
Reconfiguration Stability of Adaptive

Distributed Parallel Applications through
a Cooperative Predictive Control Approach

Gabriele Mencagli, Marco Vanneschi, and Emanuele Vespa

Department of Computer Science
University of Pisa

Largo B. Pontecorvo, 3, I-56127, Pisa, Italy
{mencagli,vannesch,vespa}@di.unipi.it

Abstract. Distributed parallel applications executed on heterogeneous
and dynamic environments need to adapt their configuration (in terms
of parallelism degree and parallelism form for each component) in re-
sponse to unpredictable factors related to the physical platform and the
application semantics. On emerging Cloud computing scenarios, recon-
figurations induce economic costs and performance degradations on the
execution. In this context, it is of paramount importance to define smart
adaptation strategies able to achieve properties like control optimality
(optimizing the application global QoS) and reconfiguration stability,
expressed in terms of number of reconfigurations and the average time
for which a configuration is not modified. In this paper we introduce a
methodology to address this issue, based on Control Theory and Opti-
mal Control foundations. We present a first validation of our approach
in a simulation environment, outlining its effectiveness and feasibility.

Keywords: Distributed Parallel Computations, Reconfigurations, Au-
tonomic Computing, Model-based Predictive Control.

1 Introduction

With the emergence of computational paradigms like Grid and Cloud Com-
puting, properties like reconfigurability and adaptiveness have gained more
importance [1,2]. In scenarios characterized by variable workload conditions and
dynamic execution environments the achievement of the desired Quality of Ser-
vice (QoS) requires to adapt the application configuration expressed in terms of
component identification, mapping onto physical resources, and proper selection
of a parallelism degree and a parallelism form (e.g. farming and data-parallelism
paradigms) for each component [3]. Such choices need to be applied to compu-
tations by performing run-time reconfiguration activities.

Reconfiguration processes can induce costs on the execution [3]. During a
switching from a configuration to another, it is important to take into account
several factors, such as the cost of the newly selected configuration (e.g. in
a pay-per-use execution environment dependent on the classes of dynamically

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 329–340, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

330 G. Mencagli, M. Vanneschi, and E. Vespa

provisioned computing resources [1]). The reconfiguration cost can also be pro-
portional to the ”amplitude” of the switch [2], i.e. a monetary charge and/or a
performance overhead proportional to the amount of allocated/deallocated com-
puting resources. Consequently, it is clear that reconfigurations do not come for
free, but they should be executed only when real benefits in terms of QoS can be
achieved.

Over the last years, many studies [3,4] about adaptiveness for distributed par-
allel applications have focused on providing run-time supports to dynamic recon-
figurations with the minimum impact on the computation performance (often
assuming dedicated execution environments). On the other hand, the problem
of defining powerful Adaptation Strategies is still an open research issue which
requires innovative approaches to performance modeling, to the achievement of
agreements between control decisions of different controllers, and to ensure the
minimization of operating costs related to the application execution.

In this paper we propose a novel approach based on a control-theoretic strat-
egy known as Model-based Predictive Control [5]. We control the parallelism
degree of distributed parallel computations organized as graphs of parallel com-
ponents. Each component features a local control sub-problem and cooperates
with the others in order to reach the optimal application QoS (expressed in
terms of effective performance and resource utilization cost). The cooperation is
enforced using the Distributed Subgradient Method [6]. We propose different for-
mulations of the adaptation strategy and we show interesting results in terms of
reconfiguration stability. This property is expressed as the amount of performed
reconfigurations and the average time for which a newly selected configuration
is not modified.

This paper is organized as follows. The next section reviews research work
on adaptiveness for distributed parallel computations. Section 3 presents our
methodology. Section 4 shows a first evaluation of our approach developed in a
simulation environment. Finally, Section 5 gives the conclusion of this work.

2 Related Work

Providing computing systems with run-time supports to dynamic reconfigura-
tions has been the subject of several researches in different fields like Mobile,
Grid and Cloud Computing. On such environments, it is of great importance
to dynamically provide computing resources to applications featuring variable
QoS requirements and characterized by irregular workload conditions. Examples
are described in [7], in which provisioning mechanisms of virtual machines are
provided to accelerate compute-intensive jobs submitted into Cloud platforms.

Besides efficient run-time supports [3,4], emerging computing environments
raise critical problems related to when reconfigurations should be executed in
order to optimize performance and economic aspects. Therefore, adaptation
strategies have gained much attention. The pro-active adaptation to future work-
load variations goes in the direction of defining powerful strategies able to op-
timize performance requirements and operating costs by avoiding unnecessary

Reconfiguration Stability of Adaptive Distributed Parallel Applications 331

reconfigurations. Despite the existence of first activities in this area [8], this
research direction is open and still lacks from systematic approaches.

Along this line, this paper introduces an approach based on the application
of Control Theory and Optimal Control foundations.

3 Methodology and Problem Statement

The control problem of distributed parallel applications can be decomposed into
a set of sub-problems associated with each application module (we use module
as a synonym of component). The distributed control logic should be organized
in order to state how individual solutions of local control problems are combined
and directed towards a solution that optimizes the application global QoS.

The core element of our methodology is the concept of adaptive parallel module
(i.e. shortly ParMod), an active unit featuring a parallel computation and an
adaptation strategy to respond to dynamic execution conditions. A ParMod is
structured into two interconnected parts following a closed-loop control scheme:

– the Operating Part performs the functional logic of the module, i.e. a
parallel computation that instantiates a structured parallelism pattern (e.g.
task-farm and data-parallel schemes) [3,4]. The computation is activated by
receiving tasks from input data streams. Results are transmitted onto output
data streams directed to specific destinations;

– the Control Part (controller) observes the Operating Part execution and
performs reconfiguration activities. The Control Part implements the adap-
tation strategy that drives the reconfiguration selection.

At discrete time intervals (called control steps), the Operating Part exchanges
measurements representing the actual behavior of the parallel computation (e.g.
memory usage, resource utilization, service time and computation latency) with
the Control Part. In order to take effective reconfiguration decisions, at each
control step Control Parts of different ParMods (belonging to the same applica-
tion) exchange control information in order to reach specific agreements between
control decisions. The result is a set of reconfigurations able to change the par-
allel computation, e.g. modifications of the current parallelism degree (number
of threads/processes of the current implementation).

3.1 Distributed Model-Based Predictive Control

An important precondition to apply control-theoretic techniques is the existence
of a mathematical model of the controlled system. For each application module
Mi we identify a local model involving the following set of variables:

– QoS variables (xi(k) ∈ R
n) are metrics describing the current behavior

of the parallel computation, such as the performance, memory usage and
resource consumption assumed at the beginning of control step k;

– control variables (ui(k) ∈ Ui) are parameters that identify the ParMod
configuration used throughout the k-th control step;

332 G. Mencagli, M. Vanneschi, and E. Vespa

– disturbances (di(k) ∈ R
m) model exogenous uncontrollable factors influ-

encing the relationship between control and QoS variables (e.g. the arrival
rate from external sources).

A formal representation of the local model can be described by the following
discrete-time expression:

xi(k + 1) = Φi

(
xi(k), di(k), ui(k), uj �=i(k)

)
(1)

The model allows Control Part to predict future values assumed by local QoS
variables as a function of local control inputs, disturbances and (in dynamic
models) present values of QoS variables. Furthermore, the next QoS of each sub-
system is still related to the remaining control variables of the other sub-systems
(or a sub-set of them). Therefore the control problem of the whole application
can be viewed as a set of coupled sub-problems.

In this paper we present adaptation strategies based on a control-theoretic
technique named Model-based Predictive Control (shortly MPC) [5] . MPC is a
method in which the current reconfiguration decision is taken by solving, at the
beginning of each control step, a finite-horizon optimal control problem using the
current value of QoS variables and statistical multiple-step ahead predictions of
future disturbances. To be robust in dynamic and uncertain environments, only
the first element of the optimal reconfiguration sequence (trajectory) is passed
to the Operating Part, and the same procedure is repeated at the next control
step.

Distributed MPC schemes can be applied to control large-scale systems such
as distributed computations. In this case the optimization problem is composed
of a set of coupled sub-problems each one formed by a local objective function,
a local model and a set of local constraints. In a cooperative scenario, the goal of
the decomposition is to reach a sequence of globally optimal control decisions, i.e.
the solutions of the sub-problems should optimize the following global problem:

argmin
U1(k),...,UN (k)

JG =

N∑
i=1

wi Ji

(
Xi(k + 1), U i(k), U j �=i(k)

)
(2)

s.t.

xi(k + 1) = Φi

(
xi(k), di(k), ui(k), uj �=i(k)

)
i = 1, 2, . . . , N

ui(k) ∈ Ui i = 1, 2, . . . , N

where JG is the global objective function, defined as the weighted sum of local
objectives (wi is a positive weight), and an uppercase overlined letter represents
a trajectory over a prediction horizon of h future control steps.

3.2 Addressing the Stability of Control Decisions

In dynamic execution contexts, distributed parallel applications should adapt
the amount of used resources to provide acceptable levels of performance and a

Reconfiguration Stability of Adaptive Distributed Parallel Applications 333

reasonable resource utilization cost. For each ParMod Mi, the configuration pa-
rameter (control input) is the current parallelism degree ni(k) ∈ Ui (number of
used computing nodes), where Ui is the closed interval [1, nmax

i] of integers. Dis-
turbances are parameters that may change due to environmental or application-
dependent reasons. Examples are the mean calculation time per task Tcalc-i(k)
and the probabilities of task transmission between modules, i.e. pi,j(k) is proba-
bility to transmit a task from ParModMi to Mj during control step k. The mean
ideal service time of a module must be defined as a function of its parallelism
degree, e.g. TSi(k) = Tcalc-i(k)/ni(k) (perfect scalability assumption).

The interaction between distributed modules usually follows the message-
passing paradigm. Communications resort on blocking mechanisms to address
the finiteness of the input buffers. If a message attempts to enter a full capacity
destination queue upon the completion of a service at M , it is forced to wait
in that component until the destination has a free position. We call the mean
inter-departure time, the steady-state average time between two successive result
departures. We denote with TDi(k) the QoS variable representing the mean inter-
departure time of Mi at the beginning of control step k (it refers to the average
value assumed during the last step k − 1).

To exemplify our approach, we adopt a simple yet powerful performance model
already discussed in [9]. The method is valid for a large class of computation
graphs, i.e. acyclic graphs with a single source module. The main result is sum-
marized by the following theorem (the proof can be found in [9]):

Theorem 1 (Steady-State Analysis). Given a single source acyclic graph G
of N modules, the inter-departure time TDi from Mi can be expressed as:

TDi(k + 1) = max
{
fi,1
(
TS1(k)

)
, fi,2

(
TS2(k)

)
, . . . , fi,N

(
TSN (k)

)}
(3)

Each term fi,j with j = 1, 2, . . . , N expresses the inter-departure time of Mi if
module Mj is the bottleneck of the graph. fi,j is defined as a function of the
service time of Mj:

fi,j
(
TSj(k)

)
= TSj (k)

∑
∀π∈P(M1→Mj)

(
∏

∀(s,d)∈π

ps,d(k)

)

∑
∀π∈P(M1→Mi)

(
∏

∀(s,d)∈π

ps,d(k)

) (4)

where M1 denotes the source, P(M1 → Mi) is the set of all the paths starting
from M1 and reaching Mi, and (s, d) is an edge of the path π. Since we do not
know which module will be the bottleneck, the inter-departure time is calculated
by taking the maximum between the functions fi,j for j = 1, . . . , N .

We study two different formulations of the MPC strategy. In the first one we do
not model any abstract term related to the reconfiguration cost (we refer to this
as Non-Switching Cost Formulation for brevity):

334 G. Mencagli, M. Vanneschi, and E. Vespa

Definition 1 (Non-Switching Cost Formulation). Each parallel module
has a local cost function defined over a horizon of one future step:

Ji(k) = αi TDi

(
k + 1

)
︸ ︷︷ ︸
performance cost

+ βi ni(k)︸ ︷︷ ︸
resource cost

(5)

The performance cost discourages configurations that compromise the capability
to process incoming tasks. The second part expresses a cost proportional to the
number of used nodes. αi and βi are two positive coefficients establishing the
desired trade-off between the two contrasting aspects of the cost function.

In Grid and Cloud environments the reconfiguration process can induce costs
on the computation, both in terms of a performance degradation (e.g. parallel
modules could be blocked waiting for the reconfiguration process to complete)
as well as in terms of a monetary charge due to the dynamic provisioning of
resources. In the second formulation we account for an abstract cost term:

Definition 2 (Switching Cost Formulation). The local cost function of each
ParMod Mi is defined over a prediction horizon of h control steps (with h ≥ 1):

Ji(k) =

k+h−1∑
q=k

αi · TDi(q + 1)

︸ ︷︷ ︸
performance cost

+

k+h−1∑
q=k

βi · ni(q)

︸ ︷︷ ︸
resource cost

+

k+h−1∑
q=k

γi ·Δi(q)
2

︸ ︷︷ ︸
switching cost

(6)

where Δi(k) = ni(k)−ni(k−1). The switching cost term is defined as a function
of the square of parallelism degree variations over the horizon (γi is a positive
coefficient), and binds control decisions between consecutive steps allowing to
express formulations with a parametric horizon length.

This formulation is aimed at improving the reconfiguration stability by discour-
aging reconfigurations with large amplitude and avoiding fluctuating behaviors
due to disturbances with high variance and featuring trend patterns.

We solve the cooperative distributed MPC problem using the Distributed
Subgradient Method, originally proposed in [6] for multi-agent environments.
The method addresses the problem of optimizing in a distributed fashion the sum
JG(k) =

∑
Ji(k) of non-smooth convex functions known only by their agents.

This method suits particularly well our needs, since:

– each Control Part knows only its local cost function and the model to predict
the steady-state performance of its Operating Part;

– in both of our formulations each local cost is expressed by a non-differentiable
convex function (we recall that the inter-departure time is defined as the
point-wise maximum of a set of convex functions fi,j);

– Control Parts are directly interconnected only between neighbors.

Each Control Part computes and maintains a local estimate of the optimum
strategy profile matrix S(k) ∈ R

h×N , where each column i corresponds to

Reconfiguration Stability of Adaptive Distributed Parallel Applications 335

the reconfiguration trajectory of ParMod Mi (parallelism degrees are considered
real values for feasibility reasons). Neighboring controllers iteratively exchange
their local estimates and compute the next estimate using the following rule:

S(q+1)
[i] (k) = PU∫

⎡
⎣

N∑
j=1

(
W [i, j]S(q)

[j] (k)
)
− a(q) Gi

⎤
⎦ (7)

where q is the current iteration, a(q) > 0 is the step-size and Gi is a subgradient

of Ji at point S(q)
[i] (k)

1. PU∫ is the Euclidean projection onto the convex set of

admissible strategy profiles defined by: U∫ = Uh
1 × Uh

2 × . . .× Uh
N .

Each controller maintains a set of weights representing the importance given
to the estimates received by the controllers (zero is assigned to non-neighbor
controllers). To prove the convergence to the global optimum, in [6] the authors
state a condition about how the weights should be assigned: the weight matrices
W ∈ R

N×N should be doubly stochastic, i.e. all the columns and rows sum to 1.
The MPC strategy based on the Distributed Sub-gradient Method consists in

a sequence of actions performed by the controllers at each control step k:

– each controller acquires monitoring information from its Operating Part and
calculates statistical predictions of disturbances over the prediction horizon;

– each controller uses a specific initial estimate of the strategy profile matrix
and applies the iterative protocol for a fixed number of iterations;

– at each iteration, controllers receive the local estimates from their neighbors,
apply the update rule (7) and transmit the next estimate;

– after the last iteration, each controller knows its optimal reconfiguration
trajectory and applies the first element of that trajectory (properly rounded
to the nearest integer) as the new parallelism degree for control step k.

This method allows us to consider also non-ideal performance behaviors of paral-
lel modules, providing that the ideal service time is modeled as a convex function
of the parallelism degree. An example is when the service time stops to decrease
or even increases using parallelism degrees larger than a specific value.

4 Evaluation of the Approach

We have developed a ParMod simulation environment based on the OmNeT++
discrete event simulator. A ParMod is simulated by two OmNeT components
modeling the Operating Part and the Control Part. The Operating Part im-
plements a queue logic in which buffered elements represent input tasks. To
reproduce a blocking semantics, we have implemented a communication proto-
col based on the transmission of send and ack messages. The Operating Part
can adopt two working logics: (i) a task-farm semantics, in which at most p
tasks in parallel can be executed, where p is the current parallelism degree; (ii)
a data-parallel semantics, in which only one task at a time is processed with an
execution time equal to the calculation time divided by the parallelism degree.

1 The subscript [i] denotes that S(q)

[i] (k) is the estimate of the i-th controller.

336 G. Mencagli, M. Vanneschi, and E. Vespa

sequential
comp.

Control Part

Operating
Part

Control Part
Operating

Part

Control Part

Operating
Part

Control Part

Operating
Part

Control Part

tasks

control messages

Source ParMod

ParMod 1

ParMod 2

ParMod 3

ParMod 4

platform 1

platform 2

platform 3

platform 4

Fig. 1. Computation graph of the experiment

We consider the computation graph depicted in Figure 1. The source module,
implementing a sequential computation, transmits tasks with a variable rate to
ParMod 1 and 2 according to the same probability. ParMods need to dynamically
adapt their parallelism degree in order to sustain the current arrival rate and to
avoid using computing nodes unnecessarily. To exemplify a dynamic situation,
Figure 2 shows a time-series of the ideal service time (the inverse of the service
rate) of the source module, which is modeled as a measured disturbance.

In order to apply the distributed MPC strategy, we need multiple-step ahead
predictions of disturbances. We exploit the well-known Holt-Winters filtering
technique [10], an effective method accounting for time-series featuring non-
stationarities such as trends and seasonal patterns. In this example we achieve
accurate predictions: over the entire execution the mean relative error between
the real trajectories and the predicted ones at each control step is of 8.83%,
9.38%, 10.06% and 10.77% with a horizon length equal to 1, 2, 3 and 4 steps.

We compare the Non-Switching Cost Formulation with the strategy in which
we consider a switching term in the local cost functions. Moreover, in order to
have a performance upper-bound, we consider the static case (named MAX) in
which ParMods do not perform any reconfiguration, but they are configured to
use their maximum parallelism degree for the entire execution. Table 1 shows
a set of user-defined parameters representing the importance of the different

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600M
e

a
n

 S
e

rv
ic

e
 T

im
e

 (
se

c.
)

Control Step

Ideal Service Time of the Source Module - Time Series.

Mean Service Time.

Fig. 2. Ideal service time of the source: 600 control steps each one of 240 seconds

Reconfiguration Stability of Adaptive Distributed Parallel Applications 337

Table 1. Configuration parameters of the experiment

Source ParMod 1 ParMod 2 ParMod 3 ParMod 4

Tcalc Fig. 2 90 sec. 25 sec. 70 sec. 35 sec.
α 20 20 20 20 20
β 0.5 0.3 0.8 0.3 0.4
γ - 1.5 1.2 1.5 1.2

nmax
i 1 64 48 64 48

control objectives (performance vs. resources), the mean calculation times and
maximum parallelism degrees.

Figure 3 shows the reconfiguration sequence of ParMod 1. For the sake of
space we omit the results of the other modules (which are qualitatively similar).
The reconfiguration sequence with the Non-Switching Cost Formulation follows
the behavior of the source module. Execution phases in which the arrival rate to
ParMod 1 decreases (i.e. from step 150 to 300) correspond to time intervals in
which the module releases computing resources (its parallelism degree is over-
sized). The opposite behavior can be noticed after control step 300: due to a
decreasing trend of the source service time, ParMod 1 starts to increase its
parallelism degree. After control step 370 it reaches nmax

1 (64 nodes), i.e. it can
not acquire any other resource and becomes the graph bottleneck.

As we consider the switching cost, we achieve smoother reconfiguration se-
quences. The switching cost acts as a disincentive to reconfigurations : i.e. during
execution phases in which the workload is lighter, it slows down the release of
computing resources, while in phases of heavy workload it slows down the allo-
cation of new resources. With longer horizons, controllers have a better degree of
foresight and can more precisely evaluate if the acquisition/release of resources is
effectively useful (e.g. avoiding to release/re-acquire them nearly in the future).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
a
ra

lle
lis

m
 D

e
g
re

e

Control Step

Parmod 1 - Reconfigurations over the execution.

Non-Switching Cost.
MAX.

Switching Cost Horizon 1.

(a) Horizon h = 1.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
a
ra

lle
lis

m
 D

e
g
re

e

Control Step

Parmod 1 - Reconfigurations over the execution.

Non-Switching Cost.
MAX.

Switching Cost Horizon 2.

(b) Horizon h = 2.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
a
ra

lle
lis

m
 D

e
g
re

e

Control Step

Parmod 1 - Reconfigurations over the execution.

Non-Switching Cost.
MAX.

Switching Cost Horizon 3.

(c) Horizon h = 3.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

P
a
ra

lle
lis

m
 D

e
g
re

e

Control Step

Parmod 1 - Reconfigurations over the execution.

Non-Switching Cost.
MAX.

Switching Cost Horizon 4.

(d) Horizon h = 4.

Fig. 3. Parallelism degree variations of ParMod 1

338 G. Mencagli, M. Vanneschi, and E. Vespa

This justifies a more rapid capability of longer-horizon strategies to respond to
a pronounced change in the disturbance trend. Moreover, in execution phases
characterized by a high level of uncertainty, the Switching Cost Formulation
avoids many small reconfigurations of little amplitude (as happens from step 0
to 300). Therefore, we can say that the switching cost acts also as a stabilizer in
presence of disturbances with a significant variance.

The horizon length has also important consequences on the efficiency of re-
source utilization, measured as the ratio between the ideal service time of a
ParMod and its inter-departure time. An efficiency smaller than 1 means that
the parallelism degree is over-sized. Figure 4 outlines the efficiency of ParMod 1.
The MAX configuration (Figure 4a) suffers from a severe degradation from step 0
to 370. After step 370 the efficiency rises to 1 because the ParMod becomes the
application bottleneck and it begins to fully exploit its maximum parallelism
degree. Extremely interesting is the behavior of the Non-Switching Cost For-
mulation. In this case the efficiency is near to 1 throughout the execution. The
reason is given by the structure of the local cost function (Definition 1): if a
module is adopting an over-sized parallelism degree, it can release some com-
puting resources without affecting its effective performance, but improving the
value of its local cost without making the other cost functions worse off.

By introducing the switching cost we have a break that causes a slower re-
lease of computing resources. This induces a slight degradation of the efficiency
from step 150 to 370. Using longer horizons (providing that the disturbance pre-
dictions are sufficiently accurate) we are able to mitigate this effect, and the
efficiency tends to 1 again as Figure 4f depicts. To compare different strategies
in terms of their reconfiguration stability, we introduce the following metric:

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

E
ff

ic
ie

n
c
y

Control Step

Parmod 1 Efficiency - Max Configuration.

Max Strategy.

(a) Max Strategy.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

E
ff

ic
ie

n
c
y

Control Step

Parmod 1 Efficiency - Non-Switching Cost.

Non-Switching Cost.

(b) Non-Switching Cost.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

E
ff

ic
ie

n
c
y

Control Step

Parmod 1 Efficiency - Switching Cost Horizon 1.

Switching Cost Horizon 1.

(c) Switching Cost h = 1.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

E
ff

ic
ie

n
c
y

Control Step

Parmod 1 Efficiency - Switching Cost Horizon 2.

Switching Cost Horizon 2.

(d) Switching Cost h = 2.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

E
ff

ic
ie

n
c
y

Control Step

Parmod 1 Efficiency - Switching Cost Horizon 3.

Switching Cost Horizon 3.

(e) Switching Cost h = 3.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

E
ff

ic
ie

n
c
y

Control Step

Parmod 1 Efficiency - Switching Cost Horizon 4.

Switching Cost Horizon 4.

(f) Switching Cost h = 4.

Fig. 4. Efficiency of ParMod 1 with the different strategies

Reconfiguration Stability of Adaptive Distributed Parallel Applications 339

Definition 3. We denote as Mean Stability Index (shortly MSI) the average
number of control steps for which a reconfiguration remains active.

Table 2 shows the total number of reconfigurations and the number of tasks
that leave the system. The global MSI is the average of the individual indices of
each module. With the MAX configuration we are able to maximize the number
of completed tasks at the expense of a big waste of computing resources during
the first part of the computation. With the Non-Switching Cost strategy the
difference in completed tasks (the ”no delay” column) is only of 8.25% but with
a significant benefit in terms of efficiency. The Switching Cost Formulation has a
large degree of configurability: with short horizons it heavily reduces the number
of reconfigurations and the stability index with a small loss in terms of completed
tasks. As we use longer horizons, the performance difference becomes negligible
(only 0.5% of tasks reduction) but with a great improvement (34%) in terms of
reconfigurations with a horizon of four steps. We conclude that the Switching
Cost strategy is extremely powerful: it makes it possible to significantly reduce
the number of reconfigurations with a negligible performance reduction.

Table 2. Number of reconfigurations, completed tasks and Mean Stability Index

Strategy Reconf. MSI
Compl. Tasks
(no delay)

Compl. Tasks
(with delay)

MAX - - 144,403 144,403
Non-Switch. Cost 870 2.77 132,482 123,643
Switch. Cost h = 1 389 6.28 129,560 124,898
Switch. Cost h = 2 524 4.65 131,176 124,911
Switch. Cost h = 3 559 4.34 131,641 125,030
Switch. Cost h = 4 574 4.25 131,808 125,823

When a performance overhead is introduced, performing fewer reconfigura-
tions could be useful also from the performance viewpoint. To prove this insight
we modify our simulator: every time a ParMod applies a reconfiguration, it sus-
pends to process incoming tasks for an amount of time modeled by a random vari-
able delay. In order to reproduce a Cloud scenario, in which the time-to-deploy
of a virtual machine can reach tens of seconds [1], we repeat the simulations
using a delay of 30 seconds. Now we have a different tendency in terms of com-
pleted tasks (the ”with delay” column): using the Switching Cost Formulation
we achieve better performance saving a consistent number of reconfigurations.

We conclude by pointing out the feasibility of our approach. Although the
subgradient method can be rather slow, we can limit the number of iterations
(we used 125 iterations per step). This can be done by considering two aspects: (i)
firstly each Control Part applies an integer rounding of the parallelism degree,
thus a high precision is not necessary actually; (ii) since between consecutive
control steps optimal solutions are likely close, we use as starting estimate the
optimal strategy profile matrix calculated at the previous step. In this way we can
drastically reduce the number of iterations maintaining an acceptable precision.

340 G. Mencagli, M. Vanneschi, and E. Vespa

5 Conclusion

This paper provides a description of our approach. The control logic of each
module consists of a performance model and a local cost function. Reconfigura-
tions are applied following the receding horizon principle and the MPC strategy.
Controllers cooperate to reach globally optimal decisions using the Distributed
Subgradient Method. In order to enforce the stability of control decisions, and
measuring the impact of stability w.r.t QoS goals, we evaluate different MPC
formulations. Simulation results show the effectiveness of our approach. In the
future we plan to apply our techniques in real-world distributed environments.

References

1. Costa, R., Brasileiro, F., Lemos, G.: Analyzing the impact of elasticity on the profit
of cloud computing providers. Future Generation Computer Systems (2013)

2. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Generation Computer
Systems (2012)

3. Vanneschi, M., Veraldi, L.: Dynamicity in distributed applications: issues, problems
and the assist approach. Parallel Comput. 33(12), 822–845 (2007)

4. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M.: Behavioural skeletons in
gcm: Autonomic management of grid components. In: Parallel, Distributed and
Network-Based Processing, PDP 2008, pp. 54–63 (February2008)

5. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and prac-
tice a survey. Automatica 25, 335–348 (1989)

6. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent opti-
mization. IEEE Transactions on Automatic Control 54(1), 48 (2009)

7. Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient parallel
data processing in the cloud. IEEE Trans. Parallel Distrib. Syst. 22(6) (2011)

8. Islam, S., Keung, J., Lee, K., Liu, A.: Empirical prediction models for adaptive
resource provisioning in the cloud. Future Generation Computer Systems 28(1),
155–162 (2012)

9. Mencagli, G.: A Control-Theoretic Methodology for Controlling Adaptive Struc-
tured Parallel Computations. Ph.D Thesis, University of Pisa, Italy (2012)

10. Chatfield, C., Yar, M.: Holt-winters forecasting: Some practical issues. Journal of
the Royal Statistical Society. Series D (The Statistician) 37(2), 129–140 (1988)

	Reconfiguration Stability of Adaptive Distributed Parallel Applications througha Cooperative Predictive Control Approach
	1 Introduction
	2 Related Work
	3 Methodology and Problem Statement
	3.1 Distributed Model-Based Predictive Control
	3.2 Addressing the Stability of Control Decisions

	4 Evaluation of the Approach
	5 Conclusion
	References

