
Since each GA is owned by exactly one user, the estimate on the assignment of each
GAi can be modeled by a variable zi such that zi = k, if and only if, GAi belongs to gk.

In fact, HAC assumes that initially each GA represents a separate cluster ({zi =
i}nGA
i=1) and computes similarity values for each pair of clusters. Clusters with higher

similarity value are combined into a single cluster and cluster-to-cluster similarity val-
ues are re-computed. The process continues until the number of created clusters equals
the number of users nU. KMC is then initialized using the output of HAC and assumes
that each user is represented by the center of each cluster. The algorithm iterates as-
signments of GAs to clusters and aims at minimizing the overall distance of GAs to
the center of the cluster they have been assigned to. The centers of the clusters and the
GA-to-cluster distances are re-computed in each round.

In our implementation (cf. Section 4.3), we represent each transaction that appears
within a GA using: (i) the time at which the transaction took place, (ii) the indexes of
the different GAs that appear within the transaction (as senders or recipients), and (iii)
the values of the BTCs spent by the transaction. Let τx denote the set of transactions of
GAx. The degree of similarity between GAi and GAj , denoted by Simhac(GAi,GAj),
is then represented by the cosine similarity of lists τi and τj , i.e., Simhac(GAi,GAj) =∑
∀τ∈τi∩τj

(f(τ,i)·f(τ,j))
‖τi‖·‖τj‖ , where f(τ,i), f(τ,j) are the occurrences of item τ in lists τi and

τj respectively, and ‖X‖ denotes the norm II of vector X . Given this, the resulting
distance metric in KMC is Distkmc(GAi, gk) =

2
1+Simhac(GAi,gk)

− 1.
Our implementation also accounts for constraints that are posed by real-world set-

tings. Namely, since users cannot be physically located in two different places at the
same time, they cannot participate in two different (physical) exchanges of goods at the
same time. To account for this case (cf. Section 4.4), we apply different weighting for
similarity of GAs who participate in transactions concurrently.

4.3 Simulating the use of Bitcoin in a University

To evaluate the success of A in the AddUnl and the ProfInd games, we simulate a
realistic case of using Bitcoin in the Department of Computer Science in ETH Zurich.
Here, we assume that the shops located around the university also accept BTCs as a
currency. Given the lack of details and statistics about the current use of Bitcoin, this
was one of the few “workable” uses of Bitcoin that we could try to accurately model
and through which we could evaluate the advantage of A in the system.

Experimental Setup: To evaluate the privacy implications of using Bitcoin in a univer-
sity environment, we devised the setup shown in Figure 1. Our Bitcoin simulator takes
an XML configurations file as input and outputs: (i) a log that details the events that
were simulated, the “ground truth”, as well as (ii) the resulting simulated public Bitcoin
log, pubLog. The XML configurations file contains all the necessary parameters to run
the simulator. These include the number of users, the number of miners, the simulation
time, the difficulty in block generation, as well as usage configurations for creating user
profiles and Bitcoin sellers/buyers. Further details about our simulator can be found in
Appendix D. As shown in Figure 1, the outputs of our simulator are used to evaluateA’s
success. In fact, once the simulations terminate, a Perl-based parser uses the simulated
Bitcoin block as input and pre-classifies the simulated addresses into GAs according
to Heuristics I and II. The resulting “pre-filtered output” is then fed into our clustering
algorithms, the HAC and the KMC algorithms (both implemented in C). The output
of these algorithms is then compared using another Perl-based script with the “ground
truth” generated by the simulator in order to compute the success of A in the AddUnl
and the ProfInd games.

We tuned our simulator to match a real-world scenario that reflects the actual be-
havior of the staff and student members of a Computer Science Department of a univer-
sity in the Fall 2012 semester. In our setting, we consider a variable number of users,
5.2% of which are “Professors”, 42.0% are “Staff” and the remaining 52.8% are “Stu-
dents”. We consider a total of 6 events, each having several options: lunching/dining

XML Config
University
Environment

Simulator

"Ground Truth"

Parser
(Heurisitc 1)
(Heuristic 2)

Clusterting Algorithm

Success
Calculator

Output

XML

</>

Log File

Simulated Block
Chain

Pre-filtered Output

Fig. 1. Experimental setup used throughout our simulations. The outputs of our Bitcoin simulator
are pre-filtered according to Heuristics I and II and then fed as input to our clustering algorithm.
The clustering result is then compared with the “ground truth” that is emulated by our simulator.

(12 options), buying groceries (2 options), buying from vending machines (4 options),
online shopping (5 options), purchasing books (2 options), and performing barters with
other users, totalling 25 different Bitcoin vendors present in our system. For each user,
we assign a probability that the user undergoes each of the possible options of each
event. These probabilities are assigned according to the “category” of the user; that is,
if the user is a “Professor”, then it is more likely that he/she would eat lunches at more
expensive restaurants, when compared to the case where the user falls in the “Student”
category. For each event, we specify in the XML configuration the following parame-
ters: the frequency of the event, and the price range per option of the event. Note that
each option is assigned a rating that would reflect its popularity. The probability of per-
forming an option is interpolated from the frequency of occurrence of the event per
week, and from the rating of the option. To ensure a large variety of profiles in our
user base, we specify in the XML configuration a minimum and maximum value for
the frequency, rating and price fields. These bounds depend on the category of the user,
the event and option in question (c.f. Appendix C). At the start of our experiments,
users originally have few (< 10) Bitcoin addresses; as they issue new transactions,
new (shadow) addresses are created in their wallets. In the XML file, we also model
the behavior of “privacy-aware” users. We assume that these users create new Bitcoin
addresses in their wallets and send some of their BTCs from their old to their new
addresses.

4.4 Experimental Results

Throughout our experiments, we emulated two different scenarios for each simulation
round. In the first scenario denoted by “Partial Knowledge”, we assume thatA is aware
of the location/service of all Bitcoin vendors and as such can distinguish whether a

100 (50%) 200 (0%) 200 (50%) 200 (100%) 400 (50%)
LinkA 0.91 ±0.01 0.90 ±0.01 0.91 ±0.01 0.92 ±0.01 0.93 ±0.01

ProfaA
NMI 0.76± 0.01 0.87± 0.01 0.79± 0.01 0.70± 0.01 0.80± 0.01
AMI 0.75± 0.01 0.86± 0.01 0.77± 0.01 0.68± 0.01 0.77± 0.01

ProfτA
NMI 0.68± 0.01 0.73± 0.02 0.70± 0.01 0.65± 0.01 0.72± 0.01
AMI 0.67± 0.01 0.72± 0.01 0.69± 0.01 0.63± 0.01 0.70± 0.01

(a) Results in the “Partial Knowledge” scenario.

100 (50%) 200 (0%) 200 (50%) 200 (100%) 400 (50%)
LinkA 0.90 ±0.01 0.90 ±0.01 0.91 ±0.01 0.92 ±0.01 0.93 ±0.01

ProfaA
NMI 0.79± 0.01 0.89± 0.01 0.79± 0.01 0.71± 0.02 0.80± 0.01
AMI 0.78± 0.02 0.88± 0.01 0.78± 0.02 0.69± 0.02 0.78± 0.01

ProfτA
NMI 0.69± 0.01 0.73± 0.03 0.69± 0.03 0.65± 0.01 0.72± 0.01
AMI 0.68± 0.01 0.72± 0.01 0.68± 0.03 0.63± 0.01 0.70± 0.01

(b) Results in the “No Knowledge” scenario.

Table 1. Behavior-based clustering results in the “Partial Knowledge” and “No Knowledge” sce-
narios. A column entitled X (Y%) denotes an experiment featuring X users among which Y%
are privacy-aware. Each data point in our plots is averaged over five rounds of experiments; we
also present the corresponding 95% confidence intervals (shown after the “±” sign).

transaction was performed in exchange of a physical good. In this case, we include
the vendors’s addresses in the prior knowledge of A when computing Advunl; we also
assume that A can tune the clustering algorithm to take into account that the same user
performing this transaction cannot appear in other transactions that takes place at the
same time. This case emulates the realistic setting where A can extract a subset of the
addresses owned by geographically co-located Bitcoin users/vendors from the overall
public Bitcoin log; for example,A can extract from the Bitcoin log all the addresses that
interact with a known address of a vendor located within the university environment. In
the second scenario denoted by “No Knowledge”, we consider the case where A does
not know the location or service of the vendors, and as such does not have any prior
knowledge, but assumes that up to 10% of the transactions are performed in exchange
of goods delivered over the Internet.

Given this setup, we evaluate the metrics LinkA, ProfaA (for address-based profiles),
and ProfτA (for transaction-based profiles) with respect to (i) the fraction of “privacy-
aware” users and (ii) the number of users nU. By privacy-aware users, we refer to users
that manually generate new Bitcoin addresses (following a configuration in the XML
file) to enhance their privacy in the system. Table 1 depicts our findings. Our results
show that both the “Partial Knowledge” and the “No Knowledge” configurations exhib-
ited comparable results.

In the first round of experiments, we evaluate the success of A with respect to the
fraction of “privacy-aware” users. More specifically, we run our clustering and privacy
evaluation algorithm in a setting featuring 200 users, among which 0%, 50%, and 100%
of the users are privacy-aware. Table 1 shows LinkA, ProfaA, and ProfτA with respect
to the fractions of privacy-aware users. Here, we use a normalized version on LinkA.

20 40 60 80 100

0
20

40
60

80
10

0

Fraction of Transactions Captured (%)

F
ra

ct
io

n
of

 U
se

rs
 (

%
)

●

●

●

●

●

●

●

●

0% Privacy Awareness
50% Privacy Awareness
100% Privacy Awareness

Fig. 2. Fraction of transactions captured
by our clustering algorithms in the “No
Knowledge” case.

100 150 200 250 300 350

0.
6

0.
7

0.
8

0.
9

1.
0

Estimate of the Number of Users

P
ro

f A

NMI (Addresses)
AMI (Addresses)
NMI (Transactions)
AMI (Transactions)

Fig. 3. The case where A cannot accu-
rately estimate nU. We assume the ‘Partial
Knowledge” case where nU = 200.

In both configurations, the advantage of A in AddUnl game is only negligible af-
fected by the fraction of the privacy aware users in the system. More specifically, we
can see that our clustering algorithms outperform AR by almost 90%. On the contrary,
ProfaA and ProfτA show a better dependency on the fraction of privacy aware users.
When none of users in the system are privacy-aware, the performance of our clustering
algorithms is high. In particular, in both configurations ProfAa (NMI and AMI for ad-
dresses) range within 0.87 − 0.89, while ProfτA (NMI and AMI for transactions) are
0.73. However, as the fraction of the privacy aware users increases, the performance of
A drops and results in Profτ A and ProfaA of 0.70 and 0.63 respectively. This mischief
can be explained by the fact that privacy aware users add noise to the Bitcoin log. How-
ever, the fact that AMI values remain consistently far from 0 and close to 1 indicates
that A performs much better than AR and that the estimate chosen by A is close to the
genuine assignment of users to clusters.

Figure 2 depicts the overall fraction of user profiles (measured by means of the
similarity of transactions appearing in a user’s wallet and the corresponding cluster as
discussed in Section 3.2) that are captured by A. Our results show that in the case
when nU = 200 users with 0% privacy awareness, almost 42% of the users have their
preferences captured with 80% accuracy. In the case featuring 100% privacy-aware
users, this fraction drops to 35% of the users whose profile was correctly clustered with
an accuracy of at least 80%. We therefore conclude that the privacy of users in Bitcoin
can be compromised, even if users manually create new addresses in order to enhance
their privacy in the system.

Furthermore, our results show that A’s advantage over AR is not significantly af-
fected by the number of participant users in the case of address unlinkability. ProfaA
and ProfτA increase from 0.76 and 0.68 to 0.80 and 0.72 respectively as the number
of users increases from 100 to 400. This is mostly because when the number of users
increases, the assignments of addresses (or transactions) into groups of users (AR) per-
forms worst. In Figure 3, we evaluate the case where A does not have an accurate
estimate of the number of users in the university setting. Our findings show that even

if A’s estimate of the number of users is not accurate, the privacy of a considerable
fraction of users is still compromised.

5 Discussion

So far, our analysis focused on the current implementation of Bitcoin when used in
a university setting. Note that our results provide rather an upper bound to privacy
in the studied university setting than an accurate assessment of privacy in Bitcoin in
generic settings. In what follows, we analyze the implications of our findings in generic
implementations/uses of Bitcoin.

Evading Heuristic I: We start by showing that Heuristic I cannot be easily evaded in
any future implementation of Bitcoin without compromising the basic operation of Bit-
coin. Indeed, the combination of multiple inputs ensures that coins with “large” values
can be recreated from existing smaller BTCs; this prevents the value of coins from be-
ing continuously deprecated following every issued transaction until the value of these
coins reaches the minimum amount. At that point in time, the only way for Bitcoin
users to issue transactions without combining their previous coins is to perform mul-
tiple transactions with single-input, one coin at a time. This clearly does not solve the
problem since this process can still be tracked by the adversary (transactions will be
linked by time). Another alternative would be for Bitcoin developers to provide sup-
port for different users to transparently participate in a single transaction. While this
would increase the use-cases where Bitcoin finds applicability (e.g., performing con-
tracts [1]), the collaborative construction of transactions by different users is unlikely
to be predominately used in the network.

Evading Heuristic II: Similarly, it is easy to see that evading Heuristic II can only
decrease the privacy of Bitcoin users. That is, if “shadow” addresses were not utilized,
and the change of coins is simply put back in the sender’s address then users’ activities
can be traced in an easier way. We point out that Heuristic II results in the dispersion of
the coins among several addresses of the users. This makes the privacy leakage due to
Heuristic I even more considerable. One possible way to “evade” Heuristic II would be
for Bitcoin users to (i) first divide the coins according to the required payment in one
transaction and (ii) then make the payment with zero change at a random point later in
time. Another possible solution to “harden” the reliance on Heuristic II would be for
Bitcoin to support Mutli-Input Multi-Output (MIMO) transactions.

Implications to Generic Uses of Bitcoin: We argue that our findings are not specific to
the studied university setting and apply to other generic-uses of Bitcoin. More specifi-
cally, we believe that the adversary can, to a large extent, extract from the public Bitcoin
log a small set of addresses that correspond to geographically co-located users; the ad-
versary can subsequently run our clustering algorithms on the extracted set of addresses.
For instance, if Bitcoin were to be used across shops, then the adversary can extract all
the addresses that interacted with a specific set of Bitcoin vendors that are located within
a specific geographic region. The larger is the number of addresses of (physical) ven-

dors that the adversary knows, the more complete is the view of the adversary of the
geographic sub-network.

The reliance on third-party trusted entities (e.g., Bitcoin banks, Bitcoin Anonymiz-
ers, FlexCoin [3]) emerges as one of the few workable solutions to increase the privacy
of Bitcoin clients. These entities can hide the direct relationship between the inputs and
outputs of a transaction within a sufficiently large anonymity set. However, this solution
comes at odds with the main intuition behind the complete decentralization in Bitcoin.

6 Related Work

In [5], Elias investigates the legal aspects of privacy in Bitcoin. In [7], Babaioff et al.
address the lack of incentives for Bitcoin users to include recently announced transac-
tions in a block, while in [4], Syed et al. propose a user-friendly technique for managing
Bitcoin wallets. In [14], Karame et al. thoroughly investigate double-spending attacks
in Bitcoin and show that double-spending fast payments in Bitcoin can be performed
in spite of the measures recommended by Bitcoin developers. Clark et al. [11] pro-
pose the use of the Bitcoin PoW to construct verifiable commitment schemes. Reid and
Harrigan [16] analyze the flow Bitcoin transactions in a small part of Bitcoin log, and
show that external information, i.e., publicly announced addresses, can be used to link
identities and organizations to some transactions.

ECash [8–10] and anonymous credit cards were the first attempts to define privacy-
preserving transactions. Privacy in ECash consists of user anonymity and transaction
unlinkability; by relying on a set of cryptographic primitives ECash ensures that pay-
ments pertaining to the same user cannot be linked to each other or to the payer, pro-
vided that the latter does not misbehave. In [15], Pfitzmann et al. define unlinkability
and privacy in pseudonymous systems. Dwork [13] defined differential privacy and
quantified the information leakage from the query access of individuals. In Section 3.2,
we adapt Dwork’s generic differential privacy notion to our Bitcoin privacy notions.
Finally, in [18], Shokri et al. quantify location privacy by assessing the error of the
adversarial estimate from the ground truth. In [12, 17] the authors further introduce
entropy-based metrics to assess the communication privacy in anonymous networks.

7 Conclusion

In this paper, we evaluated the privacy provisions in Bitcoin when it is used as a primary
currency to support the daily transactions of individuals in a university setting.

Our findings show that the current measures adopted by Bitcoin are not enough to
protect the privacy of users if Bitcoin were to be used as a digital currency in a univer-
sity setting. More specifically, we rely on a simulator that mimics the use of Bitcoin in
a realistic university setting. Our results show that if Bitcoin is used as a digital cur-
rency to support the daily transactions of users in a typical university environment, then
behavior-based clustering techniques can unveil, to a large extent, the profiles of 40%
of Bitcoin users, even if these users try to enhance their privacy by manually creating
new addresses. Finally, we discussed a number of solutions that could be integrated by
Bitcoin developers to enhance the privacy of users.

Acknowledgements

The authors would like to acknowledge the reviewers for their valuable comments and
feedback.

References
1. Bitcoin – Wikipedia, Available from https://en.bitcoin.it/wiki.
2. Bitcoin Block Explorer, Available from http://blockexplorer.com/.
3. Flexcoin –The Bitcoin Bank, Available from http://www.flexcoin.com/.
4. Bitcoin Gateway, A Peer-to-peer Bitcoin Vault and Payment Network, 2011. Available from

http://arimaa.com/bitcoin/.
5. Bitcoin: Tempering the Digital Ring of Gyges or Implausible Pecuniary Privacy, 2011.

Available from http://ssrn.com/abstract=1937769ordoi:10.2139/ssrn.
1937769.

6. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
7. M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On Bitcoin and Red Balloons. CoRR,

2011.
8. S. Brands. Electronic Cash on the Internet. In Proceedings of the Symposium on the Network

and Distributed System Security, 1995.
9. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. In Proceedings of

Advances in Cryptology - EUROCRYPT, 2005.
10. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proceedings on Advances in

Cryptology - CRYPTO, 1990. http://dl.acm.org/citation.cfm?id=88314.
88969.

11. J. Clark and A. Essex. (Short Paper) CommitCoin: Carbon Dating Commitments with Bit-
coin. In Proceedings of Financial Cryptography and Data Security, 2012.

12. C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity. In R. Din-
gledine and P. Syverson, editors, Proceedings of Privacy Enhancing Technologies Workshop
(PET 2002), April 2002.

13. C. Dwork. Differential privacy: a survey of results. In Proceedings of the 5th international
conference on Theory and applications of models of computation, TAMC’08, 2008.

14. G. Karame, E. Androulaki, and S. Capkun. Double-Spending Fast Payments in Bitcoin. In
Proceedings of ACM CCS, 2012.

15. A. Pfitzmann and M. Hansen. Anonymity, Unlinkability, Undetectability, Unobservabil-
ity, Pseudonymity, and Identity Management ï£¡ A Consolidated Proposal for Terminology.
Fachterminologie Datenschutz und Datensicherheit, pages 111–144, 2008.

16. F. Reid and M. Harrigan. An Analysis of Anonymity in the Bitcoin
System. CoRR, 2011. http://www.bibsonomy.org/bibtex/
257d6640d03ae4a5668ef8b32656461eb/dblp.

17. A. Serjantov and G. Danezis. Towards an information theoretic metric for anonymity. In
R. Dingledine and P. Syverson, editors, Proceedings of Privacy Enhancing Technologies
Workshop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

18. R. Shokri, G. Theodorakopoulos, J. L. Boudec, and J. P. Hubaux. Quantifying location
privacy. In Proceedings of the IEEE Symposium on Security and Privacy, 2011.

19. N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings com-
parison: is a correction for chance necessary? In 26th Annual International Conference on
Machine Learning (ICML), 2009.

20. N. X. Vinh, J. Epps, and J. Bailey. Information Theoretic Measures for Clusterings Com-
parison: Variants, Properties, Normalization and Correction for Chance. Journal of Machine
Learning Research, 2010.

A Multi-Input Transactions

Output H

Output P

Output Q

Output R

Output/Input A

Output/Input B

Fig. 4. Example of referencing input/output in transactions.

B Bitcoin Block Explorer

Hash: 000000000043a8c0fd1d6f726790caa2a406010d19efd2780db27bdbbd93baf6
Previous block: 00000000001937917bd2caba204bb1aa530ec1de9d0f6736e5d85d96da9c8bba
Next block: 00000000000036312a44ab7711afa46f475913fbd9727cf508ed4af3bc933d16
Time: 2010-09-16 05:03:47
Difficulty: 712.884864
Transactions: 2
textbfMerkle root: 8fb300e3fdb6f30a4c67233b997f99fdd518b968b9a3fd65857bfe78b2600719
Nonce: 1462756097

Input/Previous Output Source & Amount Recipient & Amount
N/A Generation: 50 + 0 total fees Generation: 50 + 0 total fees

f5d8ee39a430...:0 1JBSCVF6VM6QjFZyTnbpLjoCJ...: 50 16ro3Jptwo4asSevZnsRX6vf..: 50

Table 2. Example Block of Bitcoin. The block contains 2 transactions, one of which awards the
miner with 50 BTCs.

C Example Configuration File

Listing 1 Example of XML configuration parameters for a “lunch” event with 12 op-
tions corresponding to the profile of a “Professor”.
<!– lunch, eventid="0" refers to event with id="0" from above –>
<ProfileEvent eventid="0" minFreqPerWeek="5" maxFreqPerWeek="5" >
<Store storeid="0" maxPref="1" minPref="0" maxPrice="10.0" minPrice="8.0" />
<Store storeid="1" maxPref="1" minPref="0" maxPrice="13.0" minPrice="10.0" />
<Store storeid="2" maxPref="1" minPref="0" maxPrice="15.0" minPrice="13.0" />
<Store storeid="3" maxPref="4" minPref="2" maxPrice="25.0" minPrice="15" />
<Store storeid="4" maxPref="2" minPref="0" maxPrice="20.0" minPrice="15.0" />
<Store storeid="5" maxPref="2" minPref="0" maxPrice="17.0" minPrice="12.0" />
<Store storeid="6" maxPref="0.5" minPref="0" maxPrice="20.0" minPrice="8.0" />
<Store storeid="7" maxPref="0.5" minPref="0" maxPrice="10.0" minPrice="7.5" />
<Store storeid="8" maxPref="4" minPref="2" maxPrice="25.0" minPrice="15" />
<Store storeid="9" maxPref="0.5" minPref="0" maxPrice="25.0" minPrice="10" />
<Store storeid="10" maxPref="0.5" minPref="0" maxPrice="10.0" minPrice="5.0" />
<Store storeid="11" maxPref="3" minPref="1" maxPrice="12.0" minPrice="9.0" />
</ProfileEvent>

D Bitcoin Simulator

Our simulator is round-based; in each simulation round (defined as a “weekly timestep-
ping” interval), events are added to a priority queue with a probability dictated by the
configuration file. These events correspond to one of the following operations:

– Issue a new transaction: Users might issue new Bitcoin transactions whose time,
value, beneficiary and purpose stem from the XML configurations file. The process
of transaction issuance in our simulator fully mimics its counterpart in the genuine
Bitcoin system.

– Generate a new Bitcoin address: Here, in addition to the automatically generated
addresses in Bitcoin (cf. Section 3), “privacy-aware” users might decide to generate
a number of new addresses to further “obfuscate” their usage of Bitcoin.

Conforming with the current use of Bitcoin, only few users in our setting were
miners (i.e., mining is currently mostly performed by dedicated mining pools).

Our Bitcoin simulator abstracts away network delays, congestion, jitter, etc.. We
also assume that all transactions in the system are well-formed and we do not model
transaction fees that are incurred in the network. While malformed transactions and
double-spending attempts [14] can be indeed witnessed in the genuine Bitcoin system,
we believe that malicious behavior in Bitcoin is orthogonal to our privacy investigation—
which explains the reason why we did not model such a misbehavior in our simulator.
Moreover, our simulator relies on a variant greedy algorithm that closely approximates
the genuine algorithm used in Bitcoin. Note that while the distribution of generated
blocks in our simulator matches that in Bitcoin [14]8, we increased the average time be-
tween the generation of successive blocks in the simulator to better cope with simulated
network dynamics9.

8 It was shown in [14] that the block generation in Bitcoin follows a shifted geometric distribu-
tion with parameter 0.19.

9 Throughout our experiments, we considered that new blocks were generated every 20 minutes
on average.

E Captured Transactions w.r.t. nU

Figure 5 shows the impact of the number of users nU on the performance of our profiling
algorithms.

20 40 60 80 100

0
20

40
60

80
10

0

Fraction of Transactions Captured (%)

F
ra

ct
io

n
of

 U
se

rs
 (

%
)

●

●

●

●

●

●

●

●

100 Users
200 Users
400 Users

Fig. 5. Fraction of captured transactions with respect to nU. Here, we consider the “No Knowl-
edge” case where 50% of the users are privacy-aware.

Our results show that the fraction of users whose transactions are correctly captured
by our algorithms is not considerably affected by the number of users in the system. For
instance, the fraction of users whose profiles were captured with an accuracy of at least
80% is approximately 40% when nU = 100, 200, 400.

Note that this conforms with our previous observations in Section 4.4; as shown in
Figure 3, ProfA is only slightly affected as nU increases.

