
Scheduling HPC Workflows for Responsiveness
and Fairness with Networking Delays and
Inaccurate Estimates of Execution Times

Andrew Burkimsher, Iain Bate, and Leandro Soares Indrusiak

Department of Computer Science, University of York, York, YO10 5GH, UK

Abstract. High-Performance Computing systems (HPCs) have grown
in popularity in recent years, especially in the form of Grid and Cloud
platforms. These platforms may be subject to periods of overload. In
our previous research, we found that the Projected-SLR list scheduling
policy provides responsiveness and a starvation-free scheduling guaran-
tee in a realistic HPC scenario. This paper extends the previous work to
consider networking delays in the platform model and inaccurate esti-
mates of execution times in the application model. P-SLR is shown to be
competitive with the best alternative scheduling policies in the presence
of network costs (up to 400% computation time) and where execution
time estimate inaccuracies are within generous error bounds (<1000%)
while still giving starvation-free behaviour.

1 Introduction

High-Performance Computing systems (HPCs) made up of a large number of
parallel processors have become increasingly popular. To increase the available
computing power, geographically-distributed networks of such clusters have been
created, and these are known as grids [1]. These grids are often heterogeneous,
with machines of varying capacity and architecture. The geographic distribution
of the clusters in the grid gives rise to network delays when transferring data.

The pieces of work run on grids are rarely run in isolation, but instead form
part of workflows, with dependencies between different computational tasks [2,3].
Each self-contained workflow is known as a job, made up of non-pre-emptible
multicore tasks with dependencies.

Organisations that own grid or HPC capacity as well as cloud providers have
an interest in providing Quality of Service (QoS) to their users. A particularly
important aspect of QoS for many users is responsiveness. It is almost inevitable
for grids and clouds to experience significant variations in demand, which can
lead to transient periods of overload where some jobs have to wait. Industrial
users interviewed by the authors indicated their desire for response times of jobs
to be proportionate to the jobs’ execution times. Furthermore, users desire fair
treatment of their jobs. An example of a particularly unfair situation is if some
jobs experience starvation (unbounded waiting time) under overload.

Previous work on fair scheduling for workflows with dependencies has been
performed for offline [4] and batching [5] schedulers. These are ineffective when

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 126–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Scheduling HPC Workflows for Responsiveness and Fairness 127

there is a wide variation in runtimes [6,7,8] because the response times required
of the smallest tasks (hours) are orders of magnitude smaller than the execution
times of the largest tasks (months), so no batch size will suit both. Effective
prioritisation by the scheduler is required to keep the system responsive for the
smallest tasks but avoid starvation for the largest ones.

In previous work [6], the authors developed an online list scheduling policy for
dependent tasks called P-SLR that achieves responsiveness for small tasks and
also provides a guarantee that no task will ever starve. P-SLR gave statistically
indistinguishable responsiveness and fairness when compared to the best alter-
native scheduler, Shortest Remaining Time First (SRTF), even though SRTF is
not starvation-free.

The P-SLR scheduler requires an estimate of the task execution time. The
previous work [6] assumed that these times were known exactly. However, it is
an ongoing field of research to accurately predict task execution times before
they run, and they will always have their limitations [9]. Although users can
provide hints about their task execution times, these are also far from accurate
[10]. This paper describes how the models of the original work were extended to
include these. The performance of the P-SLR scheduler is evaluated as to the
impact of these inaccurate estimates.

Network delays also have an effect on scheduling. These can be described
using the communication to computation ratio (CCR) value [11]. In the original
analysis, only a single value of CCR was considered, using a network with a single
central router. We extend the network model to a hierarchical architecture, and
investigate the impact of changing CCR on the responsiveness and fairness of
the P-SLR scheduling policy.

The context and models which define the scenario considered are presented
in section 2. The considerations of measuring responsiveness and fairness, along
with the P-SLR scheduling policy are defined in Section 3. Section 4 will de-
scribe the experimental method used to evaluate P-SLR against the alternative
scheduling policies, and Section 5 will present the results of this evaluation.

2 Models

2.1 Application Model

A non-preemptible piece of work to be executed on one or more processors con-
currently will be known as a task, denoted T i. A set of tasks with dependencies
is a job, denoted Jk. A set of jobs will be known as a workload W . Dependen-
cies will be in the form of a directed acyclic graph (DAG), following [2]. Each
task has an associated architecture, which defines which resources in the grid are
available for it to execute on. The following terms define the attributes of tasks
and jobs.

– Task execution time : T i
exec ∈ N

�

– Task cores required : T i
cores ∈ N

�

– Task start time: T i
start ∈ N

0



128 A. Burkimsher, I. Bate, and L.S. Indrusiak

– Task finish time: T i
finish = T i

start + T i
exec

– Task dependendents/successors: T i
succ

– Task upward rank: T i
R = T i

exec +max(T j
R ) • ∀T j ∈ T i

succ

– Job arrival time (not necessarily the same as start time): Jk
arrive ∈ N

0

– Job start time: Jk
start = min

(
T i
start

) • ∀T i ∈ Jk

– Job finish time: Jk
finish = max

(
T i
finish

) • ∀T i ∈ Jk

– Job response time: Jk
response = Jk

finish − Jk
arrive

– Job total execution time: Jk
exec =

∑(
T i
exec × T i

cores

) • ∀T i ∈ Jk

– Job critical path: Jk
CP = max

(
T i
R

) • ∀T i ∈ Jk

2.2 Inaccurate Estimates of Execution Times

In a realistic system, it is assumed that an estimate of execution time, albeit
inaccurate, will be available from the user or from an automated job profiler.
In simulation, however, the exact execution times are known in advance, so
inaccuracies need to be introduced into the model. In this work, two possible ways
are considered to convert exact execution times (eorig) into inaccurate estimates,
in order to evaluate the impact these inaccuracies have on the schedule quality:

Normal Error

This creates an estimate by sampling a normal distribution, shown in Equation
1, with a parameter N to vary the standard deviation, and hence the inaccuracy,
of the estimate. The evaluation considers a wide range of values for N, between
1 % and 108 %.

eest =

⌈
normal(μ = eorig,σ = eorig × N

100
)

⌉
(1)

Log Rounding

This form of inaccuracy (Equation 2) reflects the expertise of users in know-
ing whether a job will take minutes, hours or days, but without much greater
precision. M is the base of the logarithm used, with smaller values giving larger
numbers of possible classes. The evaluation considers bases between 1 (no round-
ing) and 107 (all are in the same class).

eest = M �logM (eorig)� (2)

2.3 Platform Model

The resources in the grid are grouped into homogeneous clusters. These are
connected together in a tree structure with a router at each node and a cluster
at each leaf. Network delays are only considered between clusters, as delays inside
a cluster are assumed to be negligible.

Jobs are submitted to the root of the tree and are randomly cascaded down
the tree until a cluster is reached. Tasks from a single job that share the same



Scheduling HPC Workflows for Responsiveness and Fairness 129

architecture are kept together and are allocated to the same cluster, to avoid
unnecessary network costs. The detailed scheduling decisions are then made by
a list scheduler executing on the clusters.

2.4 Network Delay Model

Fig. 1. Thin Tree Net-
work Diagram

The network model is considered to be that of a thin
tree [12]. This is where nodes at lower levels of the tree
have greater communication speed between them than
nodes higher in the tree. This reflects what is seen in
geographically distributed networks, where nodes further
apart tend to have slower connections. This can approxi-
mate a real network, because all fully connected networks
possess a spanning tree [13].

The aim of this network model is to provide an ac-
ceptable model to investigate the effects of network de-
lays on scheduling while adding minimal computational
overhead. The network speed is calculated by using the
fact that the network is tree structured. Therefore, any
two clusters will share a common parent node, and the
number of nodes in between a cluster and the common
parent is measured in levels. The speed equation takes a
parameter p to vary how much slower the higher levels of
the network become.

N speed = (max_levels_to_common (C1, C2))
p (3)

To find the data volume to transfer, the communication to computation ratio
parameter (CCR) is used [11], along with the execution time of the task T i

exec,
as shown in Equation 4.

T i
data =

T i
exec

CCR
∗ (1− CCR) (4)

The time taken to transfer data between two tasks is determined by dividing the
data volume required by the speed of the network between them.

T i
net_delay =

T i
data

Nspeed

(5)

3 Metrics and the P-SLR Scheduler

In order to evaluate the responsiveness and fairness achieved by scheduling poli-
cies, appropriate metrics are required. We suggested in [6] that the most infor-
mative metric for measuring responsiveness is the Schedule Length Ratio (SLR)
[3], when applied to each job in a workload. The critical path of a job is the
longest path through the job’s dependency graph and defines the minimum time



130 A. Burkimsher, I. Bate, and L.S. Indrusiak

Algorithm 1. Projected SLR ordering algorithm
projected_slr(T i, Jk, curr_time, Q) =

(
T i
R + curr_time+ 1

)− Jk
arrive

Jk
CP

+

⌊
curr_time− Jk

arrive

max (Jn
CP • Jn ∈ Q))

⌋2

that the job can be executed in even if the number of processors was unbounded
[14]. The SLR of a job is its response time relative to the length of its critical
path.

Fig. 2. Classes of prioritisation by
execution time

We proposed using the distribution of
SLR values to measure fairness [6], of which
three kinds can be described (Figure 2).
Class 1 is where the responsiveness of longer
jobs is prioritised over that of short jobs,
with Class 2 being the opposite case. Class
3 is where there is equal prioritisation of
responsiveness with respect to execution
times.

The common scheduling policy First In
First Out (FIFO) falls into Class 1 because
on average, each job will wait in the queue
for the same length of time. This waiting
time is proportionately larger relative to ex-
ecution time for smaller tasks, penalising the
SLR of short-running jobs. This pattern is true for any policy not considering
execution times. The Longest Remaining Time First (LRTF) scheduler also falls
into Class 1. The Shortest Remaining Time First (SRTF) scheduler is of Class
2. The authors designed the P-SLR scheduler to exhibit Class 3 behaviour, and
demonstrated this in [6].

In order to make use of execution time estimates, LRTF, SRTF and P-SLR use
the concept of Upward Rank introduced by [3]. Upward Rank is defined for each
task, and is the length of the critical path that remains to be completed after
the task has executed. LRTF and SRTF sort the list of tasks by decreasing and
increasing Upward Rank, respectively. These policies can suffer from starvation
under overload, because the shortest (LRTF) or longest (SRTF) tasks may never
reach the head of the queue (Q).

P-SLR uses the upward rank to calculate a forward projection of the job finish
time and hence SLR if the considered task was run immediately (Algorithm 1).
The task where the P-SLR is largest (is most ‘late’) is run first, letting small
jobs ‘jump’ the queue as their SLRs are more sensitive to waiting time. This
is distinct from the approach used by [5] which uses the downward rank (looks
backward) to calculate a partial value for SLR based on the tasks that have
already completed.



Scheduling HPC Workflows for Responsiveness and Fairness 131

P-SLR is starvation-free because the projected SLR rises for all jobs as they
wait, which means all jobs will eventually run, as long as overloads are tran-
sient. In the case of extreme overload where the work queue continually grows
unboundedly, the waiting time term (the second part of the equation in Al-
gorithm 1) comes to dominate, reverting the ordering to that of FIFO, thus
avoiding starvation in all cases.

4 Evaluation Method

The evaluation method will seek to investigate two principal hypotheses:
1: Projected-SLR delivers better responsiveness and fairness than schedulers

which do not use execution time estimates, even when the estimate inac-
curacy is significant. P-SLR is competitive with scheduling policies that do
make use of execution time estimates.

2: Projected-SLR delivers competitive responsiveness and fairness metrics in-
dependent of communication to computation ratios.

4.1 Simulation Details

The evaluation will be run using the simulation framework developed and vali-
dated in [6] which implements the models and extensions described above. The
platform used is the one shown in Figure 1, with each cluster having 400 cores,
and Cluster 1,3,4 being of architecture Kind1, whereas Cluster 2 is of archi-
tecture Kind2. These values have been chosen to reflect those we observed in
industry. Because there are elements of randomness in the allocation and in the
workloads used, numerous simulation trials will be run for each experiment.

Responsiveness will be measured using the median value of the worst-case
SLRs observed in each trial. The worst-case SLR is used because of the desire
for high responsiveness to be achieved for all users. Using the median value
instead of the mean will prevent any truly pathological cases from biasing the
results.

Fairness will be measured using the median of the Gini Coefficients [15] cal-
culated for the SLRs in each trial. The Gini Coefficient (GC) is a measure of
the inequality of resources allocated to a given population. In this instance, it is
the allocation of responsiveness to jobs by the scheduler. The GC takes a value
between 0 (completely fair) and 1 (completely unfair).

Statistical significance will be tested using a repeated measures t-test because
the workloads are the same, meaning the job SLRs can be directly compared.
The threshold for statistical significance is set at 5%.

4.2 Scheduling Policies

Several common policies will be used as a basis for comparison with P-SLR. The
random ordering policy simply chooses a random task to run. While it does not
guarantee to be starvation-free, the probability of a task starving forever tends
towards zero as time passes. The FIFO Task policy runs tasks in the order that



132 A. Burkimsher, I. Bate, and L.S. Indrusiak

they become ready, which is starvation-free. FIFO Job is an alternative to FIFO
Task that runs tasks in the order that their jobs arrived on the HPC . This avoids
a problem with FIFO Task where tasks that have just become ready are added
to the tail of the queue, which means that jobs with many levels of dependencies
can end up waiting the length of the queue multiple times.

The Fair Share ordering policy [16] is based on the user who submitted a job.
Each user is a member of a group, which has a certain share of the resources of
the HPC. The share of these groups is organised in a tree. The priority of tasks is
not static, but depends on the instantaneous number of resources already being
consumed by the user and their parent groups divided by their allocated share.

Simulation of an overload situation is necessary so that some jobs will have to
wait, and the ability of the schedulers to keep responsiveness and fairness high
can be compared. The overload rate can be defined as a percentage of the arrival
rate of jobs compared to the maximum processing rate achievable, and a figure
of 120% is used.

5 Results

5.1 Inaccurate Execution Times

For all the results with inaccurate execution times, the Random, FIFO Task,
FIFO Job and FairShare policies are not affected by the inaccurate estimates,
because they do not make use of these estimates.

projected_slr

random

longest_remaining_first

fifo_job

shortest_remaining_first

fair_share

fifo_task

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Standard deviation for normal distribution inaccurate estimator

10
1

10
2

10
3

10
4

10
5

M
e
d
ia
n
o
f
w
o
rs
t-
c
a
s
e
Jo
b
S
L
R
V
a
lu
e
s

(a) Normally distributed inaccuracies

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Base for log rounding inaccurate estimator

10
1

10
2

10
3

10
4

10
5

M
e
d
ia
n
o
f
w
o
rs
t-
c
a
s
e
Jo
b
S
L
R
V
a
lu
e
s

(b) Log rounding inaccuracies

Fig. 3. Responsiveness



Scheduling HPC Workflows for Responsiveness and Fairness 133

Responsiveness. With normally distributed inaccuracies (Figure 3a), the P-
SLR policy dominates by having the lowest worst-case SLR values until the
standard deviation is 1000% of the value of the exact time. It is reasonable to
assume that virtually all real-world estimates will have ranges less than 1000%.

The difference between P-SLR and SRTF in this range is not statistically
significant, which shows the strength of the P-SLR policy as it adds the guarantee
of non-starvation. The divergence after 1000% is due to this guarantee because
SRTF is letting the largest tasks starve. The largest tasks have SLRs which are
least sensitive to waiting time, keeping the worst-case SLR fairly low.

Once the estimation error gets sufficiently large, the estimates become ef-
fectively random. Therefore, the worst-case SLR of the P-SLR orderer rises to
similar levels as the schedulers that do not make use of execution time estimates.

Similar results are apparent where estimates are log-rounded (Figure 3b).
Where execution times are rounded to the nearest power of 10 or below, P-SLR
dominates the worst-case SLR values, although it is not statistically distinguish-
able from SRTF. Still, it is to be expected that users could give a good indication
of their job taking closer to 1, 10, 100, etc., minutes.

As the estimates get yet more coarse above a base of 10, SRTF provides better
worst-case responsiveness than P-SLR. This is to be expected, because inaccurate
estimates move the behaviour of schedulers closer to Class 1 behaviour. As P-
SLR with accurate estimates exhibits Class 3 behaviour, any perturbation to
this will make it tend towards Class 1 behaviour. Whereas for SRTF, because
it shows Class 2 behaviour, perturbations will initially make its behaviour more
like Class 3, although eventually it too will exhibit Class 1.

The LRTF orderer, as expected, shows poorer worst-case responsiveness than
any of the policies that do not consider execution time. This is because it makes
the smallest tasks starve, and these tasks are the ones whose SLR is most sen-
sitive to waiting time. LRTF is useful, though, because it gives an upper bound
on how poor responsiveness can get because it shows the most extreme Class 1
style behaviour.

These results show that up to a threshold value of 103, the P-SLR and SRTF
policies have statistically insignificant differences in responsiveness. Responsive-
ness for P-SLR approaches that of the schedulers that do not include execution
time estimates when the error for either normal standard deviation percentage
and log rounding is around 107. These values are far above the maximum levels
of inaccuracy of around 100% found by [10]. This would suggest that in reality,
the P-SLR scheduler could be considered most favourable for practical schedul-
ing, because it gives a guarantee of non-starvation, unlike SRTF, and leads to
an improvement in responsiveness performance over that of schedulers that do
not consider execution time estimates.

Fairness. As with the results for responsiveness, the fairness results for normally
distributed error (Figure 4a) are dominated by P-SLR at the lowest values, al-
though they are also statistically indistinguishable from SRTF up to a threshold
of 100%. This is to be expected, as P-SLR is designed to show Class 3 behaviour,
which emphasises fairness. Above this threshold, P-SLR exhibits progressively



134 A. Burkimsher, I. Bate, and L.S. Indrusiak

projected_slr

random

longest_remaining_first

fifo_job

shortest_remaining_first

fair_share

fifo_task

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Standard deviation for normal distribution inaccurate estimator

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
e
d
ia
n
G
in
i
C
o
e
ff
ic
ie
n
t
o
f
Jo
b
S
L
R
V
a
lu
e
s

(a) Normally distributed inaccuracies

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Base for log rounding inaccurate estimator

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
e
d
ia
n
G
in
i
C
o
e
ff
ic
ie
n
t
o
f
Jo
b
S
L
R
V
a
lu
e
s

(b) Log rounding inaccuracies

Fig. 4. Fairness

more Class 1-like behaviour, as poor estimates for small tasks cause their re-
sponsiveness to fall. SRTF causes the largest jobs to starve, but because their
SLRs are less sensitive to waiting time, the SLR distribution remains closer to
Class 3.

The normally-distributed inaccurate estimator was not able to introduce suf-
ficient error below a standard deviation percentage of 108 to cause significant
impact on the fairness of the SRTF policy. If the estimation errors are normally
distributed, therefore, SRTF may provide better fairness than P-SLR when the
standard deviation of the errors is above 100%.

With the log rounding estimator (Figure 4b), other than the case where there
was no inaccuracy, the SRTF orderer was statistically significantly more fair,
according to the Gini Coefficients, than for P-SLR. As before, this is due to the
SRTF causing the largest jobs to starve, but this not having a large effect on
those jobs’ SLR values. P-SLR immediately starts to exhibit Class 3 behaviour
in the presence of inaccurate estimates, whereas SRTF moves from Class 2, then
to Class 3, before eventually showing Class 1 at a rounding power of 107 .

The LRTF policy shows the worst-case unfairness, as it is the most extreme
example of Class 1 behaviour. The bound on how unfair it makes things improve
as estimates get worse, because it is not as able to achieve the worst case.

The fairness results show that for small inaccuracies in execution time esti-
mates, P-SLR and SRTF show similar results. However, for larger inaccuracies,
SRTF gives fairer results as it shows more of a Class 3 behaviour profile, although
this is due to the largest jobs being starved of resources.

Hypothesis 1 stated thatP-SLRwoulddeliver better responsiveness and fairness
than schedulers that do not use execution times, even when the estimate accuracy
is significant. This has been shown to be the case, with better responsiveness and
fairness when the standard deviation inaccuracy percentage is less than 107 and



Scheduling HPC Workflows for Responsiveness and Fairness 135

when the log rounding base is less than 108, all extremely high levels of inaccu-
racy. P-SLR has been shown to be competitive with SRTF in responsiveness up to
a threshold inaccuracy of 10 times the value of the original estimate. In fairness, P-
SLR is competitive at small inaccuracies, but SRTF dominates above this, refuting
a part of the hypothesis. It is then a tradeoff for a grid owner to decide whether, if
estimates of execution time have large inaccuracies, absolute fairness (SRTF) or an
absence of starvation (P-SLR) is more important.

5.2 Networking Delays

Responsiveness. A pronounced feature (Figure 5a) is that there is an improve-
ment in worst-case responsiveness when network costs become present at a CCR
of 0.2. This is because any network costs will increase the length of the critical
path, which means CPU resources are no longer the single bottleneck.

projected_slr

random

longest_remaining_first

fifo_job

shortest_remaining_first

fair_share

fifo_task

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Communication to Computation Ratio

10
1

10
2

10
3

10
4

10
5

10
6

M
e
d
ia
n
o
f
w
o
rs
t-
c
a
s
e
Jo
b
S
L
R
V
a
lu
e
s

(a) Responsiveness

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Communication to Computation Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
d
ia
n
G
in
i
C
o
e
ff
ic
ie
n
t
o
f
Jo
b
S
L
R
V
a
lu
e
s

(b) Fairness

Fig. 5. Network Delays

Throughout the range of network delays examined, P-SLR and SRTF showed
similar levels of responsiveness. SRTF was slightly better when there were no
network delays, but P-SLR was slightly better when there were delays present.
However, P-SLR and SRTF were not statistically significantly different.

The LRTF policy again shows the worst case bound of responsiveness because
it tends to starve the smallest tasks.

Fairness. The results in Figure 5b also show greater fairness in the presence of
network delays, because of the improvements in overall responsiveness. However,
in this case, P-SLR is stasticically significantly more fair than SRTF, except
where the CCR takes a value of 0.2. As CCR is increased, the unfairness increases



136 A. Burkimsher, I. Bate, and L.S. Indrusiak

more slowly for P-SLR than for SRTF. This is because although their worst case
values are similar (Figure 5a), P-SLR shows more Class 3 behaviour, giving a
better balance of SLR values overall.

The LRTF scheduler is the least fair at low values of CCR, but converges to a
similar level of fairness as those schedulers that do not consider execution times
at higher network costs. All the schedulers other than SRTF are very unfair
across the space of network delays when compared to P-SLR.

Hypothesis two considered whether P-SLR delivers competitive responsiveness
and fairness across the range of CCRs. P-SLR dominated all schedulers other
than SRTF in responsiveness, although it was statistically indistinguishable from
SRTF. In fairness, it dominated all other schedulers, except for SRTF where CCR
was 0.2. As network costs increased, the rate of decrease in fairness was lower
for P-SLR than for SRTF. This confirms this hypothesis, showing that across
the space of network costs, P-SLR provides equal or better responsiveness and
fairness than the best alternative scheduler, SRTF, but does so while in addition
providing a guarantee that no job will ever starve.

6 Conclusion

This paper revisited the work of [6], and investigated the robustness of the P-SLR
scheduling policy in the presence of networking delays and inaccurate execution
times.

The responsiveness and fairness performance of the P-SLR scheduler was
found to be robust to network delays. P-SLR provides equal or better respon-
siveness (measured by worst-case SLR) and fairness (measured by the Gini Co-
efficient of SLRs) in the presence of network delays than the best alternative
scheduler, SRTF, but does so while in addition providing a guarantee that no
job will ever starve.

The responsiveness performance of P-SLR was found to be robust below a
certain threshold of execution time inaccuracy. This threshold was 10 times
the original execution time of the task. Above this threshold, SRTF was able
to provide better responsiveness. P-SLR was not able to give the best fairness
compared to SRTF once any significant estimation inaccuracies were present,
because SRTF is better at keeping SLRs low for small tasks whose SLRs are
more sensitive to longer waiting times. However, P-SLR still dominated all other
alternative policies, showing that where estimates of execution time are available,
it can make good use of them, even where the inaccuracies are large.

Acknowledgements. We would like to thank the EPSRC (grant number EP/
F501374/1) for funding this research through the UK’s Large-Scale Complex IT
Systems (LSCITS) programme.

References

1. Albodour, R., James, A., Yaacob, N.: High level QoS-driven model for grid appli-
cations in a simulated environment. Future Generation Computer Systems 28(7),
1133–1144 (2012)



Scheduling HPC Workflows for Responsiveness and Fairness 137

2. Maheswaran, M., Braun, T.D., Siegel, H.J.: Heterogeneous distributed comput-
ing. In: Encyclopedia of Electrical and Electronics Engineering, pp. 679–690. John
Wiley (1999)

3. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

4. Zhao, H., Sakellariou, R.: Scheduling multiple dags onto heterogeneous systems. In:
20th International Parallel and Distributed Processing Symposium, IPDPS 2006,
p. 159 (2006)

5. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., González-García, J., Röblitz,
T., Ramírez-Alcaraz, J.: Multiple workflow scheduling strategies with user run time
estimates on a grid. Journal of Grid Computing 10(2), 325–346 (2012)

6. Burkimsher, A., Bate, I., Indrusiak, L.S.: A survey of scheduling metrics
and an improved ordering policy for list schedulers operating on workloads
with dependencies and a wide variation in execution times. Future Genera-
tion Computer Systems (in press, published online December 27, 2012), doi:
http://dx.doi.org/10.1016/j.future.2012.12.005

7. Chiang, S. H., Vernon, M.K.: Characteristics of a large shared memory production
workload. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221,
pp. 159–187. Springer, Heidelberg (2001)

8. Feitelson, D.G., Nitzberg, B.: Job characteristics of a production parallel scien-
tific workload on the nasa ames ipsc/860. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg
(1995)

9. Sonmez, O., Yigitbasi, N., Iosup, A., Epema, D.: Trace-based evaluation of job
runtime and queue wait time predictions in grids. In: Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing, HPDC
2009, pp. 111–120. ACM, New York (2009)

10. Bailey Lee, C., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates
inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

11. Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: On the complexity of task allocation.
Complex 3(2), 52–60 (1997)

12. Navaridas, J., Miguel-Alonso, J., Ridruejo, F.J., Denzel, W.: Reducing complexity
in tree-like computer interconnection networks. Parallel Computing 36(2-3), 71–85
(2010)

13. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction To Algorithms. MIT
Press (2001)

14. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph schedul-
ing algorithms. Journal of Parallel and Distributed Computing 59(3), 381–422
(1999)

15. Litchfield, J.A.: Inequality methods and tools. In: School of Economics (1999)
16. Platform Computing Corporation: Fairshare scheduling (2008),

http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/fairshare.html

http://dx.doi.org/10.1016/j.future.2012.12.005
http://www.cisl.ucar.edu/docs/LSF/7.0.3/admin/fairshare.html

	Scheduling HPC Workflows for Responsiveness 
and Fairness with Networking Delays and Inaccurate Estimates of Execution Times
	1 Introduction
	2 Models
	2.1 Application Model
	2.2 Inaccurate Estimates of Execution Times
	2.3 Platform Model
	2.4 Network Delay Model

	3 Metrics and the P-SLR Scheduler
	4 Evaluation Method
	4.1 Simulation Details
	4.2 Scheduling Policies

	5 Results
	5.1 Inaccurate Execution Times
	5.2 Networking Delays

	6 Conclusion
	References




