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Abstract. We present a systematic procedure for constructing cut-free display
calculi for axiomatic extensions of a logic via structural rule extensions. The suffi-
cient conditions for the procedure are given in terms of (purely syntactic) abstract
properties of the display calculus and thus the method applies to large classes of
calculi and logics. As a case study, we present cut-free calculi for extensions of
well-known logics including Bi-intuitionistic and tense logic.

1 Introduction

Driven by the rising demand of researchers and practitioners, the last decades have wit-
nessed a tremendous growth in research on logics different from classical logic and also
the definition of many new logics. The usefulness of these logics and the key to their
application often lies in the existence of analytic calculi, that is, calculi in which proofs
proceed by stepwise decomposition of the formulae to be proved. Indeed, analytic cal-
culi have been widely applied to establish fundamental properties of the logics and are
themselves the focus of much research.

Since its introduction by Gentzen [8], the sequent calculus has been the favourite
framework for defining analytic calculi. However, this framework is not powerful
enough to formalise all interesting logics. For this reason a huge range of extensions
of the sequent calculus have been introduced, in many cases for the sole purpose of
obtaining analytic calculi for particular logics. General and well-known formalisms in-
clude hypersequents [1], bunched calculi [13], labelled deductive systems [7, 16] and
the calculus of structures [12]. Since the construction of an analytic calculus is often
tailored to the specific logic under consideration, a large numbers of papers in the liter-
ature deal with this topic and yet many interesting logics still lack an analytic calculus.
The display calculus [2] is a powerful and semantic-independent formalism that can be
used to capture a variety of different logics ranging from resource-oriented logics [4] to
substructural [9] and temporal logics [14]. The beauty of the display calculus lies in a
general cut-elimination theorem for all calculi obeying eight easily verifiable syntactic
conditions [2, 17]; this makes the display calculus a good candidate for capturing large
classes of logics in a unified way, irrespective of their semantics or connectives.

Nonclassical logics are often introduced by adding properties — expressed as
Hilbert axioms — to known systems. Systematic procedures to automate the construc-
tion of new analytic calculi from such Hilbert axioms are highly desirable. In this direc-
tion e.g. [5, 6, 16, 14, 15, 11] introduce methods to extract rules out of suitable Hilbert
axioms. More precisely [5, 6] generate sequent and hypersequent rules, [11] nested se-
quent rules, [15] sequent rules for certain modal axioms, and [16] labelled rules; finally



[14] transforms suitable modal and tense axioms (called primitive tense axioms) into
structural rules for the display calculus. [14] also provides a characterisation as it is
shown that each such rule added to the base system is equivalent to the extension of the
logic by primitive tense axioms.

All the above results start with a specific logic and introduce calculi for (some of)
its axiomatic extensions, e.g., Full Lambek calculus with exchange FLe for [5, 6], or the
tense logic Kt for [14, 11]. This paper proposes instead a recipe that utilises the more
common Hilbert axioms to construct analytic calculi1. In particular, given a suitable
base calculus for a logic, we identify a hierarchy of axiom classes — computed as a
function of the invertible (logical) introduction rules of the base calculus — and show
how to translate axioms from suitable classes into equivalent structural rules. More in-
vertible rules in the base calculus lead to larger sets of axioms in each suitable class, and
then to the construction of cut-free calculi for more logics. In the case of intermediate
logics, for example, we capture more logics than the hypersequent calculi in [5].

The emphasis is not to define such calculi for specific families of logics but to pro-
vide a methodology to construct them in a uniform and systematic way starting from a
display calculus satisfying general conditions. Since the conditions are given in terms
of (purely syntactic) abstract properties of the display calculus, the method applies to
large classes of calculi and logics. As a case study, we present analytic calculi for ax-
iomatic extensions of propositional (Bi-)intuitionistic logic, bunched, modal and tense
logics. This allows for the automated introduction of (infinitely many) analytic display
calculi for logics.

2 Display calculi in a nutshell

Given a language L, we write ForL to denote the formulae of L. We identify a logic
with the set of theorems in its Hilbert calculus.

Belnap’s Display Calculus [2] — introduced under the name Display Logic —
generalises Gentzen’s sequent calculus by supplementing the structural connective
(comma) with new structural connectives. A (display) sequent X ` Y is a tuple (X,Y )
where X and Y are structures which are built from formulae and structure constants
using the structural connectives of the calculus. Structure X (resp. Y ) is called the an-
tecedent (succedent) of the sequent. A display calculus consists of initial sequents and
rules and includes the cut-rule. The rules of the calculus are usually presented as rule
schemata. Concrete instances of a rule are obtained by substitution of a formula (resp.
structure) for each schematic formula (structure) variable. Following standard practice,
we do not explicitly distinguish between a rule and a rule schema. A derivation in the
display calculus is defined in the usual way. In this paper we use A,B,C,D, . . . (pos-
sibly with subscripts) to denote formulae and X,Y, U, V, . . . to denote structures.

A structural rule in the display calculus is constructed from structure variables us-
ing structural connectives and structure constants. The logical rules usually introduce
exactly one logical connective, as the primary connective in a formula that is the whole

1 In the direction of general results, [10] shows how to extract display calculi starting from the
algebraic Gaggle-theoretic semantics of a logic.



of the antecedent or succedent of the conclusion. The cut-rule has the following form,
where X,Y are structures and A is a formula:

X ` A A ` Y
cut

X ` Y
The calculus obtained by the addition of structural rules is a structural rule extension.
A rule is admissible in C if the conclusion is derivable when the premises are derivable.
A rule is invertible in C if the premises are derivable when the conclusion is derivable.

Definition 1 (equivalent rules). Let R0 and R1 be sets of rules. We say that R0

andR1 are equivalent wrt C if each rule inRi is admissible in C +R1−i for i = 0, 1.

By viewing a sequent X ` Y as the zero-premise rule with conclusion X ` Y , we can
define in the obvious way what it means for two sequents to be equivalent, and for a
sequent to be equivalent to a rule.

Let Z be a structure. Any structure that occurs in Z is called a substructure of Z.
Trivially, Z is a substructure of itself. The defining feature of a display calculus is that
it satisfies the display property.

Definition 2 (display property; a-part, s-part). Let Z be an occurrence of a substruc-
ture occurring in a sequent X ` Y . Using the invertible structural rules (the ‘display
rules’) a sequent of the form Z ` U or U ` Z can be derived for suitable U . In the
former (resp. latter) case, the occurrence Z is said to be displayed as an a-part (s-part)
structure.

Since a formula is itself a structure, the display property applies to a formula occurring
in a sequent but not to its proper subformulae.

A calculus is said to be cut-eliminable if it is possible to eliminate all occurrences of
the cut-rule from a given derivation in order to obtain a cut-free derivation of the same
sequent. A display calculus has the subformula property if every formula that occurs in
a cut-free derivation appears as a subformula of the final sequent. An important feature
of the display calculus are Belnap’s conditions C1–C8 on the rules of the calculus.

(C1) Each (schematic) formula variable occurring in a premise of a rule ρ 6= cut is a
subformula of some formula in the conclusion of ρ.

(C2) Congruent parameters is a relation between parameters of the identical structure
variable occurring in the premise and conclusion sequents of a rule.

(C3) Each parameter is congruent to at most one structure variable in the conclusion. Ie.
no two structure variables in the conclusion are congruent to each other.

(C4) Congruent parameters are all either a-part or s-part structures.
(C5) A formula variable in the conclusion of a rule ρ is either the entire antecedent or

the entire succedent. This formula is called a principal formula of ρ.
(C6/7) Each rule is closed under simultaneous substitution of arbitrary structures for con-

gruent parameters.
(C8) If there are rules ρ and σ with respective conclusions X ` A and A ` Y with

formula A principal in both inferences (in the sense of C5) and if cut is applied to
yield X ` Y , then either X ` Y is identical to either X ` A or A ` Y ; or it is
possible to pass from the premises of ρ and σ to X ` Y by means of inferences
falling under cut where the cut-formula always is a proper subformula of A.



Belnap’s general cut-elimination theorem states that C2–C8 constitute sufficient con-
ditions for a calculus to be cut-eliminable and C1 is the subformula property. Only
condition C8 is non-trivial to check. However, C8 is not relevant for structural rules.
This further motivates the interest in structural rule extensions of the display calculus.

Definition 3. Let C be a display calculus and let L be a logic in the language L. We
say that C is a calculus for L to mean that for every A ∈ ForL: C derives A iff A ∈ L.

Given a display calculus C, we denote by LC the language determined by the con-
nectives introduced by its logical rules. We do not exclude the possibility that a display
calculus C for a logic in the language L derives B for some B 6∈ ForL. This can occur
only when the subset relation L ⊂ LC is strict.

3 The recipe

Suppose that C is a display calculus for a logic L in the language L satisfying C1–C8.
We show how to define structural rules r1, . . . , rm so that C + {r1, . . . , rm} is a cut-
eliminable calculus for the axiomatic extension L + {A1, . . . , An} (Ai ∈ ForL). Our
method is constructive and works whenever the base calculus C is ‘expressive enough’
(i.e., it is amenable), and the axioms Ai have a certain syntactic form.

Definition 4 (amenable calculus). Let C be a display calculus satisfying C1–C8. As-
sume that we have two functions l and r mapping structures into ForLC such that
l(A) = r(A) = A when A ∈ ForLC , and for an arbitrary structure X

(i) X ` l(X) and r(X) ` X are derivable in C.
(ii) X ` Y derivable implies l(X) ` r(Y ) is derivable C.

Let there be a structure constant I, and let the following rules be admissible in C for
arbitrary structures X,Y such that the premise and conclusion are well-defined in C.

I ` X
lI

Y ` X
X ` I

rI
X ` Y

Let there be binary logical connectives ∨,∧ ∈ LC such that · ∈ {∨,∧} is associative
in C — A · (B · C) ` (A · B) · C and (A · B) · C ` A · (B · C) are derivable — and
commutative in C — A ·B ` B ·A is derivable. Also, for A,B ∈ ForLC:

(a)∨ A ` X and B ` X implies ∨(A,B) ` X
(b)∨ X ` A implies X ` ∨(A,B) for any formula B.
(a)∧ X ` A and X ` B implies X ` ∧(A,B)
(b)∧ A ` X implies ∧(A,B) ` X for any formula B.

A display calculus satisfying the above conditions is said to be amenable.

Requiring that lI and rI are admissible in C is weaker than requiring that C contains
weakening rules. Indeed, the rules lI and rI are admissible in the bi-Lambek calcu-
lus [9]. The function l (resp. r) ‘interprets’ the structural connectives in the antecedent



(resp. succedent). Above, we use the notation ∧ and ∨ to reflect that in a classical cal-
culus, the connectives conjunction and disjunction satisfy the respective properties.

Our recipe abstracts and reformulates for display calculi the procedure in [5, 6],
defined for (hyper)sequent calculi and substructural logics. To transform axioms into
structural rules we use: (1) the invertible logical rules of C and (2) the display calculus
formulation, below, of the so-called Ackermann’s lemma that allows a formula in a rule
to switch sides of the sequent moving from conclusion to premises.

Lemma 1. The following rules are pairwise equivalent in an amenable calculus where
A ∈ ForL, S is a set of sequents and Z( 6=X) is a structure variable not in S.

S ρ1
X ` A

S A ` Z ρ2
X ` Z

S
δ1

A ` X
S Z ` A

δ2
Z ` X

Proof. Suppose that we have concrete derivations of the premises S ∪ {A ` Z} of ρ2.
Applying ρ1 to S we get X ` A. Applying cut with A ` Z we get X ` Z and thus it
follows that ρ2 is admissible in a calculus containing ρ1.

Now suppose we have concrete derivations of the premises S of ρ1. Observe that
r(A) ` A is derivable. Applying ρ2 to S ∪ {r(A) ` A} we get X ` A as required. The
proof that δ1 and δ2 are equivalent is analogous.

We now give an abstract description of the axioms that we can handle. The description
is based on the invertible rules of the chosen display calculus C and is inspired by the
classification in [5] of formulae of FLe. We identify three classes of formulae in the
language of L from which the logical connectives can be removed using the invertible
rules of C at various levels. The class I0 consists of formulae with no logical connective
(so there is no need for the invertible rules). Logical connectives in formulae in I1 can
be eliminated by repeatedly applying the invertible rules starting with sequents (thus
obtaining sets of sequents). Logical connectives in formulae in I2 can be eliminated
by repeatedly applying the invertible rules to formulae, sequents and to the premises of
rules obtained via Lemma 1 (thus obtaining sets of structural rules).

Definition 5 (inv). The function inv takes a sequent X ` Y and applies all the in-
vertible logical rules in C that are possible and returns the (necessarily finite) set
{Xi ` Yi}i∈Ω of sequents for some index set Ω.

Definition 6 (soluble). A formula A ∈ ForL is a-soluble (resp. s-soluble) if the se-
quents in inv(A `) (resp. inv(` A)) do not contain any logical connectives.

Definition 7. Let C be an amenable calculus for L. The classes I0, I1, I2 of formulae
of ForL are defined in the following way: A ∈ ForL with inv( ` A) = {Ui ` Vi}i∈Ω
for some finite Ω belongs to

I0 if A contains no logical connectives
I1 if each a-part formula in Ui ` Vi is a-soluble and each s-part formula in Ui ` Vi is

s-soluble
I2 if each a-part formula in Ui ` Vi is s-soluble and each s-part formula in Ui ` Vi is

a-soluble



A propositional variable is both a-soluble and s-soluble so I0 ⊆ I1 and I0 ⊆ I2. Note
that every a-part (resp. s-part) formula B occuring in a sequent in inv( ` A) that is a-
soluble (s-soluble) must be a propositional variable and thus B is s-soluble (a-soluble)
in that sequent. It follows that I1 ⊆ I2.

Remark 1. The above classes are a function of the invertible rules of the base calculus.
In particular, these coincide with the classes in the hierarchy of [5] that can be handled
by structural sequent rules, when the base calculus has the same invertible rules. More
invertible rules lead to larger classes of formulae in I1 and I2 (see Section 4.2).

Henceforth a rule whose conclusion is constructed from structure variables and
structure constants using structural connectives, and whose premises might addition-
ally contain propostional variables will be called a semi-structural rule.

Proposition 1 Let C be an amenable calculus for L. Suppose A ∈ ForL with
inv(` A) = {Ui ` Vi}i∈Ω . If A ∈ I2 then there are equivalent semi-structural rules
{ρi}i∈Ω so that C + {ρi}i∈Ω is a cut-eliminable calculus for L+A.

Proof. Clearly ` A is equivalent to {Ui ` Vi}i∈Ω in C. We show how to construct
a semi-structural rule equivalent to each Ui ` Vi. Suppose that Ui ` Vi consists of
a-part formulae C1, . . . , Cn and s-part formulae D1, . . . , Dm. Starting with Ui ` Vi,
display each Ci (as Ci ` Wi for suitable Wi) and apply Lemma 1 in turn, to obtain an
equivalent rule of the form below left. Start with this rule and display in the conclusion
each Di (as Wn+i ` Di for suitable Wn+i) and apply Lemma 1 in turn, to obtain an
equivalent rule of the form below right:

Z1 ` C1 . . . Zn ` Cn

Zn `Wn

Z1 ` C1 . . . Zn ` Cn D1 ` Zn+1 . . . Dm ` Zn+m

Wn+m ` Zn+m

Observe that Wn+m ` Zn+m is constructed only from structure variables and structure
constants using structural connectives. Since A ∈ I2, every Ci (resp. Di) formula is s-
soluble (a-soluble) and so the following is a semi-structural rule equivalent to Ui ` Vi:

inv(Z1 ` C1) . . . inv(Zn ` Cn) inv(D1 ` Zn+1) . . . inv(Dm ` Zn+m)
ρi

Wn+m ` Zn+m

By inspection it may be verified that ρi satisfies Belnap’s conditions with the pos-
sible exception of C1 and C4 since the same propositional variable might appear in the
premises as an a-part and s-part formula. However, since no propositional variable oc-
curs in the conclusion of ρi, cut-elimination for C+{ρi}i∈Ω proceeds without difficulty.

Notice that the calculus C + {ρi}i∈Ω in the above result has cut-elimination but not in
general the subformula property. If we restrict our attention to a subclass of I2 satis-
fying the additional condition of acyclicity then the propositional variables appearing
in each ρi can be suitably removed. In this way we obtain structural rules satisfying
C1–C8 so the resulting calculus is cut-eliminable and has the subformula property.

Definition 8 (proper structural rules; extensions). A proper structural rule (exten-
sion) is a structural rule (extension) that satisfies C1–C8.



Our transformation of semi-structural rules into proper structural rules mirrors the
‘completion’ procedure in [6] and amounts to applying the cut-rule in all possible ways
to the premises of the former rules. Below we present formally the transformation.

A (possibly empty) set S of sequents is said to respect multiplicities wrt p for some
propositional variable p if it can be written in one of the forms below:

{p ` U | p 6∈ U} ∪ {V ` p | every p in V ` p is s-part} ∪ {S | p 6∈ S} (1)
{U ` p | p 6∈ U} ∪ {p ` V | every p in p ` V is a-part} ∪ {S | p 6∈ S} (2)

An alternative definition is that (i) no S ∈ S contains both an a-part and s-part occur-
rence of p— eg. p ` p cannot be in S, and (ii) there do not exist S1, S2 ∈ S such that S1

contains multiple a-part occurrences of p and S2 contains multiple s-part occurrences
of p. Eg. if both occurrences of p in p⊗ p ` X (resp. Y ` p⊗ p) are a-part (s-part) for
a structural connective ⊗, then it cannot be that p⊗ p ` X ∈ S and Y ` p⊗ p ∈ S.

Let S be a set of sequents respecting multiplicities wrt p. If it is not the case that p `
U ∈ S and V ` p ∈ S (upto display equivalence) then define Sp as {S ∈ S | p 6∈ S}.
Otherwise, depending on the form of S as (1) or (2), define respectively Sp as follows:

{S |S is a subst. instance of V ` p ∈ S s.t. each occ. p 7→ U for some p ` U ∈ S} ∪ {S | p 6∈ S}
{S |S is a subst. instance of p ` V ∈ S s.t. each occ. p 7→ U for some U ` p ∈ S} ∪ {S | p 6∈ S}

In the above, notice that distinct occurrences of p in V ` p (resp. p ` V ) may be
substituted for distinct Ui so long as p ` Ui (Ui ` p) is in S. Also observe that the
substitution instance S contains no occurrence of p since p 6∈ U .

Intuitively, if S contains sequents of the form p ` U and V ` p then Sp is obtained
by (i) applying the cut-rule in all possible ways on p (using the sequents in S as the
premises) and then keeping only those conclusion sequents of the cut-rule that do not
contain p, and (ii) retaining {S ∈ S | p 6∈ S}.

Lemma 2. If S respects multiplicities wrt p, then p does not occur in Sp.

Proof. Follows immediately from the form of S and the definition of Sp.

Let V(S) be the set of propositional variables occurring in a set S of sequents.

Definition 9. A finite set S of sequents is acyclic if V(S) = ∅ or for every p ∈ V(S):
(i) S respects multiplicities wrt p, and (ii) Sp is acyclic.

Definition 10. Suppose that A ∈ I2 and let {ρi}i∈Ω be the equivalent semi-structural
rules obtained using Prop. 1. We say that A is acyclic if the set of premises of each rule
in {ρi}i∈Ω is acyclic.

Remark 2. Every axiom in I1 is acyclic. This follows from the observation that for
every A ∈ I1, the premise of each semi-structural rule obtained using Prop. 1 has the
form p ` L or L ` p where L is a schematic structure variable.

Lemma 3. Let S be an acyclic set of sequents and p ∈ V(S). Then the semi-structural
rule ρ with premises S and the semi-structural rule ρp with premises Sp are equivalent
w.r.t. an amenable calculus C.



Proof. Let S be an acyclic set of sequents. Suppose that S does not contain sequents of
the form p ` U and V ` p. Then S has one of the following forms

{V1 ` p, . . . , Vn+1 ` p} ∪ {S | p 6∈ S} {p ` V1, . . . , p ` Vn+1} ∪ {S | p 6∈ S}

and Sp is {S ∈ S | p 6∈ S}. Suppose the case above left (the other case is similar).
One direction is immediate, and to show that ρp is admissible in C + ρ it is enough to
apply ρ using the derivable sequents {r(I) ` Vi[p 7→ r(I)]}1≤i≤n+1 — obtained from
the derivation of r(I) ` I using the rule rI — for the missing premises.

Now suppose that S contains sequents of the form p ` U and V ` p. Clearly ρ is
admissible in C + ρp — it suffices to apply the cut-rule to concrete premises of ρ and
then apply ρp. For the other direction, assume, to fix ideas that the premises S of ρ have
the form (1) (the other case is similar, use (a)∨ and (b)∨ instead of (a)∧ and (b)∧), i.e.,

{p ` Ui | p 6∈ Ui; 1 ≤ i ≤ n} ∪ {V ` p | every p in V ` p is s-part} ∪ {S | p 6∈ S}

Then the premises Sp of ρp have the following form:

{S |S is a subst. instance of V ` p ∈ S s.t. each occ. p 7→ Ui for some 1 ≤ i ≤ n) }∪{S | p 6∈ S}

Suppose that we are given concrete instances of the premises of ρp. Repeatedly using
(a)∧ and the display rules, obtain the set S∗p :

{S |S is a subst. instance of V ` p ∈ S s.t. each occ. p 7→ ∧1≤i≤nr(Ui) }∪{S | p 6∈ S}

Making use of (b)∧, derive the set {∧1≤i≤nr(Vi) ` Vi} of sequents. By inspection, this
set together with S∗p yield concrete instances of the premises of ρ (in particular, p has
been instantiated with ∧1≤i≤nr(Vi)). Applying ρ to these and noting that ρ and ρp have
the same conclusion, we have that ρp is admissible in C + ρ.

Theorem 2. Let C be an amenable calculus for L and suppose that A ∈ I2 is acyclic.
Then there is a proper structural rule extension for L+A.

Proof. Let {ρi}i∈Ω be the semi-structural rules computed from A in Prop. 1. No-
tice that each ρi might violate (only) Belnap’s conditions C1 and C4 due to the
presence of propositional variables in the set S of sequents that are its premises.
Let V(S) = {p1, p2, . . . , pn} be such variables and ρ′i be the rule with premises
((. . . (Sp1)p2 . . .)pn−1)pn . By inspection of the construction of ρ′i from ρ follows that ρ′i
is a proper structural rule (in particular, observe that any structure variable that appears
only as an a-part (resp. s-part) structure in every sequent in S has the same property in
((. . . (Sp1)p2 . . .)pn−1

)pn ). Since A is acyclic, so is S and hence, by (repeteadly apply-
ing) Lemma 2 it follows that ρ′i is equivalent to ρi.

By repeating this process to all {ρi}i∈Ω we obtain a new set of rules {ρ′i}i∈Ω such
that C + {ρ′i}i∈Ω is a proper structural rule extension of L+A.

4 Case studies

We apply the recipe in Section 3 to obtain many existing results uniformly, and to show
that new calculi can be defined in an automated way. When dealing with a concrete



base calculus we can provide an explicit description (grammar-like) of the class I2 of
axioms that can be transformed into equivalent structural rules to obtain cut-eliminable
display calculi. We present this grammar for the case of intermediate logics to compare
our results with those in [5].

4.1 Bi-intuitionistic logic

Bi-intuitionistic logic (also known as Heyting-Brouwer logic) is the logic which results
when the dual→d of implication (alias coimplication) is added to the language of in-
tuitionistic logic. Here we show how to construct cut-free display calculi for infinitely
many axiomatic extensions of this logic in a uniform way.

The language LHB of Heyting-Brouwer logic HB is obtained from the language LIp
of intuitionistic propositional logic Ip by the addition of→d. To simplify the language,
we abbreviate ¬p := p→ ⊥ and ¬dp := > →d p. Wansing [18] give a proper display
calculus δHB for HB. Our presentation here differs in that we use the invertible forms
for ∧r and ∨l. Equivalence with the original rules can be shown using the structural
rules of contraction and weakening in δHB.

The set of structures Str(LHB) generated from LHB has the following grammar:

X ::= A ∈ ForLHB | I | (X ◦X) | (X •X)

The initial sequents of δHB are of the form p ` p for any propositional variable p,
and I ` > and ⊥ ` I. Now we present the structural rules. In the first row, below, we
use a double line to separate the premises from the conclusion to indicate that a rule
is invertible and also ‘combine’ two rules into a single one for the sake of brevity. The
first two columns (counting from the left) in the first row are the display rules of δHB.

Y ` X ◦ Z
X ◦ Y ` Z
X ` Y ◦ Z

X • Y ` Z
X ` Y • Z
X • Z ` Y

I ◦X ` Y
X ` Y

X ◦ I ` Y

X ` Y • I
X ` Y

X ` I • Y

X ` Y
X ` Y • Z

X ` Y
X ◦ Z ` Y

X ` Y • Z
X ` Z • Y

X ◦ Z ` Y
Z ◦X ` Y

X ` Y • Y
X ` Y

X ◦X ` Y
X ` Y

X ` (Y • Z) • U
X ` Y • (Z • U)

(X ◦ Y ) ◦ Z ` U
X ◦ (Y ◦ Z) ` U

The logical rules of δHB are given below:

I ` X >l> ` X
X ` I ⊥r
X ` ⊥

A ◦B ` X ∧l
A ∧B ` X

X ` A X ` B ∧r
X ` A ∧B

A ` X B ` X ∨l
A ∨B ` X

X ` A •B ∨r
X ` A ∨B

X ` A Y ` B → l
A→ B ` X ◦ Y

X ` A ◦B → r
X ` A→ B

B •A ` X →d l
B →d A ` X

X ` B Y ` A →d r
X • Y ` B →d A



Define the functions l and r from Str(LHB) into ForLHB:

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(X ◦ Y ) = l(X) ∧ l(Y ) r(X ◦ Y ) = l(X)→ r(Y )

l(X • Y ) = l(X)→d l(Y ) r(X • Y ) = r(X) ∨ r(Y )

It is easy to check that δHB is amenable. (Note that ∧ and ∨ are associative and
commutative connectives in δHB). We have the following result.

Proposition 3 Every logical rule except→l and→dr is invertible.

Theorem 4. LetA be any (acyclic) axiom within I2. Then there is a (proper) structural
rule extension of δHB for HB +A.

The following examples contain analytic display calculi for two axiomatic exten-
sions of HB introduced in [19].

Example 1. Let A1 be the axiom (p → q) ∨ (q → p). Then inv(` A1) is the sequent
` (p ◦ q) • (q ◦ p). Since each formula in that sequent is a propositional variable, it is
a,s-soluble. Thus A1 ∈ I1. From Prop. 1 we obtain the equivalent semi-structural rule
(below left). The set S of premises of this rule can be written {X ` p}∪{p ` V }∪{Z `
q, q ` Y }. Then Sp = {X ` V,Z ` q, q ` Y }. Hence Spq = {X ` V,Z ` Y }. So S
is acyclic and is equivalent to the proper structural rule below right:

X ` p q ` Y Z ` q p ` V
ρ1

I ` (X ◦ Y ) • (Z ◦ V )

X ` V Z ` Y ρ′1I ` (X ◦ Y ) • (Z ◦ V )

Thus δHB + ρ′1 is a cut-eliminable display calculus for HB + A1 with subformula
property. In practice, ρ′1 can be obtained from ρ1 on sight, by applying the cut-rule to
the premises in ‘all possible ways’.

Example 2. Let A2 be ¬((p→d q) ∧ (q →d p)). A2 ∈ I1. Applying our recipe we get
the equivalent rule ρ2 such that δHB + ρ2 is a proper display calculus for HB +A2.

X ` Z U ` Y ρ2
(X • Y ) ◦ (U • Z) ` I

4.2 Intuitionistic logic

We discuss intermediate logics and compare our algorithm for display logic with the
algorithm in [5] that works for hypersequent calculus – a simple generalization of
Gentzen calculus [1] whose basic objects are multisets of sequents.

The calculus δHB− obtained by deleting the logical rules for→d is a display calcu-
lus for Ip — soundness of HB− relies on the fact that Ip is a conservative extension of
HB, and completeness follows from cut-elimination for HB. Observe that in δHB− —
unlike in Gentzen’s calculus LJ — the ∨r rule is also invertible. Following the idea of



the classification in [5], which is sketched below for the connectives of Ip (= FLe with
weakening and contraction), we can define I2 axioms for Ip and δHB− as follows

I0 ::= prop. variables In+1 ::= ⊥ | > | In → In+1 | In+1 ∧ In+1 | In+1 ∨ In+1

The class I2 is larger than the class of axioms that can be captured by structural
hypersequent rules over LJ (see [5]). The latter consists of all axioms within the class
P3 defined by the following grammar: N0,P0 contains the set of atomic formulae, and

Pn+1 ::= ⊥ | > | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊥ | > | Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1

(the classes Pn andNn stand for axioms with leading positive and negative connective,
i.e. having left (resp. right) logical rule invertible). It is easy to see that P3 ⊆ I2.

By applying our recipe and making use of the weakening, commutativity and con-
traction rules in δHB− we can show the following:

Proposition 5 There is a proper structural rule extension of δHB− for Ip +A, for any
set A of axioms in P3.

Proof. By [5, Lemma 3.4] any P3 formula can be written as a conjunction of formulae
(∗) ∨1≤i≤N (αi1 ∧ . . .∧ αini

→ βi) where each βi has the form qi1 ∨ . . .∨ qimi
(qij is a

conjunction of propositional variables or ⊥). Hence inv(I ` A) consists of sequents of
the following form, where qij is some propositional variable occurring in qij .

I `
(
(α1

1 ◦ . . . ◦ α1
n1
) ◦ (q11 • . . . • q1m1

)
)
• . . .•

(
(αN1 ◦ . . . ◦ αNnN

) ◦ (qN1 • . . . • qNmN
)
)

Note that each αij is an a-part formula and each qij is an s-part formula. Now, fol-
lowing Prop. 1 we apply Lemma 1 and obtain that A is equivalent to the following
semi-structural rule, where Lij is a structure variable (corresponding to αij) and Qij is a
structure variable (corresponding to qij).

{inv(Li
j ` αi

j)}1≤i≤N ;1≤j≤ni {qij ` Qi
j}1≤i≤N ;1≤j≤mi

ρ′
I `

(
(L1

1 ◦ . . . ◦ L1
n1

) ◦ (Q1
1 • . . . •Q1

m1
)
)
• . . . •

(
(LN

1 ◦ . . . ◦ LN
nN

) ◦ (QN
1 • . . . •QN

mN
)
)

where the structure variables L1
1, . . . , L

N
nN
, Q1

1, . . . , Q
N
mN

are distinct. By [5,
Lemma 3.4], each αij in (∗) has the form ∧1≤k≤aj (U ijk → vijk) where U ijk is > or
a conjunction of propositional variables. Hence each set inv(Lij ` αij) consists of se-
quents of the form

Lij ` (uij1 ◦ . . . ◦ uijaij ) ◦ v
i
j

Observe that each propositional variable uijk is an a-part formula and each proposi-
tional variable vij is an s-part formula. Since the calculus has contraction on ◦ in the an-
tecedent, we may assume without loss of generality that the uijk are distinct for fixed i.
If some uijk = vij then the sequent is derivable as follows by repeated use of the weak-
ening, commutativity and display rules for ◦:



vij ` vij
(ui

j1 ◦ . . . ◦ ui
jaij

) ` vij
Li

j ◦ (ui
j1 ◦ . . . ◦ ui

jaij
) ` vij

Li
j ` (ui

j1 ◦ . . . ◦ ui
jaij

) ◦ vij

Thus we can delete those premises of ρ′ such that uijk = vij to obtain an equivalent
rule ρ. The premises S of ρ have the following form:

{U ` p | p 6∈ U} ∪ {p ` V | p 6∈ V } ∪ {S | p 6∈ S}

Let S ′p be the set {U ` V | p 6∈ U, p 6∈ V } ∪ {S | p 6∈ S}. Arguing as in Lemma 3
we can show that ρ is equivalent to the rule ρ′p obtained by replacing the premises S
with S ′p. While S ′p does not contain p, it may contain a sequent with (i) multiple a-part
occurrences of some propositional variable or, (ii) an a-part and s-part occurrence of the
same propositional variable. Obtain the rule ρp from ρ′p by contracting multiplicities
and deleting sequents witnessing (ii). Denote the premises of ρp by Sp. Repeat for all
propositional variables in S to obtain ultimately an equivalent proper structural rule.

Hence we can get proper structural rule extensions of δHB− for all intermediate
logics that can be formalized by hypersequent calculi using the algorithm in [5]. But
we can do more. Consider the axioms (Bdk) (k ≥ 1), defining intermediate logics
semantically characterized by Kripke models of depth ≤ k, belong to the classes P2k

in the classification in [5]; these axioms are recursively defined as follows:

(Bd1) p1 ∨ ¬p1 (Bdi+1) pi+1 ∨ (pi+1 → (Bdi))

For k ≥ 2, no axiom within P3 is known to be equivalent, yet these all belong to I1.

Example 3. The proper structural rule equivalent to the axiom (Bd2) is

Y ` X V ` U ρ
I ` X • (Y ◦ (U • (V ◦ I)))

In contrast no equivalent hypersequent structural rule is known.

Although our algorithm is inspired by that in [5], the key point is that the expressive
power of the display calculus permits a base calculus for Ip in which the ∨r rule is
also invertible, leading to cut-eliminable structural rule extensions for more logics (see
Remark 1). This justifies the use of the more complex machinery of the display calculus.

Example 4. δHB−+ρ′1 (cf. Example 1) is a cut-free calculus for Ip+A1 (= Gödel logic)
with subformula property. Classical propositional logic Cp is obtained as Ip + p ∨ ¬p.
Since p ∨ ¬p ∈ I1 we can define a proper structural rule extension of δHB− for Cp.

4.3 Bunched logics

Bunched logics [13] provide a powerful framework to reason about resources. They
are obtained by combining an additive propositional logic with a multiplicative linear



logic [4]. The combination led to the definition of four systems: BI, BBI (Boolean BI),
dMBI (de Morgan BI) and CBI (classical BI). Brotherston [4] obtains display calculi
for these logics by freely combining a calculus DLIL (resp. DLCL) for intutionistic
(classical) propositional logic with a calculusDLLM (resp.DLdMM ) for multiplicative
intuitionistic linear logic (multiplicative classical linear logic).

Using the calculus δHB− for intuitionistic logic instead of DLIL, new calculi for
BI and BBI can be obtained. These calculi can be extended with the structural rule
for classical logic (see Example 4) to obtain new calculi for dMBI and CBI that are
structural extensions of the calculi for BI and BBI.

More generally, our algorithm yields proper structural rule extensions over δHB−

for a large class of intermediate logics. Taking the free combination of such calculi with
{DLLM , DLdMM} yield cut-eliminable calculi for new bunched logics (intermediate
between BI and CBI) which may express interesting properties on resources.

4.4 Modal and tense logics

The modal language LK is obtained from the propositional classical language by the
addition of the modal operators 3 and �. The tense language LKt is obtained from LK
by the addition of the tense operators _ and �. The normal basic modal logic K and
tense logicKt are conservative extensions of classical propositional logic Cp, obtained
by the addition of the usual axioms (see [3]).

The display calculus δKt [14] for Kt is well-known. Here we use the invertible
form of the rules for∧r,∨l and→l. The set of structures Str(LKt) generated fromLKt
has the following grammar:

X ::= A ∈ ForLKt | I | (X ◦X) | •X | ∗X

The initial sequents of δKt are of the form p ` p for any propositional variable p, and
I ` > and ⊥ ` I. In the following we use a double line to separate the premises from
the conclusion to indicate that a rule is invertible. The display rules of δKt are:

X ◦ Y ` Z
X ` Z ◦ ∗Y

X ◦ Y ` Z
Y ` ∗X ◦ Z

X ` Y ◦ Z
X ◦ ∗Z ` Y

X ` Y ◦ Z
∗Y ◦X ` Z

∗X ` Y
∗Y ` X

X ` ∗Y
Y ` ∗X

∗ ∗X ` Y
X ` Y

X ` ∗ ∗ Y
X ` Y

X ` •Y
•X ` Y

The remaining structural rules of δKt are given below.

X ` Z
I ◦X ` Z

X ` Z
X ` I ◦ Z

I ` Y
∗I ` Y

X ` I

X ` ∗I
X ` Z

Y ◦X ` Z
X ` Z

X ◦ Y ` Z
I ` Y
•I ` Y

X ` I
X ` •I

X ◦ Y ` Z
Y ◦X ` Z

Z ` X ◦ Y
Z ` Y ◦X

X ◦X ` Z
X ` Z

Z ` X ◦X
Z ` X

X1 ◦ (X2 ◦X3) ` Z

(X1 ◦X2) ◦X3 ` Z

Z ` X1 ◦ (X2 ◦X3)

Z ` (X1 ◦X2) ◦X3



Name Axiom Rule Name Axiom Rule
D �A→ 3A (∗ • ∗)•X ` Y/X ` Y B A→ �3A ∗ • ∗X ` Y/•X ` Y

3�A→ �3A •X ` ∗ • ∗Y/∗ • ∗X ` •Y 4 �A→ ��A •X ` Y/ • •X ` Y
5 3A→ �3A ∗ • ∗X ` Y/∗ • ∗X ` •Y T �A→ A •X ` Y/X ` Y

Fig. 1. Some I2 axioms and corresponding proper structural rules

The logical rules of δKt are given below.

I ` X >l> ` X
X ` I ⊥r
X ` ⊥

∗A ` X ¬l¬A ` X
X ` ∗A ¬r
X ` ¬A

A ◦B ` X ∧l
A ∧B ` X

X ` A X ` B ∧r
X ` A ∧B

A ` X B ` X ∨l
A ∨B ` X

X ` A ◦B ∨r
X ` A ∨B

X ◦ ∗Y ` A B ` ∗X ◦ Y →l
A→ B ` ∗X ◦ Y

X ◦A ` B →r
X ` A→ B

A ` X
�l

�A ` •X
X ` •A

�r
X ` �A

∗ • ∗A ` X
3l

3A ` X
X ` A

3r
∗ • ∗X ` 3A

•A ` X
_l

_A ` X
X ` A

_r•X ` _A
A ` X

�l
�A ` ∗ • ∗X

X ` ∗ • ∗A
�r

X ` �A

Define the functions l and r from Str(LKt) into ForLKt.

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(∗X) = ¬r(X) r(∗X) = ¬l(X)

l(X ◦ Y ) = l(X) ∧ l(Y ) r(X ◦ Y ) = r(X) ∨ r(Y )

l(•X) = _l(X) r(•X) = �r(X)

It is easy to check that δKt is amenable.

Proposition 6 Every logical rule with the exception of �l, 3r, _r and �l is invertible.

Theorem 7. There is a proper structural rule extension of δKt for axiomatic extension
of Kt with acyclic I2 axioms.

A procedure to define proper structural display logic rules for primitive axiomatic ex-
tensions of K and Kt was introduced by Kracht’s [14]. A primitive tense axiom has the
form A → B where both A and B are constructed from propositional variables and >
using {∧,∨,3,_} and A contains each propositional variable at most once.

Kracht’s method to extract structural rules is very different from our method, and
relies on being able to transform the axiom into a primitive tense formula. Eg. the axiom
�A → A must be rewritten as the primitive tense formula A → 3A. [17] rewrites the
familiar B axiom A→ �3A in the primitive tense form as (A∧3B)→ 3(B ∧3A).



Example 5. Fig. 1 contains some examples of I2 axioms (see Table IV in [17]) and
corresponding rules generated using our procedure. Contrast our strucutural rule for the
B axiom with the rule generated by Kracht’s method (see [17]):

∗ • ∗(X ◦ ∗ • ∗Y ) ` Z
Y ◦ ∗ • ∗X ` Z

In contrast with out method, Kracht’s result provides a characterisation (a necessary
and sufficient condition). Indeed

Theorem 8 (Kracht). Let L be a tense logic. Then L is an axiomatic extension of Kt
by primitive tense axioms iff there is a proper structural rule extension of δKt for L.

It follows that every acyclic I2 axiom is equivalent to a primitive tense axiom.
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9. R. Goré. Substructural Logics On Display. Logic Journal of the IGPL, 6(3):451-504, 1998.
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