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Abstract

This paper presents a new form of consensus that allows nodes to agree locally on
the extent of crashed regions in networks of arbitrary size. One key property of our
algorithm is that it shows local complexity, i.e. its cost is independent of the size of the
complete system, and only depends on the shape and extent of the crashed region to be
agreed upon. In this paper, we motivate the need for such an algorithm, formally define
this new consensus problem, propose a fault-tolerant solution, and prove its correctness.

1 Introduction

Modern distributed computer systems are increasingly large and complex, often involving tens
of thousands of machines distributed across continents to deliver key global services such as
search, content delivery, or messaging to millions of users. Constructing such systems requires
distributed services that are scalable to account for the global size of these systems, efficient
to meet the increasing expectations of users, and robust to overcome the unavoidable failures
of individual elements in such large-scale systems.

One strategy to provide these properties is to eschew any form of centralisation or global
knowledge of the system, and instead rely on decentralized topologies in which each node only
perceives one limited part of the system. Coordinating the work of individual nodes in such
decentralized topologies is however difficult, leading to a number of works that aim to provide
fundamental coordination services such as consensus in systems whose size might be unknown,
and in which participants only have a partial knowledge of each other [2, 4, 8, 12, 13, 18].

In this article we look at one such fundamental service for the consistent detection of
crashed regions in networks of arbitrary size. Our premise is that large-scale distributed
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systems can be benefit from a collective response to the crash of connected regions of the
network, so that there is a need for the nodes around a crashed region to come to an agreement
on the shape and extent of this region, and possibly decide on some unified recovery action to
be undertaken. This problem of collective agreement can be cast as a new type of specialized
consensus, where nodes that border a crashed region (i.e. nodes on the cliff-edge) want to
agree on the extent of this crashed region (the precipice of our title).

This form of agreement in large-scale systems presents two interesting and related chal-
lenges, which clearly set it apart from existing works in the area: (i) The solution should
be scalable, and should in particular work in networks of arbitrary size, i.e. it should only
involve nodes in the vicinity of a crashed region, and never the complete system. (ii) Because
of ongoing failures, nodes might disagree on the extent of a crashed region, but as they do
so they will also disagree on who should even take part in the agreement, since both what
is to be agreed (the crashed region), and who should agree on it (the nodes bordering the
region) are irredeemably interdependent. We have termed this second facet of this emergent
agreement the self-constituency problem.

Contributions: In this article, we formally define this new consensus problem, present
a fault-tolerant solution that uses perfect failure detectors, and prove its correctness. Our
solution works in systems of arbitrary size, in a scalable manner (the algorithm only involves
nodes bordering a crashed region), for any number of faults.

Paper organization: We first present the cliff-edge consensus problem in Section 2,
then move on to describe our solution (Section 3). We present our proof of correctness
(Section 3.3), and finish with some related work (section 4) and a conclusion (Section 5).

2 The problem

2.1 Overview

We consider systems in which individual nodes only have a partial knowledge of the rest of the
system. This partial knowledge (Node x knows Node y) defines a form of spatial proximity
between nodes, captured in our model by an undirected graph. (We revisit these points
more formally in Section 2.2 below.) In case of correlated failures (for instance because the
network’s topology mirrors physical proximity as in some distributed hash table protocols
[6], or because neighbouring nodes rely on the same relay to communicate), whole regions
of the network might disappear, requiring surviving nodes to (i) identify and agree on the
extent of the crashed region, and (ii) decide on a common action to mitigate the failure.

For instance, in the network of Fig. 1-a, the nodes in region F1 and F2 have crashed.
These crashes are being detected by the border nodes (i.e. the neighbouring nodes) of each
crashed region: paris, london, madrid and roma for F1 and tokyo, vancouver, portland,
sydney, and beijing for F2. (This detection occurs with the help of an appropriate failure
detector, which we discuss in more detail in Section 2.2.)

Our scalability requirement imposes that communications related to F1 (resp. F2) should
be limited to nodes bordering F1 (resp. F2). For instance vancouver should not have to
communicate with madrid to decide on a repair strategy for F2. This excludes traditional
consensus approaches that would involve the entire network in a protocol run.
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(a)

(b)

Figure 1: Protocol instances and conflicting views

Because of ongoing crashes, nodes bordering the same crashed region might however
possess divergent views regarding the extent of their region, and hence have diverging per-
ceptions of who should get involved in a protocol run. In Fig. 1-b, for instance, paris fails
after madrid has detected F1 as crashed, but before an agreement on F1 has been reached.
The crashed region F1 thus grows into F3, and a new node berlin (paris’ still non-crashed
neighbour) becomes involved. berlin detects the entirety of F3 as crashed.

madrid and berlin now have different, albeit overlapping views. If madrid is slow to
detect paris’ crash, it might try to agree on F1 with london and roma alone, while berlin

will try to involve all nodes bordering F3 to decide on F3. Each node’s effort could stall each
other, or could lead to duplicated or inconsistent decisions. Our protocol prevents this and
insures that any decisions pertaining to the same part of the network converge to a unified
view, a problem that we have termed the convergent detection of crashed regions.

2.2 System Model and Assumptions

We model our system as a finite undirected graph G = (Π,E) of asynchronous message-
passing nodes Π = {p1, .., pn}, where G represents the knowledge that nodes have of each
other in the system.

A node is faulty if it crashes at some point, correct if it does not crash during the execution
of the algorithm. Any two nodes might exchange messages through asynchronous, reliable,
and ordered (fifo) channels. We also assume that each node can query G on demand, either by
directly contacting live nodes, or using some underlying topology service for crashed nodes.

The border of a node p is the set of p’s neighbours. By extension, the border of a
set S ⊆ Π of nodes are the nodes that have a neighbour in S but do not belong to S:
border(S) = {q ∈ Π\S | ∃p ∈ S : (p, q) ∈ E}. A region is a connected subgraph of G. A
crashed region at a time t is a region in which all nodes have crashed.

To specify the liveliness of our protocol, we need to define the three additional notions of
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adjacency, faulty domain and faulty cluster, which capture the maximum extent of crashed
regions during a run. More precisely, a faulty domain is a region in which all nodes are faulty,
but whose border nodes are correct. By construction, two faulty domains can only be either
equal or disjoint.

Figure 2: A cluster of adjacent faulty domains

Two faulty domains F and H are adjacent (noted F ‖ H) if their borders intersect (e.g.
F1 ‖ F2 in Fig. 2). We say that two faulty domains F0 and Fn are in the same faulty cluster,
noted clustered(F0, Fn), if they are transitively adjacent1, i.e. if there is a sequence of faulty
domains Fi so that F1 ‖ F2 ... Fn−1 ‖ Fn. For instance, we have clustered(F1, F4) in Fig. 2.

2.3 Convergent Detection of Crashed Regions: Specification

Operations

We use a mono-threaded event-based programming model to specify the convergent detection
of crashed regions, and present our solution. Our service starts when a node detects one of
its neighbours q as crashed (〈crash | q〉 event). It stops by raising a 〈decide |S, d〉 event,
where S is the crashed region decided by the local node, and d is the decision taken by this
node with respect to S (e.g. a repair plan, or some other form of coordinated action). We
call S the view of the deciding node.

Properties

The Convergent Detection of Crashed Regions is characterised by the following properties:

CD1 (Integrity)
No node decides twice on the same region.

CD2 (View Accuracy)
If a node p decides (V, d), then p ∈ border(V ), and V is a crashed region.

CD3 (Locality)
Communication is limited to faulty-domains and their borders, i.e. a node p only
exchanges messages with a node q if there is a faulty domain S such that {p, q} ⊆
S ∪ border(S).

1More formally, clustered(., .) is the transitive closure of the adjacency relation, and faulty clusters are the
equivalence classes of this closure.

4



CD4 (Border Termination)
If p decides (V, d), then all correct nodes in border(V ) eventually decide.

CD5 (Uniform Border Agreement)
If two nodes p and q decide, and p decides (V, d), and q ∈ border(V ), then q de-
cides (V, d).

CD6 (View Convergence)
If two correct nodes decide V and W , (V ∩W 6= ∅)⇒ (V = W ).

CD7 (Progress)
In each faulty cluster, at least one correct node bordering a faulty domain in the cluster
eventually decides: if D is the set of all faulty domains, ∀V ∈ D : ∃W ∈ clustered(V, ·) :
∃p ∈ border(W ) : p decides.

These properties capture the requirement that the nodes bordering a crashed region should
agree on the extent of this crashed region, and decide on a common course of action. CD1
(Integrity), CD5 (Uniform Border Agreement), and CD4 (Border Termination) are directly
adapted from (uniform) consensus; CD2 (View Accuracy) is taken over from the strong
accuracy of fault detectors; and CD7 (Progress) is a weak form of termination.

The problem’s originality resides in the two remaining properties: CD6 (View Conver-
gence) and CD3 (Locality). CD6 (View Convergence) forbids conflicting agreements on
overlapping crashed regions (F1 and F3 in Fig. 1). CD3 (Locality) provides scalability by
limiting the system’s reaction to the vicinity of crashed regions. In particular, CD3 (Local-
ity) implies that nodes with no faulty neighbours do not take part in the protocol. As a
result, the protocol only depends on the amount of failures in the system, but not on the
system’s actual size. Locality also excludes the use of a system-wide consensus to fulfil the
other properties.

This Locality property creates however a pernicious inter-dependency between the proto-
col’s participants (the ‘constituency’) and what they are agreeing to: To start our protocol,
a node needs to know with whom it should be agreeing (its fellow border nodes), but this set
of nodes depends on the final outcome of the protocol (the crashed region agreed upon).

In the following, we present a solution to this problem and propose a proof of its correct-
ness.

3 A Cliff-Edge Consensus Protocol

3.1 Preliminaries: Failure detector, Multicast, Region Ranking

Our algorithm uses a perfect failure detector provided in the form of a subscription-based
service: a node p subscribes to the crashes of a subset of nodes S by issuing the event
〈monitorCrash |S〉 to its local failure detector. Our failure detector is perfect and ensures:
(i) Strong Accuracy : if a node p receives a 〈crash | q〉 event, then q has crashed, and p did
subscribe to be notified of q’s crash; and (ii) Strong Completeness : if a node q has crashed,
and p has subscribed to be notified of q’s crash, then p will eventually receive a 〈crash | q〉
event.
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For the sake of conciseness, we use a basic multicast service, represented by the events
〈multicast | R, [m]〉 and 〈mDeliver | p, [m]〉. This service simply sends to each recipient a
multicast message [m] over underlying point-to-point channels, in a plain loop. This service
provides no guarantees beyond those of the underlying channels, and is essentially a shorthand
to keep our code brief.

We also use a ranking relation between regions, noted ≻: R ≻ S iff either (i) R contains
more nodes than S, or (ii) they contain the same number of nodes but R’s border contains
more nodes than S’s border, or (iii) R and S have the same size, and so do their respective
borders, but R is greater than S according to some strict total order relation ✄ on sets of
nodes. The actual ordering relation ✄ on node sets does not matter. One possibility is to
use a lexicographic order on node IDs. By construction, ≻ is a strict total order on regions.
For a set C of regions, maxRankedRegion(C) is the highest ranked region in C.

Finally, for a subset S of nodes, connectedComponents(S) returns the set of the maximal
regions of S, i.e., formally, the vertex sets of the connected components of the subgraph G[S]
induced by S in G. (Remember that a region is defined as a connected subgraph of G, see
Section 2.2.)

3.2 Algorithm

The pseudo code of our algorithm is given in Figure 1. 〈init〉 is executed by all nodes when
the protocol starts. Each node then remains idle until one of its neighbours fails, as notified
by a 〈crash | q〉 event.

The bulk of the protocol is primarily a superposition of flooding uniform consensus in-
stances [9, 14] between the border nodes of proposed views. This superposition is comple-
mented by an arbitrating mechanism to deal with overlapping but conflicting views (line 26).
Because of this arbitration, all consensus instances must be tracked concurrently by our pro-
tocol, in the variables opinions[·][·][·] and waiting[·][·], which are indexed by proposed views
(in addition to rounds, and, for opinions, participants).

A node starts a consensus instance when it detects that one of its neighbours has crashed
(line 17). The view it proposes has been incrementally built when receiving 〈crash | .〉 events
(line 5), and is the highest ranked crashed region known to the node at this point. The view
construction continues in the background as the consensus unfolds (lines 5-10), to be used if
the attempt to reach an agreement fails.

The opinion vectors received from other nodes in a round are gathered at line 18. Because
a node might be involved simultaneously in multiple conflicting consensus instances, messages
related to conflicting views are also gathered and processed. The resulting opinion vectors,
indexed by round and proposed view (line 24) are stored in opinions[·][·][·].

If a node becomes aware of a conflicting view with a lower rank (line 26), it sends a special
opreject vector to this view’s border nodes, and subsequently ignores any message related to
this view (lines 28-31).

Rounds are completed at line 32 when all non-crashed border nodes of view have replied:
if no more rounds are needed (line 34), and the node’s final vector only contains accept

values, a decision value is deterministically selected for the proposed view (line 35), and the
node decides2. Otherwise the whole process is reset, and restarts at line 12 as soon as a new

2For clarity’s sake, the presented version is not optimized. A classical optimization consists in terminating
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Algorithm 1 Convergent detection of crashed regions executed by node p

1: upon event 〈init〉
2: decided← ⊥ ; proposed← ⊥
3: locallyCrashed,maxView, candidateView, Vp, received, rejected← ∅
4: trigger 〈monitorCrash | border(p)〉

5: upon event 〈crash | q〉 ⊲ View construction
6: locallyCrashed← locallyCrashed ∪ {q}
7: trigger 〈monitorCrash | border(q)\locallyCrashed〉
8: C ← connectedComponents(locallyCrashed)
9: if maxView ≺ maxRankedRegion(C) then

10: maxView← maxRankedRegion(C)
11: candidateView← maxView

12: upon event proposed = ⊥ ∧ candidateView 6= ∅ ⊲ New consensus instance
13: Vp ← candidateView ; candidateView← ∅
14: proposed← selectValueForView(Vp)
15: opaccept[pk]← ⊥ for all pk ∈ border(Vp)\{p}
16: opaccept[p]← (accept, proposed) ; r ← 1
17: trigger 〈multicast | border(Vp), [1, Vp, border(Vp), opaccept]〉 ⊲ proposing Vp

18: upon event 〈mDeliver | pi,[r, V, B, op]〉 ∧V 6∈ rejected ⊲ Updating opinions
19: if V 6∈ received then
20: received← received ∪ {V } ⊲ Initialise data structures for V
21: opinions[V ][r][pk]← ⊥ for all pk ∈ B ∧ 1 ≤ r < |B|
22: waiting[V ][r]← B for all 1 ≤ r < |B|

23: for all pk such that (opinions[V ][r][pk] = ⊥ ∧ op[pk] 6= ⊥) do
24: opinions[V ][r][pk]← op[pk]

25: waiting[V ][r]← waiting[V ][r]\ ({pi} ∪ {pk|op[pk] = reject})

26: upon event ∃L ∈ received : L ≺ Vp ⊲ Rejecting a lower ranked view
27: trigger 〈reject |L〉

28: upon event 〈reject |L〉
29: opreject[pk]← ⊥ for all pk ∈ border(L)\{p}
30: opreject[p]← reject; received← received\{L}; rejected← rejected ∪ {L}
31: trigger 〈multicast | border(L), [1, L, border(L), opreject]〉

32: upon event Vp ∈ received ∧ waiting[Vp][r]\locallyCrashed = ∅ ∧ decided = ⊥
33: if r ≥ |border(Vp)| − 1 then ⊲ Consensus instance completed
34: if ∀pi ∈ border(Vp) : opinions[Vp][r][pi] = (accept, vpi) then
35: decided← deterministicPick({vpi}pi∈border(Vp)) ⊲ Decision
36: trigger 〈decide |Vp, decided〉
37: else proposed← ⊥ ⊲ Consensus attempt failed, reset

38: else ⊲ New round
39: r ← r + 1
40: trigger 〈multicast | border(Vp), [r, Vp, border(Vp), opinions[Vp][r − 1]]〉
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crashed node is detected.

3.3 Proof of Correctness

In the following, we use a subscript notation to distinguish between the same protocol variable
at different nodes: e.g. opinionsp for the variable opinions of p.

Theorem 3.1. Our protocol fulfils properties CD1 (Integrity), CD2 (View Accuracy), and
CD3 (Locality).

Proof. CD1 is fulfilled by construction. For CD2, connectedComponents() at line 8 and the
strong accuracy of the failure detector insure that proposed views are crashed regions. Using
recursion on 〈crash | .〉 events, a node p can be shown to respect the two invariants (i)
p ∈ border(locallyCrashedp) and (ii) {p} ∪ locallyCrashedp is connected, thus yielding that p
is on the border of any view it proposes. CD3 follows from CD2, and the fact that two nodes
only exchange messages when both border a region detected as failed by one of them.

Our proof of the remaining four properties reuses elements of the proof of the consensus
algorithm presented in [9] for strong failure detectors (S), of which the flooding uniform con-
sensus is derived. The difficulty lies in that our protocol uses multiple overlapping consensus
instances, each indexed by the view it proposes, with no prior agreement on either the set
the consensus instances, their participants, or their sequence. In addition, our arbitrating
mechanism means a node can first propose and then reject the same view, thus complicating
the uniform border agreement, as we shall see.

Lemma 3.2. At any execution point the vectors opinionsp[V ][r][·] of p are such that ∀q ∈
border(V ) :
1) opinionsp[V ][r][q] = reject⇒ q rejected V earlier ∧
2) opinionsp[V ][r][q] = (accept, ·)⇒ q accepted V earlier

Proof. First let us note that the only location where opinions[V][q][q] is explicitly assigned
an accept (resp. reject) value is when q accepts (resp. rejects) view V at line 16 (resp.
line 30). This accept (resp. reject) value then propagates to the opinion vectors of other
border nodes through the network (lines 17, 31 and 40), and the assignment of line 24. A
recursive data-flow argument on the values of opinions[V][r][·] taken at these lines yields the
lemma.

Lemma 3.3. A node proposes (resp. rejects) a given view V at most once. A node never
proposes a view it has previously rejected.

Proof. The uniqueness of rejection follows from the use of the rejected and received variables.
The use of the strict ranking relation≺ (line 9) means the series of values taken by the variable
candidateView is strictly monotonic according to ≺ (line 11), and that by construction this
is also true of Vp (line 13), thus completing the lemma.

a consensus instance once a node sees that all nodes in its border set know everything (i.e. no ⊥), i.e. after
two rounds, in the best case.
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Lemma 3.4. If two nodes p and q complete a consensus instance on the same view Vp|q = V

(line 34), they obtain the same opinion vector:

opinionsp[V ][N ][·] = opinionsq[V ][N ][·]
where N = |border(V )| − 1

Proof. We prove this lemma by contradiction. Let’s assume ∃k ∈ border(V ) : opinionsp[V ][N ][k] 6=
opinionsq[V ][N ][k]. If one of the two values is ⊥, we can use the well-known argument on cas-
cading crashes, identifying N distinct nodes in border(V ) that did not complete the consensus
instance, contradicting the fact that p and q completed it.

Let’s now assume both values are non-⊥. The first sub-case is when both values are accept
for k, with different decision values on p and q, i.e. opinionsp[V ][N ][k] = (accept, vpk) and
opinionsq[V ][N ][k] = (accept, vqk) with v

p

k 6= v
q

k. Using lemma 3.3, we conclude that line 16 is
executed only once by k for V , and that vpk = v

q

k, yielding the contradiction.
Finally, let’s assume one value is accept, while another is reject, e.g. without loss of gen-

erality, opinionsp[V ][N ][k] = (accept, ·) and opinionsq[V ][N ][k] = reject. From lemma 3.2 we
conclude that k has both proposed and rejected V . Let’s call ekaccept and ekreject the corre-

sponding execution points. Because of lemma 3.3, ekaccept and ekreject are unique, and ekaccept
happened before ekreject. Because the best-effort multicast is fifo, this means q received the

message for ekaccept before that of ekreject, and because line 24 only updates ⊥ values, that
opinionsq[V ][N ][k] = (accept, ·), yielding the contradiction.

Theorem 3.5. Our protocol fulfils properties CD5 (Uniform border agreement) and CD4
(Border termination).

Proof. Let’s assume p and q decide, p decides (Vp, decidedp), and q ∈ border(Vp). If p decides
on Vp, then p completed the corresponding consensus instance with only accept values, and
since q ∈ border(Vp) we have opinionsp[Vp][N ][q] = (accept, ·). By lemma 3.2, q proposed Vp.

Let us now note that by construction a node cannot propose any new view once it has
decided on one (Remark N1). That is because of the guards decided = ⊥ at line 32 and
proposed = ⊥ at line 12. The first guard means the lines 32-40 are never executed again once
a value has been decided at lines 35-36. In particular the variable proposed is never reset at
line 37 after a decision. This in turn means a node cannot propose a new view at lines 12-17.

Similarly, the same guard proposed = ⊥ at line 12 means a node cannot start a new
consensus instance before completing the current one (Remark N2). Remarks N1 and N2
thus mean q completed the consensus instance corresponding to Vp before deciding. By
lemma 3.4, q obtained the same vector opinionsq as p on Vp, and hence decided (Vp, decidedp)
by determinism of deterministicPick (line 35), thus proving CD5.

CD4 follows the same reasoning, with the observation that if a node p completes a con-
sensus instance on a view Vp, then all other nodes in border(Vp) either took part in each
round or crashed, implying that all correct nodes eventually complete the instance with the
same opinion vector as p (by way of lemma 3.4).

Theorem 3.6. Our protocol fulfils CD6 (View convergence).
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Proof. Let’s consider two correct nodes p and q that decide on overlapping crashed regions
Vp and Vq: Vp∩Vq 6= ∅. If one node is in the border of the other’s region, e.g. p ∈ border(Vq),
then Uniform Border Agreement (CD5) and Integrity (CD1) give us Vp = Vq.

Let’s now assume p 6∈ border(Vq)∧q 6∈ border(Vp), and use a proof by contradiction. Since
Vp ∩ Vq 6= ∅, there is a node a ∈ Vp ∩ Vq (Fig. 3). Vp being a region bordered by p (CD2),
there exists a path (n0 = p, n1, ..., nk = a) that links a to p through Vp: {n1, ..., nk, a} ⊆ Vp.
Since a ∈ Vq, we can consider the point when this path “penetrates” for the first time into
Vq, i.e. we can consider ni0 ∈ Vq and ∀i < i0 : ni 6∈ Vq. Since p is correct, ni0 6= p, i.e.
i0 ≥ 1, and we can look at ni0−1, the node in the path just before ni0 . Let’s call this node r

(Fig. 3). Because ni0 is the first node in the path to belong to Vq, we have r ∈ border(Vq),
and since p 6∈ border(Vq), r = ni0−1 cannot be p (i0 > 1). Because, with the exception of
p, the path connecting p to a is embedded in Vp, this means that r is in fact located in p’s
crashed region. This reasoning thus yields us a node (r) that is both on border(Vq) and in
p’s crashed region: r ∈ Vp ∩ border(Vq). Using an identical argument, we can find a node s

such that s ∈ Vq ∩ border(Vp) (Fig. 3).

Figure 3: Convergence between overlapping views

To complete our proof, we now look at the happen-before relationships between events
related to r and s. Let’s first consider s. Since s ∈ border(Vp) and p decided on Vp, s itself
did propose Vp (lemma 3.2). Since r ∈ Vp, s did detect r as crashed as some point. By a
similar reasoning, we conclude that r proposed Vq, and hence detected s as crashed as some
point.

We thus end up with a set of 6 events that form a circular chain of happen-before
events: s detects r → s proposes → s crashes → r detects s → r proposes → r crashes
→ s detects r ... This provides our contradiction.

Theorem 3.7. Our protocol fulfils properties CD7 (Progress).

Proof. Again we use a contradiction: consider a cluster of adjacent faulty domains (Fig. 2),
and assume none of its correct border nodes ever decide. Since this situation lasts indefinitely,
we can consider the case where all crashed regions are maximal and all remaining nodes are
correct.

Because the views proposed by a node are strictly monotonic according to ≺, and because
G is finite, a node cannot propose an infinite sequence of views. A correct border node p that
does not decide falls therefore into two cases: either (C1) p is blocked waiting for the reply
of another node q (line 38); or (C2) the last view proposed by p failed (line 37), and p does
not detect any new crashed node (line 5).

Case C1: If p is waiting for the reply of some other node q, q must be correct (if it were
not, q would eventually crash, thus unblocking p). Since there is a path of crashed nodes
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from p to q (since p is waiting for q), q is on the border of the same faulty domain as p, so q

never decides (by assumption).
As for p, q falls in either case C1 or C2. Let’s first assume that the last view V max

q

proposed by q failed, and q does not detect any new crashed node (C2). Since we have
assumed that all faulty nodes have crashed, by strong completeness of the failure detector,
V max
q is a faulty domain, and because of the use of maxRankedRegion (line 10) and the fact

that ≺ subsumes set inclusion, V max
q is higher ranked than any crashed region bordered by q.

Since p is waiting for q, Vp 6= V max
q , and since q is on the border of both Vp and V max

q ,
Vp is lower-ranked than V max

q : Vp ≺ V max
q . q has received a round-1 message proposing Vp

(line 18), and should have rejected it (line 31), thus ending p’s wait on q, which contradicts
our assumption.

We therefore conclude that q cannot fall in case C2, and instead is blocked in a consensus
round proposing a crashed region Vq (case C1). q received p’s proposal message, and did
consider it for rejection (line 26). Because p is waiting for q, we know it did not receive any
rejection message from q, and therefore, Vp � Vq. Since p is waiting for q, q is not proposing
the same view as p, yielding a strict ordering between the two views Vp ≻ Vq.

This construction can be repeated recursively, first for q, and then for the node q is
waiting on, etc, each time yielding an infinite number of pairwise distinct crashed regions
(via CD2) that are strictly ordered by the ranking relationship: Vp1 ≻ Vp2 ≻ ... ≻ Vpi ≻ ...

This contradicts our assumption that each faulty cluster contains a finite number of faulty
domains, each containing a finite number of nodes.

Case C2: Let’s now assume the last view V max
p proposed by p failed, and p does not

detect any new crashed node. As with V max
q above, V max

p is a faulty domain, and all its
border nodes are correct. Because the failure detector is strongly accurate, for p’s proposal
to fail, one node q ∈ border(V max

p ) must have rejected V max
p because it was proposing a higher-

ranked view V higher
q . By assumption, q never decides, it must either fall in case C1 or C2.

If q is in case C1, we can repeat the same argument as for p in Case C1, above. If q is
in case C2, q’s last view V max

q is higher or equal than any view q ever proposed, implying
V max
p ≺ V higher

q � V max
q .

By recursively applying this argument, we either come back to case C1 at some point,
or obtain an infinite sequence of strictly ordered faulty domains V max

p1
≺ V max

p2
≺ V max

p3
≺ ...,

which yields our contradiction.

4 Related Work

The algorithm we presented builds on our earlier work on the generic repair of overlay net-
works [17], in which we first sketched some of the ideas presented in this paper, albeit without
any formal definition or proof.

Our algorithm can be viewed as a combination of an ad-hoc group formation and ‘preference-
based’ leader election [19], with the important difference that the algorithm attempts to find
a stable region of a network (crashed region) to operate on.

Consensus [5, 9] and leader election [15, 19] are both well-studied fields, although most
approaches do not address the ad-hoc group formation problem; i.e. the inter-dependency
that arises between those who are agreeing (the border set) and that which they are agreeing
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to (the crashed region, and thus constituency of the border set itself). Our work has however
some similarities with consensus with unknown participants, where the set of participants
is fixed, but unknown to the nodes involved [3, 7, 8, 13]. These works introduce the notion
of a participant detector (PD) and study the properties this detector should fulfil to permit
consensus under different assumptions.

These works are however quite different from what we are proposing, in that in our case
participants are not only unknown, but evolve as failures occur. Our work also puts a strong
focus on scalability with the locality property.

The service we propose is also related to group membership [10]. Deciding on a view
in our protocol can be seen as the equivalent of installing a view. The link is particularly
true with partitionable group membership (PGM) services [1, 11, 16], which look at how
successively installed views should evolve to ensure that both reachability and unreachability
between nodes are reflected in their installed views.

As in partitionable group membership, our service requires views held by nodes to con-
verge when these nodes enter a particular relationship. This relationship depends on reach-
ability in PGM, while ours arise when two nodes propose views that overlap (CD6).

The key difference however is that, whereas PGM services are defined in terms of eventual
convergence of installed views, our specification is stricter in that nodes can only decide once
on a given region (CD1), and must therefore detect when they have reached a convergent
state, while insuring liveliness in the system (CD7).

5 Conclusion

In this paper we have formally specified a service for the convergent detection of crashed
regions, where the nodes of an arbitrary large distributed system attempt to reconcile their
views of neighbouring crashed regions. We have described a fault-tolerant solution to this
problem, and proved its correctness. One key aspect of our specification is that it only
involves nodes bordering a crashed region (locality), and requires nodes to explicit decide
when they have converged on a unified view.

Beyond the detection of correlated crashed regions, we think this form of agreement
can be seen as a particular case of a wider class of algorithms that attempt to create local
collective knowledge about some distributed condition in a manner that is both deterministic
and scalable. Scalability here means costs only depend on the ‘extent’ of the knowledge to
be constructed, independently of the actual size of the system, a powerful property in very
large systems.

Being crashed can also be seen as a particular case of stable property. It could be in-
teresting to see how this work could be extended to the detection of connected regions of
nodes that share a given stable predicate (say a particular stable state). A further challenge
could be to investigate how the notion of predicate-based regions and the properties of the
corresponding agreement protocols could be evolved to tackle unstable properties.
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