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Differential Geometry applied to Acoustics : Non Linear Propagation
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Abstract. Although acoustics is one of the disciplines of mechanics, its ”geometrization” is still lim-
ited to a few areas. As shown in the work on nonlinear propagation in Reissner beams, it seems that
an interpretation of the theories of acoustics through the concepts of differential geometry can help to
address the non-linear phenomena in their intrinsic qualities. This results in a field of research aimed
at establishing and solving dynamic models purged of any artificial nonlinearity by taking advantage of
symmetry properties underlying the use of Lie groups. The geometric constructions needed for reduction
are presented in the context of the ”covariant” approach.

1 Introduction

The Reissner beam is one of the simplest acoustical system that can be treated in the context of mechanics
with symmetry. A Lie group is a mathematical construction that handle the symmetry but it is also a manifold
on which a motion can take place. As emphasized by Arnold [1],physical motions of symmetric systems
governed by the variational principle of least action correspond to geodesic motions on the corresponding
groupG. This paper will try, in a first part, to illustrate this basicconcept in the case of the continuous
group of motion in space. After a literature survey on this subject, an extension from geodesics to auto-
parallel submanifolds is proposed in the second part and naturally leads to the geometric covariant approach
available to study evolution problems for fields defined by a variational principle.

2 Nonlinear model for Reissner Beam

2.1 Reissner kinematics

A beam of lengthL, with cross-sectional areaA and mass per unit volumeρ is considered. Following the
Reissner kinematics, each section of the beam is supposed tobe a rigid body. The beam configuration can
be described by a positionr (s, t) and a rotationR(s, t) of each section. The coordinates corresponds to the
position of the section in the reference configurationΣ0 (see figure 1).

2.2 Lie group configuration space

Any material pointM of the beam which is located atx(s, 0) = r (s, 0)+ w0 = sE1 + w0 in the reference
configuration (t = 0) have a new position (at timet) x(s, t) = r (s, t) + R(s, t)w0. In other words, the current
configuration of the beamΣt is completely described by a map

(

x(s, t)
1

)

=

(

R(s, t) r (s, t)
0 1

)

︸            ︷︷            ︸

H(s,t)

(

w0

1

)

, R ∈ S O(3), r ∈ R3, (1)
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Fig. 1: Reference and current configuration of a beam. Each section, located at positions in the reference
configurationΣ0, is parametrized by a translationr (s, t) and a rotationR(s, t) ∈ S O3 in the current

configurationΣt.

where the matrixH(s, t) is an element of the Lie groupS E(3) = S O(3) × R3, whereS O(3) is the group
of all 3 × 3 orthogonal matrices with determinant 1 (rotation inR3). As a consequence, to any motion
of the beam a functionH(s, t) of the (scalar) independent variabless andt can be associated. Given some
boundary conditions, among all such motions, only a few correspond to physical ones. What are the physical
constraints that such motions are subjected to?

In order to formulate those constraints the definition of theLie algebra is helpful. To every Lie group
G, we can associate a Lie algebrag, whose underlying vector space is the tangent space of G at the identity
element, which completely captures the local structure of the group. Concretely, the tangent vectors,∂sH
and∂tH, to the groupS E(3) at the pointH, are lifted to the tangent space at the identitye of the group.
The definition in general is somewhat technical1 , but in the case of matrix groups this process is simply a
multiplication by the inverse matrixH−1. This operation gives rise to definition of two left invariant vector
fields ing = se(3)

ǫ̂c(s, t) = H−1(s, t)∂sH(s, t) (2)

χ̂c(s, t) = H−1(s, t)∂tH(s, t), (3)

which describe the deformations and the velocities of the beam. Assuming a linear stress-strain relation,
those definitions allow to define a reduced Lagrangian function by the difference of kinetic and potential

1 In the literature, one can find the expressiondLg−1 (ġ) wheredL stands for the differential of the left translationL by
an element ofG defined by

Lg : G→ G

h→ h ◦ g.



energyl(χc, ǫc) = Ec − Ep, with

Ec(χc) =
∫ L

0

1
2
χ

T
c Jχcds, (4)

Ep(ǫc) =
∫ L

0

1
2

(ǫc − ǫ0)T
C(ǫc − ǫ0)ds, (5)

whereJ andC are matrix of inertia and Hooke tensor respectively and ˆǫ0 = H−1(s, 0)∂sH(s, 0) correspond
to the deformation of the initial configuration.

2.3 Equations of motion

Applying the Hamilton principle to the left invariant Lagrangianl leads to the Euler-Poincaré equation

∂tπc − ad∗
χc
πc = ∂s(σc − σ0) − ad∗

ǫc
(σc − σ0), (6)

whereπc = Jχc andσc = Cǫc, (see for example [3], [4] or [5] for details). In order to obtain a well-posed
problem, the compatibility condition, obtained by differentiating (2) and (3)

∂sχc − ∂tǫc = adχc
ǫc, (7)

must be added to the equation of motion. It should be noted that the operatorsad andad∗ in eq. (6)

ad∗(ω,v)(m, p) = (m ×ω + p × v, p ×ω) (8)

ad(ω1,v1)(ω2, v2) = (ω1 ×ω2,ω1 × v2 −ω2 × v1), (9)

depend only on the groupS E(3) and not on the choice of the particular ”metric”L that has been chosen to
described the physical problem [6].

Equations (6) and (7) are written in material (or left invariant) form (c subscript). Spatial (or right invari-
ant ) form exist also. In this case, spatial variables (ssubscript) are introduced by

ǫ̂ s(s, t) = ∂sH(s, t)H−1(s, t) (10)

χ̂s(s, t) = ∂tH(s, t)H−1(s, t) (11)

and (6) leads to the conservation law [18]

∂tπs = ∂s(σs − σ0) (12)

whereπs = Ad∗H−1πc andσs = Ad∗H−1σc. The Ad∗ map forS E(3) is

Ad∗H−1(m, p) = (Rm + r × Rp,Rp). (13)

Compatibility condition (7) becomes
∂sχs − ∂tǫs = adǫsχs. (14)

Equations (6) and (7) (or alternatively ( 12) and (14)) provide the exact non linear Reissner beam model and
can be used to handle the behavior of the beam if the large displacements are taking into account.

Notations and assumptions vary so much in the literature, itis often difficult to recognize this model (see
for example [7] for a formulation using quaternions). However, this generic statement is used to classify



publications according to three axes. In the first one, the geometrically exact beam model is the basis for
numerical formulations. Starting with the work of Simo [2],special attention is focused on energy and mo-
mentum conserving algorithms [8], [9]. Numerical solutions for planar motion are also investigated in [10].
Even, in some special sub-cases (namely where the longitudinal variables do not appear) the non-linear beam
model gives rise to linear equations which can be solved by analytical methods [11].

Secondly, much of the literature is also devoted to the so-called Kirchhoff’s rod model. In this case, shear
strain is not taken into account along a thin rod (i.e., its cross-section radius is much smaller than its length
and its curvature at all points). In this approximation cross-sections are perpendicular to the central axis of
the filament and the rotation matrix can be given in the Frenet-Serret frame. (see [12] , [14], [15], for
example). In that context an interesting geometric correspondence between Kirchhoff rod and Lagrange top
can be made [13].

Finally, if only rigid motion is investigated, ( i.e. if the spatial dependence in (6) is canceled:∂s ≡ 0)
the so-called underwater vehicle2 model is obtained. In absence of exterior force and torque, the equation of
motion for a rigid body in an ideal fluid become more simply [16], [17]

∂tπc = ad∗χc
πc, that is






ṁ = m ×ω + p × v
ṗ = n× ω

(15)

In this simpler form, a geometric interpretation is easier.The solution of the equation of motion mentioned
above, if it exists, should be interpreted as a geodesic of the groupS E(3) endowed with a non-canonical left
invariant metricJ. To accomplish the correspondence between the Euler-Poincaré’s equation and geodesic
equation the historical definition of the covariant derivative is exposed in the next section.

3 Geometric interpretation

3.1 Geodesics on curved spaces

A trajectory of a particle of mass m which is moving on a manifold3 M can be thought as a curveα(t)
on M andv(t) = α̇(t) is the speed of the particle. According to the Newton’s second Law of motion, its
acceleration (the variation of its velocity) is proportional to the net force acting upon it

∑

F = mdv
dt . The

expression of this variation,v(t + dt) − v(t), shows that the velocities are evaluated at two different points
of the curve:α(t + dt) andα(t) which are,a priori, incommensurable quantities. So, one of the two vectors
needs to be parallel transport as it is illustrated, for flat manifolds, in figure (2). For curved manifolds the

Fig. 2: For flat manifolds, a trivial
parallel transport is used to compute

the acceleration.

v(t + dt)v(
t)

v(t + dt) − v(t)

b

b

operation is not so easy and its historical construction is related by M.P. do Carmo in [19] for surfaces of
R3 (see figure 3). Technically, this historical construction gives rise to the concept of the covariant derivative

2 underwater vehicle in the case that the center of buoyancy and the center of gravity are coincident
3 a surface for short



Fig. 3 Parallel transport along a curve: Letα(t) be
a curve on a surfaceS and consider the envelope
of the family of tangent planes ofS alongα (see
figure 3). Assuming thatα(t) is nowhere tangent to
an asymptotic direction, this envelope is a regular
surfaceΣ which is tangent toS alongα. Thus, the
parallel transport alongα of any vectorw ∈ Tp(S),
p ∈ S, is the same whether we consider it relative
to S or toΣ. Furthermore,Σ is a developable sur-
face; hence can be mapped by an isometryφ into
a planeP (without stretching or tearing). Parallel
transport of a vectorw is then obtained using usual
parallel transport in the plane alongφ(α) and pull
it back toΣ (by dϕ−1).

Dw
dt = ∇vw of a vector fieldw alongα. The parametrized curvesα : I → R2 of a plane along which the field

of their tangent vectorv(t) is parallel are precisely the straight lines of that plane.The curves that satisfy an
analogous condition , i.e.

Dv
dt
= ∇vv = 0, (16)

for a surface are called geodesics. Intuitively, the acceleration as seen from the surface vanishes : in absence
of net force, the particle goes neither left nor right, but straight ahead.

The kinetic energy (4) define a left invariant Riemannian metric on S E(3), and then define also a sym-
metric connection∇ which is compatible with this metric (Levi-Civita connection). It can be shown that
geodesic equation (16) for this particular connection coincide with Euler-Poincaré equation of motion (15)
whenS E(3) is endowed with the kinetic metric (4).

Now, this equation deals with motion of rigid body describedby a single scalar variablet. So what is the
geometric interpretation of the equations of motion (6) and(7) for which two variablessandt are involved.
In other word, can we extend a geodesic, which is a 1-dimensional manifold, to 2-dimensional geodesic ?

3.2 Auto-Parallel submanifolds, covariant point of view

A geodesic curve on a surfaceS is a 1-dimensional submanifold ofS for which the parallel transport
of its initial velocity stay in its own tangent space. In thatsense, a geodesic is an auto-parallel curve. If
now, geodesics are seen as auto-parallel curves on surface,a definition of an n-dimensional auto-parallel
submanifolds can be made.

A submanifoldM is auto-parallel inS if the parallel translation of any tangent vector ofM along any
curve in M stays in its own tangent spaceT(M). Note that a parallel translation of a vectorw ∈ T(M)



certainly belongs toT(S) but not necessarily toT(M). In other words,M is auto-parallel inS with respect
to the connection∇ of S if ∇XY belongs toT(M), ∀X,Y ∈ T(M). A correspondence between auto-parallel

∂H
∂t

b e

b ∂H
∂s

S E(3)

Σ

b

s

t

H

Fig. 4: Symbolic representation of a parametrized surfaceΣ immersed into the groupG = S E(3)

surface and solutions to equations (6) and (7) is still to be demonstrated. In this case, any motion of the beam
must be seen as a map from [0, L] × R ⊂ R2 to S E(3) given by

(s, t)→ H(s, t), (17)

rather then a curvet → H(., t) in the infinite dimensional configuration spaceF ([0; L]; S E(3)) of functions
from [0;L] to S E(3). In this perspective, solving a physical variational problem is therefore transposed to the
problem of finding an auto-parallel immersed surface as it isillustrated symbolically in figure (4). This pro-
cess illustrates the covariant (as opposed to dynamical) formulation of a variational problem (see [21], [22]).

More precisely, the map (17) should be interpreted as a (local) sections(x) = (x,H(x)) of the principal
fiber bundleP→ X with structure groupG = S E(3)

π : P = X × S E(3)→ X, π(x,H) ..= x

over the spacetimeX = [0; L] × R, (s, t) = x. The Lagrangian is then defined in the phase bundleL :
J1P → R, whereJ1P denotes the first jet bundle of the bundleP. If L is invariant under the action ofG,
the variational principle drops to the quotient space (J1P)/G. This quotient is an affine bundle onX which
can be identified to the bundle of connectionsC → X. It induces a reduced lagrangianl : C → X from L
and a reduced section̄s ∈ Γ(C) from s ∈ Γ(P). In that context, the multidimensional generalization ofthe
equations of motion (6), compatibility (7) and conservation law (12) are formulated by M. Castrillón López
in [23]. The equation of motion (6) now yields

div
δl
δs̄
+ ad∗s̄

δl
δs̄
= 0 (18)

where div stands for the divergence operator defined by the volume formv (here,v = ds∧ dt). The compat-
ibility condition (7)gives rise to the flatness ofs̄ (integrability condition)

curv(̄s) = ds̄ + [s̄, s̄] = 0. (19)



Finally, introducing the Cartan-Poincaré4 n-form,ΘL, the symmetries of a variational problem produces
conservation laws by means of the Noether’s Theorem

d(J1s)∗J = 0. (20)

The formJ induces a conserved quantity since its differential vanishes along the critical sections. It can be
understood as a current form (like in electromagnetism). Inthat sense, this formulation is more appropriated
to describe a conservation law then the partial derivative balance law (12). But for a non-specialist audience,
the definition of this form

J(ξ) = ((ξ)∗)(1)
yΘL, ∀ξ ∈ g

is quite obscure (in particular the relationship between the Cartan-Poincaré form and the conserved quantity).
Herey stands for the interior product andξ∗ is related to the infinitesimal vector field generated by the
symmetry5.

4 Conclusion

A geometrical approach of the dynamic of a Reissner beam has been studied in this article in order to
take into account non linear effects due to large displacements. There are basically two different geomet-
ric approaches available to study evolution problems for fields defined by a variational principle. The first
approach, called the ”dynamical” approach, uses, as its main ingredient, the infinite dimensional manifold
as configuration space (TQ). The reduction techniques developed in the dynamical framework have been
studied thoroughly in the literature (see for example [24] and the references therein cited), but it presents the
difficulty to handle geodesic curves in an infinite dimensional function space.

As an alternative, the covariant formulation allows to consider a finite dimensional configuration space
(the dimension of the symmetry group itself). Although its roots go back to De Donder [25], Weyl [26],
Caratheodory [27], after J. M. Souriau in the seventies [28], the classical field theory has been only well un-
derstood in the late 20th century (see for example [29] for anextension from symplectic to multisymplectic
form). It is therefore not surprising that, in this covariant or jet formulation setting, the geometric construc-
tions needed for reduction have been presented even more recently. In that circumstances in the literature,
it is also not easy to understand how the multisymplectic form can be obtained from the differential of the
Cartan-Poincaré n-form, which is crucial to give rise to anHamiltonian framework (Lie-Poisson Schouten-
Nijenhuis (SN) brackets [30]). An understandable theory, that can unify all the results obtained ”ad hoc”,
case by case, is still missing to our knowledge.
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