

Steuwer, M. and Gorlatch, S. (2013) SkelCL: enhancing OpenCL for high-level

programming of multi-GPU systems. In: Parallel Computing Technologies - 12th

International Conference, PaCT 2013, St. Petersburg, Russia, 30 Sep - 04 Oct 2013, pp.

258-272. ISBN 9783642399572.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/148982/

Deposited on: 2 October 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/148982/
http://eprints.gla.ac.uk/148982/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

SkelCL: Enhancing OpenCL for High-Level
Programming of Multi-GPU Systems

Michel Steuwer and Sergei Gorlatch

University of Muenster, Germany
michel.steuwer@wwu.de and gorlatch@wwu.de

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-39958-9_24.

Abstract. Application development for modern high-performance sys-
tems with Graphics Processing Units (GPUs) currently relies on low-level
programming approaches like CUDA and OpenCL, which leads to com-
plex, lengthy and error-prone programs.
In this paper, we present SkelCL – a high-level programming approach for
systems with multiple GPUs and its implementation as a library on top
of OpenCL. SkelCL provides three main enhancements to the OpenCL
standard: 1) computations are conveniently expressed using parallel algo-
rithmic patterns (skeletons); 2) memory management is simplified using
parallel container data types (vectors and matrices); 3) an automatic data
(re)distribution mechanism allows for implicit data movements between
GPUs and ensures scalability when using multiple GPUs. We demon-
strate how SkelCL is used to implement parallel applications on one-
and two-dimensional data. We report experimental results to evaluate
our approach in terms of programming effort and performance.

1 Introduction

Modern high-performance computer systems become increasingly heterogeneous
as they comprise in addition to multi-core processors, also Graphics Processing
Units (GPUs), Cell processors, FPGA, and other accelerating devices, usually
called accelerators. The state-of-the-art application programming for systems
with GPUs is cumbersome and error-prone, because GPUs are programmed us-
ing explicit, low-level programming approaches like CUDA [11] or OpenCL [13].
These approaches require the programmer to explicitly manage GPU’s mem-
ory (including memory (de)allocations, and data transfers to/from the system’s
main memory), and explicitly specify parallelism in the computation. This leads
to lengthy, low-level, complicated and, thus, error-prone code. For multi-GPU
systems, programming with CUDA and OpenCL is even more complex, as both
approaches require an explicit implementation of data exchange between the
GPUs, as well as disjoint management of each GPU, including low-level pointer
arithmetics and offset calculations.

In this paper, we describe the SkelCL (Skeleton Computing Language) – our
high-level programming approach for parallel systems with multiple GPUs. The
SkelCL programming model is based on the OpenCL standard and enhances it
with three high-level mechanisms:

http://dx.doi.org/10.1007/978-3-642-39958-9_24

2

1) parallel container data types: collections of data (in particular, vectors and
matrices) that are managed automatically on all GPUs in the system;

2) data (re)distributions: an automatic mechanism for specifying in the appli-
cation program suitable data distributions and re-distributions among the
GPUs of the target system:

3) parallel skeletons: pre-implemented high-level patterns of parallel computa-
tion and communication which can be customized to express application-
specific parallelism, and combined to a large high-level code.

The structure of the paper is as follows. In Section 2 we formulate the require-
ments to a high-level programming approach for GPU systems, following from
the analysis of compute-intensive applications. Section 3 describes in detail our
SkelCL approach. In Section 4 we report experimental evaluation of our ap-
proach regarding both programming effort and performance. We compare to
related work and conclude in Section in Section 5.

2 Requirements to a High-Level Programming Model

To simplify programming for a system with multiple GPUs, the following high-
level abstraction are desirable:

Parallel container data types Compute-intensive applications typically operate
on a (possibly big) set of data items. Managing memory hierarchy of multi-
GPU systems explicitly is complex and error-prone because low-level details, like
offset calculations, have to be programmed manually. A high-level programming
model should be able to make collections of data automatically accessible to all
GPUs in the target system and it should provide an easy-to-use interface for the
application developer.

Distribution and redistribution mechanisms To achieve scalability of applica-
tions on systems comprising multiple GPUs, it is crucial to decide how the
application’s data are distributed across all available GPUs. Applications often
require different distributions for their computational steps. Distributing and
re-distributing data between GPUs in OpenCL is cumbersome because data
transfers have to be managed manually and performed via the CPU. Therefore,
it is important for a high-level programming model to allow both for describing
the data distribution and for changing the distribution at runtime, such that the
system takes care of the necessary data movements.

Recurring patterns of parallelism While the concrete operations performed in
an application are (of course) application-specific, the general structure of par-
allelization often follows some common parallel patterns that are reused in dif-
ferent applications. For example, operations can be performed for every entry of
an input vector, which is a well-known pattern of data-parallel programming, or
two vectors are combined element-wise into an output vector, which is again a
common pattern of parallelism. It would be, therefore, desirable to express the
high-level structure of an application using pre-defined common patterns, rather
than describing the parallelism explicitly in much detail.

3

3 SkelCL: Programming Model and Library

We develop our SkelCL [14] programming model as an extension of the stan-
dard OpenCL programming model [13], which is an emerging de-facto standard
for programming heterogenous systems with various accelerators. SkelCL adds to
OpenCL three features that we identified as desirable in Section 2. SkelCL inher-
its all properties of OpenCL, including its portability across different heteroge-
neous parallel systems. SkelCL is designed to be fully compatible with OpenCL:
arbitrary parts of a SkelCL code can be written or rewritten in OpenCL, without
influencing program’s correctness. While the main OpenCL program is executed
sequentially on the CPU – called the host – computations are offloaded to par-
allel processors – called devices. In this paper, we focus on systems comprising
multiple GPUs, therefore, we use the terms CPU and GPU, rather than more
general OpenCL terms host and device.

3.1 Parallel Container Data Types

SkelCL offers the application developer two container classes – vector and ma-
trix – which are transparently accessible by both, host and devices, i. e. the CPU
and the GPUs. The vector abstracts a one-dimensional contiguous memory area
while the matrix provides an interface to a two-dimensional memory area. When
a container is created on the CPU, memory is allocated on the GPUs automat-
ically; when a container on the CPU is deleted, the memory allocated on the
GPUs is freed automatically. In a SkelCL program, a vector object can be created
and filled with data as in the following example:

Vector<int> vec(size);

for (int i = 0; i < vec.size(); ++i){ vec[i] = i; }

The main advantage of the container data types in SkelCL as compared with
OpenCL is that the necessary data transfers between the CPU and GPUs are
performed implicitly. Before performing a computation on container types, the
SkelCL system ensures that all input containers’ data is available on all partic-
ipating GPUs. This may result in implicit (automatic) data transfers from the
CPU to GPU memory, which in OpenCL would require explicit programming.
Similarly, before any data is accessed on the CPU, the implementation of SkelCL
ensures that this data on the CPU is up-to-date by performing necessary data
transfers implicitly and automatically. Thus, the container classes shield the pro-
grammer from low-level operations like memory allocation (on GPU) and data
transfers between CPU and GPU.

3.2 Data Distribution on Multiple GPUs

In applications working on container data types (vectors, matrices, etc.) GPU’s
often access disjoint parts of input data, such that copying only a part of the
container to a GPU would be more efficient than copying the whole data to each
GPU. To simplify the specification of partitionings of containers in programs

4

CPU

GPUs0 1

(a) single

CPU

GPUs0 1

(b) copy

CPU

GPUs0 1

(c) block

CPU

GPUs0 1

(d) overlap

Fig. 1. Distributions of a vector in SkelCL.

CPU

GPUs0 1

(a) single

CPU

GPUs0 1

(b) copy

CPU

GPUs0 1

(c) block

CPU

GPUs0 1

(d) overlap

Fig. 2. Distributions of a matrix in SkelCL.

for multi-GPU systems, SkelCL implements the distribution mechanism that
describes how a container is distributed among the available GPUs. It allows
the programmer to abstract from managing memory ranges which are shared
or spread across multiple GPUs: the programmer can think of a distributed
container as of a self-contained entity.

Four kinds of distribution are currently available in SkelCL: single, copy,
block, and overlap (see Fig. 1 for distributing a vector on a system with two
GPUs). If distribution is set to single (Fig. 1a), than vector’s whole data is
stored on a single GPU (the first GPU if not specified otherwise). The copy
distribution (Fig. 1b) copies vector’s entire data to each available GPU. With
the block distribution (Fig. 1c), each GPU stores a contiguous, disjoint chunk
of the vector. The overlap distribution (Fig. 1d) stores on each GPU the chunk
like in the block distribution, together with one or several border elements of
the neighboring chunk.

The same four distributions are provided also for the matrix data type (Fig-
ure 2). In particular the overlap distribution splits the matrix into one chunk for
each GPU; in addition, each chunk contains a number of continuous rows from
the neighboring chunks. A parameter – the overlap size – specifies the number of
rows at the borders of a chunk which are copied to the two neighboring GPUs.
Figure 2d illustrates the overlap distribution: GPU 0 receives the top chunk
ranging from the top row to the middle, while GPU 1 receives the second chunk
ranging from the middle row to the bottom. The marked parts are called overlap
region they are the same on both GPUs.

5

The application developer can set the distribution of containers (vectors and
matrices) explicitly, otherwise every skeleton selects a default distribution for its
input and output containers. Container’s distribution can be changed at run-
time: this implies data exchanges between multiple GPUs and the CPU, which
are performed by the SkelCL implementation implicitly. Implementing such data
transfers in the standard OpenCL is a cumbersome task: data has to be down-
loaded to the CPU before it is uploaded to the GPUs, including the correspond-
ing length and offset calculations; this results in a lot of low-level code which
becomes completely hidden when using SkelCL.

3.3 Basic Patterns of Parallelism (Skeletons)

In original OpenCL, computations are expressed as kernels which are executed
in a parallel manner on a GPU: the application developer must explicitly specify
how many instances of a kernel are launched. In addition, kernels usually take
pointers to GPU memory as input and contain program code for reading/writing
single data items from/to it. These pointers have to be used carefully, because
no boundary checks are performed by OpenCL.

To shield the application developer from these low-level programming issues,
SkelCL extends OpenCL by introducing high-level programming patterns, called
algorithmic skeletons [15]. Formally, a skeleton is a higher-order function that ex-
ecutes one or more user-defined (so-called customizing) functions in a pre-defined
parallel manner, while hiding the details of parallelism and communication from
the user [15].

The current version of SkelCL provides six skeletons: map, zip, reduce, scan,
mapOverlap and allpairs. We define first the four basic skeletons. We do this
semi-formally, with c, cl and cr denoting vectors with elements ci, cli and cri
where 0 < i ≤ n:

– The map skeleton applies a unary customizing function f to each element of
an input vector c, i. e.

map f [c1, c2, . . . , cn] = [f(c1), f(c2), . . . , f(cn)]

In a SkelCL program, a map skeleton is created as an object for a unary
function f , e. g. negation, like this:

Map<float(float)> neg("float func(float x){ return -x;}");

This map object can then be called as a function with a vector as argument:

resultVector = neg(inputVector);

– The zip skeleton operates on two vectors cl and cr, applying a binary cus-
tomizing operator ⊕ pairwise:

zip (⊕) [cl1, cl2, . . . , cln] [cr1, cr2, . . . , crn] = [cl1⊕cr1, cl2⊕cr2, . . . , cln⊕crn]

In SkelCL, a zip skeleton object for adding two vectors is created like as:

Zip<float(float, float)> add("float func(float x,float y){return x+y;}");

6

and can then be called as a function with a pair of vectors as arguments:

resultVector = add(leftVector, rightVector);

– The reduce skeleton computes a scalar value from a vector using a binary
associative operator ⊕, i. e.

red (⊕) [v1, v2, . . . , vn] = v1 ⊕ v2 ⊕ · · · ⊕ vn

For example, to sum up all elements of a vector, the reduce skeleton is created
with addition as customizing function, and called as follows:

Reduce<float(float)> sumUp("float func(float x,float y){ return x+y;}");

result = sumUp(inputVector);

– The scan skeleton (a. k. a. prefix-sum) yields an output vector with each
element obtained by applying a binary associative operator ⊕ to the elements
of the input vector up to the current element’s index, i. e.

scan (⊕) [v1, v2, . . . , vn] = [v1, v1 ⊕ v2, . . . , v1 ⊕ v2 ⊕ · · · ⊕ vn]

The prefix sums customized with addition is specified and called in SkelCL
as follows:

Scan<float(float)> prefixSum("float func(float x,float y){return x+y;}");

result = prefixSum(inputVector);

In SkelCL, rather than writing low-level kernels, the application developer
customizes suitable skeletons by providing application-specific functions which
are often much simpler than kernels as they specify an operation on basic data
items rather than containers. Skeletons can be executed on both single- and
multi-GPU systems. In case of a multi-GPU system, the calculation specified by
a skeleton is performed automatically on all GPUs available in the system.

int main (int argc , char const* argv []) {

SkelCL ::init(); /* initialize SkelCL */

/* create skeletons */

SkelCL ::Reduce <float > sum ("float sum (float x,float y)\

{return x+y;}");

SkelCL ::Zip <float > mult("float mult(float x,float y)\

{return x*y;}");

/* create input vectors */

SkelCL ::Vector <float > A(SIZE);

SkelCL ::Vector <float > B(SIZE);

/* fill vectors with data */

fillVector(A.begin (), A.end());

fillVector(B.begin (), B.end());

/* execute skeleton */

SkelCL ::Scalar <float > C = sum(mult(A, B));

/* fetch result */

float c = C.getValue ();

7

}

Listing 1.1. SkelCL program computing the dot product of two vectors. Arrays a ptr

and b ptr initialize the vectors.
Listing 1.1 shows how a dot product of two vectors is implemented in SkelCL

using two of the basic skeletons. Here, the Zip skeleton is customized by multipli-
cation, and the Reduce skeleton is customized by usual addition. For comparison,
an OpenCL-based implementation of the dot product computation provided by
NVIDIA requires approximately 68 lines of code (kernel function: 9 lines, host
program: 59 lines) [2].

3.4 The MapOverlap Skeleton

Many numerical and image processing applications dealing with two-dimensional
data perform calculations for a particular data element (e. g., a pixel) taking
neighboring data elements into account. To facilitate the development of such
applications, we define in SkelCL a skeleton that can be used with both vector
and matrix data type; we explain the details for the matrix data type.

– The MapOverlap skeleton takes two parameters: a unary function f and an
integer value d. It applies f to each element of an input matrix min while
taking the neighboring elements within the range [−d,+d] in each dimension
into account, i. e.

mout[i, j] = f



min[i− d, j − d] . . . min[i− d, j] . . . min[i− d, j + d]
...

...
...

min[i, j − d] . . . min[i, j] . . . min[i, j + d]
...

...
...

min[i + d, j − d] . . . min[i + d, j] . . . min[i + d, j + d]


In the actual source code, the application developer provides the function f

which receives a pointer to the element in the middle, min[i, j].
Listing 1.2 shows a simple example of computing the sum of all direct neigh-

boring values using the MapOverlap skeleton. To access the elements of the input
matrix min, function get is provided by SkelCL. All indices are specified relative
to the middle element min[i, j]; therefore, for accessing this element the function

MapOverlap <float(float)> m("float func(float* m_in){

float sum = 0.0f;

for (int i = -1; i < 1; ++i)

for (int j = -1; j < 1; ++i)

sum += get(m_in , i, j); return sum;

}", 1, SCL_NEUTRAL , 0.0f);

Listing 1.2. MapOverlap skeleton computing the sum of all direct neightbors for every
element in a matrix

8

__kernel void sum_up(__global float* m_in ,

__global float* m_out ,

int width , int height) {

int i_off = get_global_id (0);

int j_off = get_global_id (1);

float sum = 0.0f;

for (int i = i_off - 1; i < i_off + 1; ++i)

for (int j = j_off - 1; j < j_off + 1; ++j) {

// perform boundary checks

if (i < 0 || i > width || j < 0 || j > height)

continue;

sum += m_in[j * width + i]; }

m_out[j_off * width + i_off] = sum; }

Listing 1.3. An OpenCL kernel performing the same calculation as the MapOverlap
skeleton shown in Listing 1.2.

call get(m in, 0, 0) is used. The application developer must ensure that only
elements in the range specified by the second argument d of the MapOverlap
skeleton, are accessed. In Listing 1.2, range is specified as d = 1, therefore, only
direct neighboring elements are accessed. To enforce this property, boundary
checks are performed at runtime by the get function. In future work, we plan to
avoid boundary checks at runtime by statically proving that all memory accesses
are in bounds, as it is the case in the shown example.

Special handling is necessary when accessing elements out of the boundaries
of the matrix, e.g., when the item in the top-left corner of the matrix accesses
elements above and left of it. The MapOverlap skeleton can be configured to
handle such out-of-bound memory accesses in two possible ways: 1) a specified
neutral value is returned; 2) the nearest valid value inside the matrix is returned.
In Listing 1.2, the first option is chosen and 0.0 is provided as neutral value.

Listing 1.3 shows how the same simple calculation can be performed in stan-
dard OpenCL. While the amount of lines of code increases by a factor of 2, the
complexity of each single line also increases: 1) Besides a pointer to the output
memory, the width of the matrix has to be provided as parameter; 2) the correct
index has to be calculated for every memory access using an offset and the width
of the matrix, i. e. knowledge about how the two-dimensional matrix is stored
in one-dimensional memory is required. 3) In addition, manual boundary checks
have to be performed to avoid faulty memory accesses.

SkelCL avoids all these low-level details. Neither additional parameter, nor
index calculations or manual boundary checks are necessary.

3.5 The Allpairs Skeleton

All-pairs computations occur in a variety of applications, ranging from pairwise
Manhattan distance computations used in bioinformatics [12] to N-Body simula-
tions used in physics [3]. All these applications follow a common computational

9

A

B

C

BT

1

2

3

Fig. 3. The allpairs computation: Element c2,3 (3) is computed by combining the
second row of A (1) with the third row of B (2) using the binary operator ⊕

scheme: for two sets of entities, the same computation is performed indepen-
dently for all pairs of entities from the first set combined with entities from the
second set. An entity is usually described by a d-dimensional vector.

We define the all-pairs computation scheme for two sets of n and m entities,
each entity represented by a d-dimensional vector. We represent the sets as an
n × d matrix A and an m × d matrix B. The all-pairs computation yields an
output matrix C of size n×m as follows: Ci,j = Ai ⊕Bj , where Ai and Bj are
rows of A and B, correspondingly: Ai = [Ai,1, · · · , Ai,d], Bj = [Bj,1, · · · , Bj,d],
and ⊕ is a binary function applied to every pair of rows from A and B.

Figure 3 illustrates this definition: the element marked as 3 of matrix C is
computed by combining the second row of A marked as 1 with the third row
of B marked as 2 using the binary operator ⊕.

For formally defining the all-pairs skeleton, let d, m and n be positive num-
bers. Let A be a n× d matrix, B be a m× d matrix and C be a n×m matrix
with their entries ai,j , bi,j and ci,j respectively. Let ⊕ be a binary function on
vectors. The algorithmic skeleton allpairs is defined as follows:

allpairs(⊕)


 a1,1 · · · a1,d

...
...

an,1 · · · an,d

 ,

 b1,1 · · · b1,d
...

...
bm,1 · · · bm,d


 def

=

 c1,1 · · · c1,m
...

...
cn,1 · · · cn,m


with entries ci,j of the computed n×m matrix C defined as:

ci,j = [ai,1 · · · ai,d] ⊕ [bj,1 · · · bj,d]

To illustrate the definition, we show how matrix multiplication can be ex-
pressed using the allpairs skeleton.

Example 1: The matrix multiplication is a basic linear algebra operation, which
is a building block of many scientific applications. A n×d matrix A is multiplied
by a d×m matrix B, producing a n×m matrix C = A×B whose element Ci,j

10

is computed as the dot product of the ith row of A with jth column of B. The
dot product of two vectors a and b of length d is computed as:

dotProduct(a, b) =

d∑
k=1

ak · bk (1)

The matrix multiplication can be expressed using the allpairs skeleton as:

A×B = allpairs(dotProduct)
(
A,BT

)
(2)

where BT is the transpose of matrix B.

4 Application Studies and Experiments

We consider two application case studies using the SkelCL library: 1) the calcu-
lation of a Mandelbrot fractal, and 2) the Sobel edge detection. Both SkelCL im-
plementations are compared to similar implementations in CUDA and OpenCL
regarding their programming effort and runtime performance.

For our runtime experiments we use a PC with a quad-core CPU (Intel Xeon
E5520, 2.26 GHz) and 12 GB of memory. The system is connected to a Tesla
S1070 computing system equipped with 4 Tesla GPUs. Its dedicated 16 GB of
memory (4 GB per GPU) is accessed with up to 408 GB/s (102 GB/s per GPU).
Each GPU comprises 240 streaming processor cores running at 1.44 GHz.

4.1 Application Study: Mandelbrot Set

The Mandelbrot set calculation [10] is a time-consuming task which is often used
as a benchmark. Computing a Mandelbrot fractal is easily parallelizable, as all
pixels can be computed simultaneously. As the criteria for programming effort
we use the number of Lines of Code (LoC), the results are in Fig. 4.

We created three similar parallel implementations for computing a Mandel-
brot fractal using CUDA, OpenCL, and SkeCL.

CUDA and SkelCL require a single line of code for initialization in the host
code, whereas OpenCL requires a lengthy creation and initialization of different
data structures which take about 20 LoC. The host CPU code differs significantly
between all implementations. In CUDA, the kernel is called like an ordinary func-
tion. A proprietary syntax is used to specify the size of work-groups executing
the kernel. In OpenCL, several API functions are called to load and build the
kernel, pass arguments to it and launch it using a specified work-group size. In
SkelCL, the kernel is passed to a newly created instance of the Map skeleton. A
Vector of complex numbers, each of which represents a pixel of the Mandelbrot
fractal, is passed to the Map skeleton upon execution. Specifying the work-group
size is mandatory in CUDA and OpenCL, whereas this is optional in SkelCL.

The OpenCL-based implementation has in total 118 lines of code (kernel:
28 lines, host program: 90 lines) and is thus more than twice as long as the CUDA

11

30

120

80

40

0

10

20

Pr
og

ra
m

 S
iz

e
(L

O
C

)
 R

un
tim

e
in

 S
ec

on
ds

host program

kernel function

CUDA OpenCL SkelCL

Fig. 4. Runtime and program size of the Mandelbrot application.

and SkelCL versions with 49 lines (28, 21) and 57 lines (26, 31), respectively (see
Figure 4).

We tested our implementations on a single GPU of our test system to com-
pute a Mandelbrot fractal of size 4096×3072 pixels. In CUDA and OpenCL,
work-groups of 16×16 are used; SkelCL uses its default work-group size of 256.

As compared to the runtime of the SkelCL-based implementation (26 sec), the
implementation based on OpenCL (25 sec) and CUDA (18 sec) are faster by 4%
or 31%, respectively. Since SkelCL is built on top of OpenCL, the performance
difference of SkelCL and OpenCL can be regarded as the overhead introduced by
SkelCL. Previous work [9] reported that CUDA was usually faster than OpenCL,
which explains the higher performance of the implementation based on CUDA.
The Mandelbrot application demonstrates that SkelCL introduces a tolerable
overhead of less than 5% as compared to OpenCL.

4.2 Application Study: Sobel Edge Detection

To evaluate the usability and performance of the MapOverlap skeleton on the
matrix data type, we implemented the Sobel edge detection that produces an
output image in which the detected edges in the input image are marked in white
and plain areas are shown in black.

for (i = 0; i < width; ++i)

for (j = 0; j < height; ++j)

h = -1*img[i-1][j-1] +1*img[i+1][j-1]

-2*img[i-1][j] +2* img[i+1][j]

-1*img[i-1][j+1] +1* img[i+1][j+1];

v = ...;

out_img[i][j] = sqrt(h*h + v*v);

12

Listing 1.4. Sequential implementation of the Sobel edge detection.

Listing 1.4 shows the algorithm of the Sobel edge detection in pseudo-code,
with omitted boundary checks for brevity. In this sequential version, for comput-
ing an output value out img[i][j] the input value img[i][j] and the direct
neighboring elements are needed. Therefore, the MapOverlap skeleton is a per-
fect fit for implementing the Sobel edge detection.

// skeleton customized with Sobel edge detection algorithm

MapOverlap <char(char)> m("char func(const char* img) {

short h = -1*get(img ,-1,-1) +1*get(img ,+1,-1)

-2*get(img ,-1, 0) +2* get(img ,+1, 0)

-1*get(img ,-1,+1) +1* get(img ,+1 ,+1);

short v = ...;

return sqrt(h*h + v*v); }", 1, SCL_NEUTRAL , 0);

Matrix <char > out_img = m(img); // execution of the skeleton

Listing 1.5. SkelCL implementation of the Sobel edge detection.

Listing 1.5 shows the SkelCL implementation using the MapOverlap skeleton
and the matrix data type. The implementation is straightforward and very sim-
ilar to the sequential version in Listing 1.4. The only notable difference is that
for accessing elements the get function is used instead of the square bracket
notation.

__kernel void sobel_kernel(__global const uchar* img ,

__global uchar* out_img)

uint i = get_global_id (0); uint j = get_global_id (1);

uint w = get_global_size (0); uint h = get_global_size (1);

// perform boundary checks

if(i >= 1 && i < (w-1) && j >= 1 && j < (h-1)) {

char ul = img [((j-1)*w)+(i-1)];

char um = img [((j-1)*w)+(i+0)];

char ur = img [((j-1)*w)+(i+1)];

// ... 5 more

char lr = img [((j+1)*w)+(i+1)];

out_img[j * w + i] = computeSobel(ul , um , ur , ..., lr); } }

Listing 1.6. Additional boundary checks and index calculations for Sobel algorithm,
necessary in the standard OpenCL implementation.

Listing 1.6 shows a part of the OpenCL implementation for Sobel edge de-
tection provided by AMD as an example for their software development kit [1].
The actual computation is performed inside the computeSobel function, which
is omitted in the listing, since it is quite similar to the sequential version in
Listing 1.4. The listing shows that extra low-level code is necessary to deal with

13

 OpenCL OpenCL SkelCL

0.25

0

0.05

0.1

0.15

0.2

Ru
nt

im
e

in
 m

se
c

(AMD) (NVIDIA)

Fig. 5. Performance results for Sobel edge detection

technical details, like boundary checks and index calculations, which are arguably
complex and error-prone.

We performed runtime experiments using one NVIDIA Tesla GPU with 480
processing elements and 4 GByte memory. Figure 5 shows the runtime of two
OpenCL versions (from AMD and NVIDIA SDK) vs. the SkelCL version with
the MapOverlap skeleton presented in Listing 1.5. Only the kernel runtimes are
shown, as the data transfer times are equal for all versions. Measurements were
taken using the OpenCL profiling API. We used the popular Lena image [18] with
a size of 512×512 pixel and took the mean values of six runs. The AMD version
is clearly slower then the two other implementations, because it does not use the
fast local memory which the NVIDIA implementation and the MapOverlap skele-
ton of SkelCL do. SkelCL totally hides the memory management details inside
its implementation from the application developer. The NVIDIA and SkelCL im-
plementations perform similar. In this particular example, SkelCL even slightly
outperforms the implementation by NVIDIA.

In addition to the performance advantage over the AMD and NVIDIA ver-
sions, the SkelCL program is also significantly simpler than the cumbersome
OpenCL implementation. The SkelCL program only comprises the few lines of
code shown in Listing 1.5. The AMD implementations requires 37 lines of code
for its kernel implementation and the NVIDIA implementation requires even 208
lines of code. Both versions require additional lines of code for the host program
which manages the execution of the OpenCL kernel. No index calculations or
boundary checks are necessary in the SkelCL version whereas they are crucial
for a correct implementation in OpenCL.

5 Conclusion and Related Work

This paper presents the SkelCL high-level programming model for multi-GPU
systems and its implementation as a library. The SkelCL programming model sig-
nificantly raises the level of abstraction: it combines parallel patterns to express
computations, parallel container data types for simplified memory management

14

and a data (re)distribution mechanism to improve scalability in systems with
multiple GPUs. The SkelCL library is available as open source software from
http://skelcl.uni-muenster.de.

There are a number of other projects aiming at high-level GPU programming.

SkePU [17] provides a vector class similar to our Vector class, but unlike
SkelCL it does not support different kinds of data distribution on multi-GPU
systems. SkelCL provides a more flexible memory management than SkePU, as
data transfers can be expressed by changing data distribution settings. Both
approaches differ significantly in the way how functions are passed to skeletons.
While functions are defined as plain strings in SkelCL, SkePU uses a macro
language, which brings some serious drawbacks. For example, it is not possible
to call mathematical functions like sin or cos inside a function generated by
a SkelPU macro, because these functions are either named differently in all of
their three target programming models (CUDA, OpenCL, OpenMP) or might
even be missing entirely. The same holds for functions and keywords related to
performance tuning, e. g., the use of local memory. SkelCL does not suffer from
these drawbacks because it relies on OpenCL and thus can be executed on a
variety of GPUs and other accelerators.

CUDPP [4] provides data-parallel algorithm primitives similar to skeletons.
These primitives can be configured using only a predefined set of operations,
whereas skeletons in SkelCL are true higher-order functions which accept any
user-defined function. CUDPP does not simplify data management, because data
still has to be exchanged between CPU and GPU explicitly. There is also no
support for multi-GPU applications.

Thrust [16] provides two vector types similar to the vector type of the C++
Standard Template Library. While these types refer to vectors stored in CPU
or GPU memory, respectively, SkelCL’s vector data type provides a unified ab-
straction for CPU and GPU memory. Thrust also contains data-parallel im-
plementations of higher-order functions, similiar to SkelCL’s skeletons. SkelCL
adopts several of Thrust’s ideas, but it is not limited to CUDA-capable GPUs
and supports multiple GPUs.

Unlike SkelCL, OpenACC [6], PGI Acccelerator [5], and HMPP [8] are compiler-
based approaches to GPU programming, similar to the popular OpenMP [7]. The
programmer uses compiler directives to mark regions of code to be executed on
a GPU. A compiler generates executable code for the GPU, based on the used
directives. Although source code for low-level details like memory allocation or
data exchange is generated by the compiler, these operations still have to be
specified explicitly by the programmer using suitable compiler directives. We
consider these approaches low-level, as they do not perform data transfer auto-
matically to shield the programmer from low-level details and parallelism is still
expressed explicitly.

http://skelcl.uni-muenster.de

15

Acknowledgments

This work is partially supported by the OFERTIE (FP7) and MONICA projects.
We would like to thank NVIDIA for their generous hardware donation.

References

1. AMD APP SDK code samples, February 2013, version 2.7. [Online]. Available: http:
//developer.amd.com/

2. NVIDIA CUDA SDK code samples, February 2013, version 5.0. [Online]. Available:
http://developer.nvidia.com/

3. Arora N, Shringarpure A, Vuduc RW (2009) Direct N-body Kernels for Multicore
Platforms. In: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, IEEE Computer Society, Washington, DC, USA, ICPP ’09, pp 379–387.

4. S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives for GPU
computing,” in Graphics Hardware 2007.

5. T. P. Group, PGI Accelerator Programming Model for Fortran & C, 2010.
6. OpenACC Application Program Interface, 2011, version 1.0. [Online]. Available:

http://http://www.openacc.org/

7. OpenMP Application Program Interface, OpenMP Architecture Review Board, 2008,
version 3.0. [Online]. Available: http://www.openmp.org/mp-documents/spec30.

pdf

8. S. Bihan, G. Moulard, R. Dolbeau et al., “Directive-based heterogeneous program-
ming a GPU-accelerated RTM use case,” in Proceedings of the 7th International
Conference on Computing, Communications and Control Technologies, 2009.

9. J. Kong, M. Dimitrov, Y. Yang et al., “Accelerating MATLAB image processing
toolbox functions on GPUs,” in GPGPU ’10: Proc. of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units. ACM, 2010.

10. B. B. Mandelbrot, “Fractal aspects of the iteration of z 7→ λz(1− z) for complex λ
and z,” Annals of the New York Academy of Sciences, vol. 357, pp. 249–259, 1980.

11. NVIDIA CUDA API Reference Manual, version 5.0 (February 2013).
12. Chang D, Desoky A, Ouyang M, Rouchka E (2009) Compute Pairwise Manhat-

tan Distance and Pearson Correlation Coefficient of Data Points with GPU. In:
Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing, 2009. SNPD ’09, pp 501 –506.

13. A. Munshi, The OpenCL Specification, version 1.2.
14. M. Steuwer, P. Kegel, S. Gorlatch, SkelCL – A Portable Skeleton Library for High-

Level GPU Programming, in: 2011 IEEE 25th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2011, pp. 1171–1177.

15. S. Gorlatch, M. Cole, Parallel skeletons, in: Encyclopedia of Parallel Computing,
2011, pp. 1417–1422.

16. J. Hoberock, N. Bell, Thrust: A Parallel Template Library (2009).
17. J. Enmyren, C. Kessler, SkePU: A multi-backend skeleton programming library

for multi-GPU systems, in: Proceedings 4th Int. Workshop on High-Level Parallel
Programming and Applications, 2010, pp. 5–14.

18. University of Southern California SIPI Image Database. Girl (lena, or lenna).
http://sipi.usc.edu/database/database.php?volume=misc.

http://developer.amd.com/
http://developer.amd.com/
http://developer.nvidia.com/
http://http://www.openacc.org/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

	SkelCL: Enhancing OpenCL for High-Level Programming of Multi-GPU Systems

