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Abstract. In this paper, we consider the Bayesian multiple hypothe-
sis testing problem from the stance of computational geometry. We first
recall that the probability of error of the optimal decision rule, the max-
imum a posteriori probability (MAP) criterion, is related to both the
total variation and the Chernoff statistical distances. We then consider
the exponential family manifolds, and show that the MAP rule amounts
to a nearest neighbor classifier that can be implemented either by point
locations in an additive Bregman Voronoi diagram or by nearest neigh-
bor queries using various techniques of computational geometry. Finally,
we show that computing the best error exponent upper bounding the
probability of error, the Chernoff distance, amounts to (1) find a unique
geodesic/bisector intersection point for binary hypothesis, (2) solve a
closest Bregman pair problem for multiple hypothesis.

1 Introduction

Developing efficient techniques to determine the underlying probability model
that produces the random observations is an endeavor of data analysts. In this
paper, we consider the simpler detection task modeled by the Multiple Hypoth-
esis Problem (MHT) where we are given a set of n hypothesis H1 : X ∼ P1, ...,
Hn : X ∼ Pn for a random variable X following one of the potential distributions
P1, ..., Pn, and one has to decide based on an independent and identically dis-
tributed sample observations x1, ..., xm of X which hypothesis holds true. There
are numerous applications in engineering fields; For example, in radar detection,
we may distinguish airplane signatures using MHT. Let Xm denote the random
vector X1 ∼ X, ...,Xm ∼ X. This statistical classification problem is trivially
deterministically solved when the distribution supports are mutually disjoint,
but cannot be solved with certainty otherwise. That this, there is an inherent
probability of error, denoted by Pme , of wrongly classifying (and a probability of
correct classification Pmc = 1−Pme ). We are interested in the asymptotic regime
α = − 1

m logPme of Pme when m→∞.
In the Bayesian setting of this n-ary hypothesis testing problem, we are

further given prior probabilities wi = Pr(X ∼ Pi) > 0, with
∑n
i=1 wi = 1

that induce conditional probabilities Pr(X = x|X ∼ Pi). Since observation x
belongs to only one class, we have Pr(X = x) =

∑n
i=1 Pr(X ∼ Pi)Pr(X =
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x|X ∼ Pi) =
∑n
i=1 wiPr(X|Pi). Let ci,j denote the cost of making decision Hi

when in fact Hj is true (matrix [cij ] is called the design matrix), and denote by
pi,j(u) the probability of making this decision (depending on criterion r). The
Bayesian detector seeks to minimize the expected cost EX [c(r(x))] with c(r(x)) =∑
i

(
wi
∑
j 6=i ci,jpi,j(r(x))

)
. The probability of error Pe is a special case obtained

for ci,i = 0 and ci,j = 1 for i 6= j: Pe = EX

[∑
i

(
wi
∑
j 6=i pi,j(r(x))

)]
. The

maximum a posteriori probability (MAP) rule considers classifying x as follows:
MAP(x) = argmaxi∈{1,...,n}wipi(x), where pi(x) = Pr(X = x|X ∼ Pi) are
the conditional probabilities. Among all potential rules [1], this MAP Bayesian
detector minimizes by construction the probability of error Pe.

2 Probability of error and divergences

First, consider the case of the binary hypothesis setting with equal priors (ie.,
w1 = w2 = 1

2 ). Let (X , E) be a measurable space with X ⊆ Rd and E a σ-algebra
on the set X . We denote by Pi the class-conditional probability measures with
pi their Radon-Nikodym densities with respect to a dominating measure1 ν. We
write the average probability of error as:

Pe =

∫
x∈X

p(x) min(Pr(H1|x),Pr(H2|x))dν(x). (1)

Using Bayes’ rule Pr(Hi|X = x) = Pr(Hi)Pr(X=x|Hi)
Pr(X=x) = wipi(x)/p(x), we get

Pe = 1
2

∫
x∈X min(p1(x), p2(x))dν(x). By using the following two tricks of the

trades, we get mathematically rid of the min operator:

Trick 1. ∀a, b ∈ R, min(a, b) = a+b
2 −

|a−b|
2 ,

Trick 2. ∀a, b > 0, min(a, b) ≤ minα∈(0,1) aαb1−α,

and shall link the probability of error to distances between probability dis-
tributions, called information divergences. First, using the first mathemati-

cal rewriting trick, we get Pe = 1
2

∫
x∈X

(
p1(x)+p2(x)

2 − |p1(x)−p2(x)|2

)
dν(x) =

1
2

(
1− 1

2

∫
x∈X |p1(x)− p2(x)|dν(x)

)
= 1

2 (1 − TV(P1, P2)), where TV(P,Q) =
1
2

∫
x∈X |p(x)− q(x)|dν(x) is the total variation distance between distributions P

and Q. The total variation distance is a metric that satisfies both the symmetric
and triangular inequality properties. In practice, computing the total variation
is intractable2 for two reasons:

– First, to get rid of the absolute value function, we split the support into
two dominant regions: Namely, one region R1 where p1(x) ≥ p2(x) and

1 For continuous distributions, ν is the Lebesgue measure on the Borel σ-algebra. For
discrete distributions, ν is the counting measure on the power set σ-algebra.

2 Except in simple cases. Even the case of univariate Gaussians yields a complex
analytic expressions relying on the erf function.



the other region R2 where p2(x) > p1(x). It follows that TV(P1, P2) =
1
2

(∫
x∈R1

(p1(x)− p2(x))dν(x) +
∫
x∈R2

(p2(x)− p1(x))dν(x)
)

. Finding ex-

plicitly these region borders is not trivial3 in general, specially for multi-
variate distributions.

– Second, we need to compute explicitly both integrals. For d-variate distribu-
tions like Gaussians, this is again difficult as soon as d > 1.

Fortunately, the second trick [2] allows one to upper bound the probability of
error. From the fact that min(a, b) ≤ minα∈(0,1) aαb1−α for a, b > 0, we get an
upper bound on Pe:

Pe =
1

2

∫
x∈X

min(p1(x), p2(x))dν(x) ≤ 1

2
min
α∈(0,1)

∫
x∈X

pα1 (x)p1−α2 (x)dν(x). (2)

The integral on the rhs. is bounded by one. It measures the similarity be-
tween the distributions. For α = 1

2 , it is commonly called the Bhattacharyya
coefficient.Defining the Chernoff statistical distance [3] by:

C(P1, P2) = − log min
α∈(0,1)

∫
x∈X

pα1 (x)p1−α2 (x)dν(x) ≥ 0, (3)

allows to link the best exponent error of Pe with the Chernoff distance [2]: Pe ≤
wα

∗
1 w1−α∗

2 e−C(P1,P2) ≤ e−C(P1,P2) (since 0 < w1, w2 < 1), where α∗ denote the
best α value in Eq. 3. Note that the Bayesian error exponent does not depend
on the prior probabilities as long as they are non-zero.

The Chernoff distance can be calculated in closed-form for families of
probability distributions called exponential families [4]. An exponential fam-
ily FF is a set of probability measures FF = {Pθ}θ dominated by a mea-
sure dµ having their Radon-Nikodym densities pθ expressed canonically as
pθ(x) = exp(t(x)>θ−F (θ)), for θ belonging to the natural parameter space: Θ ={
θ ∈ RD

∣∣∫ pθ(x)dµ(x) = 1
}

. Since log
∫
x∈X pθ(x)dν(x) = log 1 = 0, it follows

that we can express the normalizing function F asF (θ) = − log
∫

exp(x>θ)dµ(x).
We recognize the logarithm of the Laplace transform of the measure µ. For full
regular families [4], it can be proved that function F is strictly convex and dif-
ferentiable over the open convex set Θ. Function F is the cumulant function
(also called partition function or log-normalizer), and characterizes the family.
Parameter θ (natural parameter) defines the member Pθ of the family FF . Let
D = dim(Θ) denote the dimension of Θ, the order of the family. The term t(x)
is a measure mapping called the sufficient statistic [4]. Many usual families of
probability distributions {Pλ | λ ∈ Λ} are exponential families [4] in disguise
once an invertible mapping θ(λ) : Λ → Θ is elucidated and the measure dµ(x)

3 For exponential families (to be described next), this amounts to compute the (D−1)-
dimensional hyperplane obtained from the intersection of two hyperplanes param-
eterized by y = t(x). Here, the sufficient statistics t(x) plays the role of “kernel
mapping.”



expressed as ek(x)dν(x) where ν is the Lebesgue or counting measures. We refer
to [4] for such decompositions for the Poisson, Gaussian, multinomial, Gamma,
Beta, Dirichlet, etc. distributions.

3 Computational information geometry

In this section, we consider the manifold induced by the exponential family F
and present several algorithmic techniques of computational geometry tailored
to the dually flat differential structure [5] to perform the MAP decision rule and
to compute the best error exponent (ie., the Chernoff distance).

3.1 MAP decision rule and additive Bregman Voronoi diagrams

A distribution Pθ of an exponential family F can be indexed either in the natural
parameter space θ, or in a dual coordinate system η called the expectation pa-
rameter. Those dual coordinate systems are related by the Legendre transforma-
tion [6] F ∗(η) = supθ∈Θ θ

>η−F (θ). It follows that η = ∇F (θ) = Eθ[t(X)] (hence
the name expectation parameter) and θ = ∇F ∗(η). The Kullback-Leibler diver-

gence KL(pθ1 : pθ2) =
∫
pθ1(x) log

pθ1 (x)

pθ2 (x)
dµ(x) (relative entropy) between two

distributions of the same exponential family is equivalent to a Bregman diver-
gence calculated on the swapped natural parameters: KL(pθ1 : pθ2) = B(θ2 : θ1),
where the Bregman divergence defined for the cumulant function F of the family
is defined as B(θ : θ′) = F (θ) − F (θ′) − (θ − θ′)>∇F (θ′). Using the cumulant
convex conjugate pair F and F ∗, the Bregman divergence can be rewritten us-
ing the canonical divergence of dually flat spaces [5]: B(θ2 : θ1) = A(θ2 : η1) =
F (θ2) + F ∗(η1)− θ>2 η1. Observe that the canonical divergence computation re-
lies on the mixed coordinate system θ/η. Thus we have the following equivalent
expressions of the Kullback-Leibler divergence at our disposal:

KL(pθ1 : pθ2) = B(θ2 : θ1) = A(θ2 : η1) = A∗(η1 : θ2) = B∗(η1 : η2), (4)

using the Legendre involution (F ∗)∗ = F for the strictly convex and differen-
tiable generator. Dually flat manifolds enjoy dual affine connections [5] that we
denote by ∇e (geodesics straight in θ) and ∇m (geodesics straight in η).

For hypothesis distributions P1, ..., Pn belonging to the same exponential
family, we write the log density of conditional distributions p1(x), ..., pn(x) as
equivalent Bregman divergences using convex conjugation [6]:

log pi(x) = −B∗(t(x) : ηi) + F ∗(t(x)) + k(x), (5)

with ηi = ∇F (θi) = η(Pθi). Thus it follows that the optimal MAP decision rule

MAP(x) = argmaxi∈{1,...,n}wipi(x) = argmaxi∈{1,...,n} −B∗(t(x) : ηi) + logwi,

= argmini∈{1,...,n}B
∗(t(x) : ηi)− logwi (6)



is a nearest neighbor classifier in the expectation parameter space for a dual
Bregman divergence B∗ with additive weights. This characterization of the MAP
rule extends the preliminary observation made in the probability simplex for
discrete distributions [7]. Each Bregman Voronoi cell defines a decision region.
Given an observation x, the MAP rule amounts to compute a nearest neighbor
query on the weighted expectation parameter points. This can be solved using
computational geometry in several ways, as follows:

– Build a left-sided additive weighted Bregman Voronoi diagrams [8] on
weighted point set {(η1,− logw1), ..., (ηn,− logwn)}. Since the bisectors
Bii,j : B∗(t(x) : nj) − B∗(t(x) : ηi) + log wi

wj
= 0 are hyperplanes once re-

parameterized with y = t(x), we end up with an affine diagram4 of complex-

ity O(nd
D
2 e) [8], where D is the order of the family. Observe that the weights

only shift the bisector without changing its orientation. Note that when the
order of the family D is greater than the dimension of the support d, we only
need to compute the diagram on the restricted d-dimensional hyper-surface
{(t1(x), ..., tD(x)) | x ∈ Rd}. We then answer nearest neighbor queries
by performing proximity location in the Voronoi cell arrangement [9]. This
approach is limited to small dimensions. (Recently, additively-weighted Breg-
man Voronoi diagrams have also been used to learn mixtures of exponential
families [10].)

– Use non-metric tree search structures like Bregman ball trees [11] or Bregman
vantage point trees [12] that can be straightforwardly extended by taking into
account a weight on each point.

– Perform brute-force searching using GPU [13].

3.2 Geometry of the best error exponent

Case of binary hypothesis The best error exponent of a binary hy-
pothesis testing amounts to compute the Chernoff distance C(P1, P2) =
maxα∈(0,1)− log

∫
pα1 (x)p1−α2 (x)dµ(x) for distributions P1 and P2 belonging to

the same exponential family. We summarize the results reported in [14] when
handling exponential families:

– First, it is shown that the α-Chernoff coefficient cα(P1 : P2) amounts to
compute another divergence [15] in the natural parameter space:

cα(Pθ1 : Pθ2) =

∫
pαθ1(x)p1−αθ2

(x)dµ(x) = exp(−J (α)
F (θ1 : θ2)), (7)

where J
(α)
F (θ1 : θ2) is a skew Jensen divergence defined for F on the natural

parameter space as:

J
(α)
F (θ1 : θ2) = αF (θ1) + (1− α)F (θ2)− F (θ

(α)
12 ), (8)

4 Equivalent to a power diagram. See [8].



where θ
(α)
12 = αθ1 + (1−α)θ2 = θ2−α∆θ, with ∆θ = θ2− θ1. It follows that

maximizing the α-Chernoff divergence Cα(Pθ1 : Pθ2) = − log cα(Pθ1 : Pθ2)
amounts equivalently to maximizing the skew Jensen divergence with respect
to α.

– Second, for the optimal value α∗ of α, the Chernoff distance amounts to cal-

culate a Bregman divergence: C(Pθ1 : Pθ2) = B(θ1 : θ
(α∗)
12 ) = B(θ2 : θ

(α∗)
12 ),

where α∗ is the unique value satisfying ∇F (θ
(α)
12 )

>
(θ1 − θ2) = F (θ1)−F (θ2).

An alternative definition of Chernoff information for exponential family
distributions is C(Pθ1 : Pθ2) = minθ∈Θ{KL(pθ : pθ1),KL(pθ : pθ2} =
minθ∈Θ{B(θ1 : θ), B(θ2 : θ)}.

It follows a geometric characterization of the Chernoff distribution P ∗ = Pθ∗12
of two distributions P1 and P2 belonging to the same exponential family: It is
the unique point on the exponential family manifold that belongs to both the
e-geodesic and the m-bisector: P ∗ = Pθ∗12 = Ge(P1, P2) ∩ Bim(P1, P2), with

Ge(P1, P2) = {E(λ)
12 | θ(E

(λ)
12 ) = (1− λ)θ1 + λθ2, λ ∈ [0, 1]}, (9)

(linear interpolation on the natural parameter), and

Bim(P1, P2) : {P | F (θ1)− F (θ2) + η(P )>∆θ = 0}, (10)

a hyperplane equation in the η-coordinate system. This intersection point can
be found by bisecting the exponential geodesic, as described in [14]. Further-
more, at the intersection point, we have the orthogonality property of the primal
e-geodesic with the dual m-bisector proved in [8] (see Figure 1): We say that tri-
angle4PQR is orthogonal at Q if and only if B(θ(P ) : θ(Q))+B(θ(Q) : θ(R)) =
B(θ(P ) : θ(R)). This amounts to check equivalently that (θ(P )−θ(Q))>(η(R)−
η(Q)) = 0, see [8]. Here, we have Ge(P1, P2) ⊥ Bim(P1, P2). Observe that the
Chernoff point P ∗ = Ge(P1, P2)∩Bim(P1, P2) can also be interpreted as the left-
sided Kullback-Leibler projections of source distributions to their m-bisector (or
equivalently, the right-sided Bregman projections):

θ∗ = θ
(α∗)
12 = argminθ∈ΘB(θ1 : θ) = argminθ∈ΘB(θ2 : θ). (11)

Case of multiple hypothesis The best error exponent of a n-ary MHT [1]
is determined by the minimum pairwise Chernoff distance: C(P1, ..., Pn) =
mini,j 6=i C(Pi, Pj). It follows that for the observation sequence Xm, the prob-
ability of error Pme ≤ e−mC(Pi∗ ,Pj∗ ) where (i∗, j∗) = argmini,j 6=iC(Pi, Pj). In
the natural parameter space, this amounts to find the closest pair of param-
eters among a set of n points in D dimension (family order) with respect to
the Chernoff distance. Although symmetric, Chernoff distance fails the triangu-
lar inequality and is therefore not a metric. When the (non-additive) Bregman
Voronoi diagram5 is already available, we may compute the closest Chernoff

5 Bregman Voronoi diagrams can either be built from equivalent power diagrams or
as vertical projections of a (d+ 1)-dimensional polytope. See demo at http://www.

sonycsl.co.jp/person/nielsen/BVDapplet/

http://www.sonycsl.co.jp/person/nielsen/BVDapplet/
http://www.sonycsl.co.jp/person/nielsen/BVDapplet/


pair as follows (see Figure 1): We compute for each pair of natural neighbors
Pθi and Pθj , the Chernoff distance C(Pθi , Pθj ) that amounts to find the distance
KL(Pθi : Pθ∗ij ) = KL(Pθj : Pθ∗ij ) between the Voronoi sites and the informa-
tion projection Pθ∗ij on the border bisector. The geometry of the Bayesian error
exponent is independent of the prior probabilities and therefore relies only on
the non-additive Bregman Voronoi diagram. Note that it is only necessary6 to
consider natural neighbor sites in the Voronoi diagram: That is, to inspect pairs
of sites whose bisector contribute to the Voronoi diagram (yielding linear time
algorithm when D = 2 or worst-case quadratic time otherwise). This generalizes
to exponential family manifolds the geometric interpretation [7] formerly studied
for the probability simplex case.

pθ1

pθ2

pθ∗12

m-bisector

e-geodesic Ge(Pθ1 , Pθ2)

(a) (b)

η-coordinate system

Pθ∗12

C(θ1 : θ2) = B(θ1 : θ∗12)

Bim(Pθ1 , Pθ2)

Chernoff distribution between
natural neighbours

Fig. 1. Geometry of the best error exponent. Binary hypothesis (a): The Cher-
noff distance is equal to the Kullback-Leibler divergence from the midpoint dis-
tribution Pθ∗12 to the extremities (or vice-versa for the Bregman divergences),
where the midpoint distribution Pθ∗12 (×) is obtained as the left-sided KL pro-
jection of the sites to their bisector. (b) Multiple hypothesis testing: The Chernoff
distance is the minimum of pairwise Chernoff distance that can be deduced from
the non-additive Bregman Voronoi diagram by inspecting all Chernoff distribu-
tions (×) lying on (d − 1)-faces. Both drawings illustrated in the η-coordinate
system where m-bisectors are hyperplanes. (In the dual θ-coordinate systems,
e-geodesics are straight whilst m-geodesics are curved.)

4 Conclusion

In this paper, we focused on several geometric interpretations for Bayes detection
theory on the exponential family manifolds, generalizing former work relying on

6 Proof by contradiction using Bregman Pythagoras theorem for non-adjacent cells [8].



distributions on the probability simplex [7]. We described several computational
information-geometric techniques: The MAP decision rule amounts to an addi-
tive dual Bregman nearest neighbor classifier that can be solved either using
point location or via Bregman tree search data-structures (or GPU brute-force
search). The best exponent error for binary hypothesis is interpreted geomet-
rically as the unique (orthogonal) intersection point of an exponential geodesic
with a mixture bisector. The best exponent error for multiple hypothesis re-
duces to a closest pair problem on the manifold that can be deduced from the
non-additive Bregman Voronoi diagram or computed by any other appropriate
techniques of computational geometry.
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