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Abstract. Mathematical morphology is a nonlinear image processing
methodology based on the application of complete lattice theory to spa-
tial structures. Let us consider an image model where at each pixel is
given a univariate Gaussian distribution. This model is interesting to rep-
resent for each pixel the measured mean intensity as well as the variance
(or uncertainty) for such measurement. The aim of this paper is to for-
mulate morphological operators for these images by embedding Gaussian
distribution pixel values on the Poincaré upper-half plane. More precisely,
it is explored how to endow this classical hyperbolic space with partial
orderings which lead to a complete lattice structure.

1 Introduction

This work is motivated by the exploration of a mathematical image model f
where instead of having a scalar intensity t ∈ R at each pixel p, i.e., f(p) = t, we
have a univariate Gaussian probability distribution of intensities N(µ, σ2) ∈ N ,
i.e., image f is de�ned as the function

f :

{
Ω → N
p 7→ N(µ, σ2)

where Ω is the support space of pixels p (e.g., for 2D images Ω ⊂ Z2) and
N denotes the family of univariate Gaussian probability distribution functions
(pdf). Henceforth, the corresponding image processing operators should be able
to deal with Gaussian distributions-valued pixels. In particular, morphological
operators for images f ∈ F(Ω,N ) involves that the space of Gaussian distri-
butions N must be endowed of a partial ordering leading to a complete lattice
structure. In practice, it means that given a set of Gaussian pdfs, we need to be
able to de�ne a Gaussian pdf which corresponds to the in�mum (inf) of the set
and another one to the supremum (sup). Mathematical morphology is a nonlinear
image processing methodology based on the computation of sup/inf-convolution
�lters (i.e., dilation/erosion operators) in local neighborhoods [12]. Mathemati-
cal morphology is theoretically formulated in the framework of complete lattices
and operators de�ned on them [11,9].



We are inspired here by an information geometry viewpoint [3], which is
based on considering that the univariate Gaussian pdfs are points in a hyper-
bolic space [6,10]. For a deep �avor on hyperbolic geometry see [5]. There are
several models representing the hyperbolic space.There exists an isometric map-
ping between any pair among these models and analytical transformations to
convert from one to other are well known [5,10]. In this paper, we focus on the
simplest Poincaré half-plane model, H2, which is su�cient for our practical pur-
poses of manipulating Gaussian pdfs. In summary, from a theoretical viewpoint,
the aim of this paper is to endow H2 with partial orderings which lead to useful
invariance properties in order to formulate appropriate morphological operators
for images f : Ω → H2. This paper is a summary of a more developed study
available in [1].

2 Geometry of Poincaré upper-half plane H2

In complex analysis, the upper-half plane is the set of complex numbers with
positive imaginary part: H2 = {z = x+ iy ∈ C | y > 0}. We use also the nota-
tion x = ℜ(z) and y = ℑ(z). The boundary of upper-half plane is the real axis
together with the in�nity.

Riemannian metric and distance. In hyperbolic geometry, the Poincaré
upper-half plane model (originated with Beltrami and also known as Lobachevskii
space in Soviet scienti�c literature) is the space H2 together with the Poincaré
metric (gkl) = diag

( 1
y2

1
y2

)
such that the hyperbolic arc length is given by ds2 =

dx2+dy2

y2 = |dz|2
y2 = y−1dzy−1dz∗.

The distance between two points z1 = x1+ iy1 and z2 = x2+ iy2 in
(
H2, ds2

)
is the function

distH2(z1, z2) = cosh−1

(
1 +

(x1 − x2)
2 + (y1 − y2)

2

2y1y2

)
(1)

Distance (1) is derived from the logarithm of the cross-ratio between these two
points and the points at the in�nity. From the latter formulation is easy to check

that for two points with x1 = x2 the distance is distH2(z1, z2) =
∣∣∣log (y1

y2

)∣∣∣.
Geodesics. The geodesics of H2 are the vertical lines, V L(a) = {z ∈ H2 |

ℜ(z) = a}, and the semi-circles in H2 which meet the horizontal axis ℜ(z) = 0
orthogonally, SCr(a) = {z ∈ H2 | |z − z′| = r; ℜ(z′) = a and ℑ(z′) = 0}.
In particular, given any pair z1, z2 ∈ H2, there is a unique geodesic connecting
them, or in other terms, given these two points with x1 ̸= x2 there exists a
unique semi-circle of center c = (a, 0), radius r, and being orthogonal to x-axis,
i.e., (z1, z2) 7→ SCr1⌢2(a1⌢2) where

a1⌢2 =
x2
2 − x2

1 + y22 − y21
2(x2 − x1)

; r1⌢2 =
√
(x1 − a1⌢2)2 + y21 =

√
(x2 − a1⌢2)2 + y22 .

(2)



More precisely, the unique geodesic parameterized by the length, t 7→ γ(z1, z2; t),
γ : [0, 1] → H2 joining two points z1 = x1 + iy1 and z2 = x2 + iy2 such as
γ(z1, z2; 0) = z1 and γ(z1, z2; 1) = z2 is given by

γ(z1, z2; 0) =

{
x1 + ieξt+t0 if x1 = x2

[r tanh(ξt+ t0) + a] + i
[

r
cosh(ξt+t0)

]
if x1 ̸= x2

(3)

with a and r given in (2) and where for x1 = x2, t0 = log(y1), ξ = log y2

y1
and

for x1 ̸= x2: t0 = cosh−1
(

r
y1

)
= sinh−1

(
x1−a
y1

)
, ξ = log

(
y1

y2

r+
√

r2−y2
2

r+
√

r2−y2
1

)
.

Hyperbolic polar coordinates. The position of point z = x + iy in H2

can be given either in terms of Cartesian coordinates (x, y) or by means of polar
hyperbolic coordinates (η, ϕ), where η represents the distance of the point from
the origin OH2 = (0, 1) and ϕ represents the slope of the tangent in OH2 to the
geodesic (i.e., semi-circle) joining the point (x, y) with the origin. The formulas
which relate the hyperbolic coordinates (η, ϕ) to the Cartesian ones (x, y) are [4]{

x = sinh η cosϕ
cosh η−sinh η sinϕ , η > 0

y = 1
cosh η−sinh η sinϕ , −

π
2 < ϕ < π

2

{
η = distH2(OH2 , z)

ϕ = arctan x2+y2−1
2x

(4)

We notice that the center of the geodesic passing trough (x, y) from OH2 has
Cartesian coordinates given by (tanϕ, 0).

3 Endowing H2 with partial ordering and its complete

lattice structure

The notion of ordering invariance in the Poincaré upper-half plane was consid-
ered in the Soviet literature [7,8]. Ordering invariance with respect to simple
transitive subgroup T of the group of motions was studied, i.e., group T consists
of transformations t of the form: z = x+ iy 7→ z′ = (λx+α) + iλy, where λ > 0
and α are real numbers. We named T the Guts group. We introduce here partial
orders in H2 and study invariance properties to transformations of Guts group
or to subgroups of SL(2,R) (Möbius transformations).

Upper half-plane polar ordering. Let us introduce a total ordering in
H based on hyperbolic polar coordinates, which takes into account an ordering
relationship with respect to OH2 . Given a pair of points ∀z1, z2 ∈ H, the upper
half-plane polar ordering states

z1 ≤pol
H2 z2 ⇔

{
η1 < η2 or
η1 = η2 and tanϕ1 ≤ tanϕ2

(5)

The polar in�mum (z1 ∧pol
H2 z2) and supremum (z1 ∨pol

H2 z2) are naturally de�ned
from the order (5); and are naturally extended for any subset of points Z =



{zk}1≤k≤K , denoted by
∧pol

H2 Z and
∨pol

H2 Z. Total order ≤pol
H2 leads to a complete

lattice, bounded from the bottom (i.e., the origin OH2) but not from the top.

Furthermore, as ≤pol
H2 is a total ordering, the supremum and the in�mum will be

either z1 or z2.
Polar total order is invariant to any Möbius transformation Mg which pre-

serves the distance to the origin (isometry group) and more generally to isotone
maps in distance, i.e., η(z1) ≤ η(z2) ⇔ η(Mg(z1)) ≤ η(Mg(z2)) but which also
preserves the orientation order, i.e., order on the polar angle. This is for instance
the case of orientation group SO(2) and the scaling maps z 7→ Mg(z) = λz,
0 < λ ∈ R.

Upper half-plane geodesic ordering. As discussed above, there is a
unique hyperbolic geodesic joining any pair of points. Given two points z1, z2 ∈
H2 such that x1 ̸= x2, let SCr1⌢2(a1⌢2) be the semi-circle de�ning their geodesic,
where the center a1⌢2 and the radius r1⌢2 are given by Eqs. (4). Let denote
by z1⌢2 the point of SCr1⌢2(a1⌢2) having maximal imaginary part, i.e., its
imaginary part is equal to the radius: z1⌢2 = a1⌢2 + ir1⌢2.

The upper half-plane geodesic ordering ≼geo
H2 de�nes an order for points being

in the same half of their geodesic semi-circle as follows,

z1 ≼geo
H2 z2 ⇔

{
a1⌢2 ≤ x1 < x2 or
x2 < x1 ≤ a1⌢2

(6)

Property of transitivity of this partial ordering, i.e., z1 ≼geo
H2 z2, z2 ≼geo

H2 z3 →
z1 ≼geo

H2 z3, holds for points belonging to the same geodesic. For two points in
a geodesic vertical line, x1 = x2, we have z1 ≼geo

H2 z2 ⇔ y2 ≤ y1. According to
this partial ordering, we de�ne the geodesic in�mum, denoted by fgeo

H2 , as the
point on the geodesic joining z1 and z2 with maximal imaginary part, i.e., for
any z1, z2 ∈ H2, with x1 ̸= x2, we have

z1 fgeo
H2 z2 ⇔

 (x1 ∨ x2) + i(y1 ∨ y2) if x1, x2 ≤ a1⌢2

(x1 ∧ x2) + i(y1 ∨ y2) if x1, x2 ≥ a1⌢2

z1⌢2 otherwise
(7)

If x1 = x2, we have that z1 fgeo
H2 z2 = x1 + i(y1 ∨ y2). In any case, we have

that distH2(z1, z2) = distH2(z1, z1 fgeo
H2 z2)+ distH2(z1 fgeo

H2 z2, z2). Intuitively,
we notice that the geodesic in�mum is the point of the geodesic farthest from
the real line.

We observe that if one attempts to de�ne the geodesic supremum from the
partial ordering ≼geo

H2 , it results that the supremum is not de�ned for any pair of
points, i.e., supremum between z1 and z2 is de�ned only if and only if both points
are in the same half of its semi-circle. To tackle this limitation, we propose to
de�ne the geodesic supremum z1ggeo

H2 z2 by duality with respect to the following
involution in H2:

z 7→ {z = −x+ iy−1. (8)

Hence, we have the geodesic supremum given by

z1 ggeo
H2 z2 = {

(
{z1 fgeo

H2 {z2
)

(9)



−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

x = Re(z)

y 
=

 Im
(z

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

x = Re(z)

y 
=

 Im
(z

)

(a) (b)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

f µ,
σ2(

x)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
µ,

σ2(
x)

(c) (d)

Fig. 1. (a) Set of nine points in H2, Z = {zk}1≤k≤9. (b) Computation of in�mum∧geo

H2 Z = zinf (blue �×�) and supremum
∨geo

H2 Z = zsup (red �×�). Black �∗� are the
original points and green �∗� the corresponding dual ones. (c) In black, set of Gaus-
sian pdfs associated to Z, i.e., Nk(µ = xk, σ

2 = y2
k); in green, in�mum Gaussian pdf

Ninf(µ = xinf , σ
2 = y2

inf); in red, supremum Gaussian pdf Ninf(µ = xinf , σ
2 = y2

inf). (d)
Cumulative distribution functions of Gaussian pdfs from (c).

Nevertheless, in order to have a structure of complete lattice for (H2,≼geo
H2 ),

it is required that the in�mum and the supremum of any set of points Z =
{zk}1≤k≤K with K > 2, are well de�ned. Namely, according to (7), the geodesic

in�mum of Z, denoted
∧geo

H2 Z, corresponds to the point zinf with maximal imag-
inary part on all possible geodesics joining any pair of points zn, zm ∈ Z. In
geometric terms, that means that between all these geodesics, there exists one
which gives zinf . Instead of computing all the geodesics, we propose to de�ne the
in�mum

∧geo
H2 Z as the point zinf = ainf + irinf , where ainf is the center of the

smallest semi-circle in H2 of radius rinf which encloses all the points in the set
Z. We have the following property

∧geo
H2 Z = zinf ≼geo

H2 zk, 1 ≤ k ≤ K, which
geometrically means that the geodesic connecting zinf to any point zk of Z lies
always in one of the half part of the semi-circle de�ned by zinf and zk.

In practice, the minimal enclosing semi-circle de�ning zinf can be easily com-
puted by means of the following algorithm based on the minimum enclosing
Euclidean circle MEC of a set of points: (1) Working on R2, de�ne a set of
points given, on the one hand, by Z and, on the other hand, by Z∗ which cor-
responds to the re�ected points with respect to x-axis (complex conjugate), i.e.,
points Z = (xk, yk) and points Z∗ = (xk,−yk), 1 ≤ k ≤ K; (2) Compute the



MEC(Z ∪ Z∗) 7→ Cr(c), in such a way that, by symmetric point con�guration,
we necessarily have the center on the x-axis, i.e., c = (xc, 0); (3) The in�mum∧geo

H2 Z = zinf is given by zinf = xc + ir. Fig. 1(a)-(b) gives an example of
computation of the geodesic in�mum from a set of points in H2.

As for the case of two points, the geodesic supremum of Z is de�ned by
duality with respect to involution (8), i.e.,

zsup =

geo∨
H2

Z = {
(

geo∧
H2

{Z
)

= asup + irsup, (10)

with asup = −xdual
c and rsup = 1/rdual, where SCrdual(xdual

c ) is the minimal
enclosing semi-circle from dual set of points {Z. According to this formulation
by duality we have that, for any Z ⊂ H2, zinf ≼geo

H2 zsup, which is a consequence of
the fact zsup lies inside the semi-circle de�ned by zinf . An example of computing
the geodesic supremum zsup is also given in Fig. 1(a)-(b).

It is easy to see that geodesic in�mum and supremum have the following prop-
erties: (i) ℑ(zinf) ≥ ℑ(zk) and ℑ(zsup) ≤ ℑ(zk), ∀zk ∈ Z; (ii)

∨
1≤k≤K ℜ(zk) <

ℜ(zinf),ℜ(zsup) <
∧

1≤k≤K ℜ(zk). The proofs are straightforward from the no-
tion of minimal enclosing semi-circle. An interpretation of the geodesic in�mum
and supremum for a set of Gaussian pdfs is also given in Fig. 1.

Geodesic in�mum and supremum being de�ned by minimal enclosing semi-
circles, their invariance properties are related to homothetic transformations
as well as translation on x-axis. That corresponds just to the Guts group of
transformations.

Upper half-plane asymmetric geodesic in�mum/supremum. Accord-
ing to the properties of geodesic in�mum zinf and supremum zsup discussed
above, we note that their real parts ℜ(zinf) and ℜ(zsup) belong to the interval
bounded by the real parts of points of set Z. Moreover, ℜ(zinf) and ℜ(zsup) are
not ordered between them. Therefore, the real part of supremum can be smaller
than that of the in�mum. For instance, in the extreme case Z = {zk}1≤k≤K ,

if yk = y, 1 ≤ k ≤ K, we have ℜ(zinf) = ℜ(zsup) = 1/K
∑K

k=1 xk. From
the viewpoint of morphological image �ltering, it can be potentially interesting
to impose an asymmetric behavior for the in�mum and supremum such that
ℜ(z−→+

inf ) ≤ zk ≤ ℜ(z−→+
sup ), 1 ≤ k ≤ K. Note that the proposed notation

− → + indicates a partially ordered set on x-axis. In order to ful�l these re-
quirements, we can geometrically consider the rectangle bounding the minimal
enclosing semi-circle, which is just of dimensions 2rinf × rinf , and use it to de�ne
the asymmetric in�mum z−→+

inf as the upper-left corner of the rectangle. The
asymmetric supremum z−→+

sup is similarly de�ned from the bounding rectangle
of the dual minimal enclosing semi-circle. Mathematically, we have:{

z−→+
inf =

∨−→+
H2 Z = (ainf − rinf) + irinf ;

z−→+
sup =

∧−→+
H2 Z = −(xdual

c − rdual) + i 1
rdual .

(11)



4 Morphological operators on F(Ω,H2) for processing
univariate Gaussian distribution-valued images

If (H2,≤) is a complete lattice, the set of images F(Ω,H2) is also a complete
lattice de�ned as follows: for all f, g ∈ F(Ω,H2), (i) f ≤ g ⇔ f(p) ≤ g(p),
∀p ∈ Ω; (ii) (f ∧ g)(p) = f(p) ∧ g(p), ∀p ∈ Ω; (iii) (f ∨ g)(p) = f(p) ∨ g(p),
∀p ∈ Ω , where ∧ and ∨ are the in�mum and supremum in H2. One can now
de�ne the following adjoint pair of �at erosion εB(f) and �at dilation δB(f) of
each pixel p of the image f [11,9]:

εB(f)(p) =
∧

q∈B(p)

f(p+ q), and δB(f)(p) =
∨

q∈B(p)

f(p− q), (12)

where the set B is called the structuring element, which de�nes the set of points
in Ω when it is centered at point p, denoted B(p) [12]. These operators, which are
translation invariant, can be seen as constant-weight (this the reason why they
are called �at) inf/sup-convolutions, where the structuring element B works as
a moving window. The above erosion (resp. dilation) moves object edges within
image in such a way that expands image structures with values in H2 close to
the bottom element (resp. close to the top) of the lattice F(Ω,H2) and shrinks
object with values close to the top element (resp. close to the bottom).

Given the adjoint image operators (εB , δB), the opening and closing by ad-
junction of image f , according to structuring element B, are de�ned as the
product operators [11,9]:

γB(f) = δB (εB(f)) , and φB(f) = εB (δB(f)) . (13)

Openings and closings are referred to as morphological �lters, which remove
objects of image f that do not comply with a criterion related, on the one
hand, to the invariance of the object support to the structuring element B and,
on the other hand, to the values of the object on H2 which are far from (in
the case of the opening) or near to (in the case of the closing) to the bottom
element of H2 according to the given partial ordering ≤. Once the pairs of dual
operators (εB , δB) and (γB, φB) are de�ned, the other morphological �lters and
transformation can be naturally de�ned [12] for images in F(Ω,H2). We limit
here the the illustrative examples with the basic ones.

Example. Fig. 2 illustrates an example of image enhancement from a very
noisy image g(p). The noise is related to an acquisition at the limit of expo-
sure time/spatial resolution. We consider an image model f(p) = fx(p)+ ify(p),
where fx(p) = g(x) and fy(p) is the standard deviation of intensities in a patch of
radius equal to 4 pixels centered a p. Results obtained from a closing φB(f)(p)
using the polar ordering-based lattice, the geodesic lattice (H2,ggeo

H2 ) and the

asymmetric geodesic lattice (H2,
∧−→+

H2 ,
∨−→+

H2 ) are compared, where the struc-
turing element B is a square of 5 × 5 pixels. In order to be able to compare
them with a non morphological operator, it is also given the result of �ltering
by computing the minimax center [2] in H2 in a square of 5× 5 pixels.



fx(p)

fy(p)
(a) f(p) (b) Minimax

center 5× 5
(c) φB(f)(p),

(H2,≤pol
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(d) φB(f)(p),
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Fig. 2.Morphological processing of Gaussian distribution-valued noisy image: (a) Orig-
inal image f ∈ F(Ω,H2), showing both the real (top row) and the imaginary (bottom
row) components; (b) �ltered image by computing the minimax center in a square of
5× 5 pixels; (c) morphological closing working on the polar ordering-based lattice; (d)
morphological closing working on the geodesic lattice; (e) morphological closing on the
asymmetric geodesic framework. In the three cases the structuring element B is also a
square of 5× 5 pixels.
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