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Abstract. Virtualization provides increased control and flexibility on
how resources are allocated to applications. However, common resource
provisioning mechanisms do not fully use these advantages; either they
provide limited support for applications demanding quality of service,
or the resource allocation complexity is high. To address these issues we
developed Themis, a market-based application management platform.
By limiting the coupling between the applications and resource manage-
ment, Themis can support diverse types of applications and performance
goals while ensuring maximized resource usage. In this paper we present
the performance of Themis when users execute batch applications with
different Service Level Objectives such as deadlines.

1 Introduction

Cloud computing is attractive to execute increasingly dynamic and complex ap-
plications on a High Performance Computing infrastructure. An organization
can efficiently share its physical resources between different application types
(e.g., MapReduce, MPI, or other legacy applications) by allowing each appli-
cation to run in its own virtual cluster (a set of virtual machines configured
with the software packages needed by the user) with limited interference from
the infrastructure’s administrator. Recent Platform-as-a-Service solutions, both
commercial [1, 8] and research [16] hide the complexity of deploying and configur-
ing these virtual clusters, providing users with support to develop and run their
applications with no concerns regarding infrastructure’s resource management
complexities.

However, a remaining challenge is the design of resource management policies
to share resources fairly between applications, in terms of their priority and
user-specified Service Level Objectives (SLOs). The common cloud resource-
provisioning model is ”on-demand” virtual machine (VM) provisioning. This
model relies on a First-Come-First-Served policy to schedule virtual machines.
This would not be a problem if the infrastructure capacity were enough for all
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user requests in the highest demand periods. Nevertheless, this is rarely the
case, as expanding the resource pool is expensive. Thus, it is preferable to solve
the contention periods when they appear, around deadlines (e.g., conference or
project deliverable), rather than acquiring more resources.

To address this challenge we proposed Themis [10], a platform for applica-
tion and resource management. To allocate VMs to applications, Themis uses a
proportional-share market on top of a virtualized infrastructure. VMs are bought
from the market at a (user or application) specified cost (i.e. bid) while the CPU
time and memory amount allocated to each of them varies in time according to
the total resource demand and the costs of other VMs. To keep the correct CPU
and memory amounts allocated to each VM, Themis migrates them between
physical nodes. We evaluated the resource allocation algorithms of Themis when
applications compete for CPU time [10] and implemented it in a real prototype.

In this paper we analyze the performance of the implemented proportional-
share market when applications buy amounts of different resources (i.e., CPU
and memory) to meet different SLOs. Simulations with a real workload trace
show that even with simple adaptation policies and using only current knowledge,
the system behaves well in terms of application performance and number of VM
operations (e.g., migrations, suspend/resume).

This paper is organized as follows. Section 2 presents the context of our work
and introduces Themis. Section 3 details the proposed resource management
policies. Section 4 describes the evaluation of the proposed resource management
policies and Section 5 concludes the paper.

2 Context

This Section describes the context of our work. We first introduce the application
model considered in this paper. Then we give an overview of Themis.

2.1 Application Model

Although Themis supports a wide variety of applications, in this paper we focus
on batch applications composed of a fixed number of tasks. Each task requires
one CPU core and a specified amount of memory. We don’t model the commu-
nication between tasks. To finish their execution, applications need to perform
a certain computation amount (e.g. 1000 iterations). There is a large number
of iterative applications that follow this model, for example scientific simulators
(e.g., Code Saturne [9]). These applications have a relatively stable iteration
execution time. The iteration execution time can be tuned by modifying the
resource allocation received by each task. For example, if each task receives one
full core, one iteration can take 1 second. If the resource allocation drops at half,
the same iteration can take 2 seconds.

2.2 Themis Overview

We previously developed Themis, a market-based platform for application and
resource management on clouds [10]. A variety of solutions were proposed to use
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Fig. 1. Themis eco-system

a market to schedule jobs on clusters [11, 21, 20, 7, 22, 6, 3, 19], to schedule
jobs on grids [4] or to run parallel applications [17]. Market-based systems force
users to assign throughful priorities to their applications as they have to pay for
their execution. If the system is too loaded, a user that doesn’t need to run her
application immediately will postpone its execution until a less loaded period,
as the execution cost is lower. Works that apply market mechanisms focus on
providing better user satisfaction than traditional resource management systems,
usually batch schedulers. However, these systems neither consider application
adaptation, nor user SLOs.

Figure 1 gives an overview of Themis. Users receive budgets of credits from a
central banking service and use them to run their applications on the cloud. In
Themis, applications are funded at a rate established by users, representing the
maximum execution cost supported by the user, i.e., budget.

Themis regulates the resource allocation between applications by using a
proportional-share market [13, 7, 14, 18]. Applications provision VMs from this
market by specifying bids for them. Users are charged for the cost of used re-
sources, i.e., the VM bids, at each scheduling period. In Themis resources (i.e.
CPU and memory) are allocated to VMs by using a proportional-share allo-
cation rule. With the proportional-share scheduling mechanisms, each VM i is
assigned a bid bi and receives a share of bi/Σb of the infrastructure resources.
For example, let’s take two VMs A and B that want to use the CPU resource of
a physical node. The VM A has a bid of 1 and the VM B has a bid of 2. In this
case, A receives 33% CPU time and B receives 66%. This mechanism is already
supported by current hypervisors and achieves good system utilization through
fine-grained resource allocation.

Themis runs each application in a private virtual cluster and allows the ap-
plication to adapt its resource demand by changing the number of VMs or the
resource allocation (i.e., CPU and memory) for each VM by changing the VM
bids. Applications individually adapt their resource demand to meet their SLOs
(e.g. deadlines) and to react to fluctuations in the resource prices.
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VMAllocationontheProportional-ShareMarket. Weapply the proportio-
nal-share market to allocate to each VM a fraction of CPU time and physical
memory on a physical node. Themis periodically applies the proportional-share
allocation rule system-wide. For simplicity, we consider that the storage capacity
is sufficient to accommodate all the VM images.

As the system load or the bids change in time, to ensure an allocation corre-
sponding to the submitted bids, VMs might need to be migrated between nodes.
To limit the number of migrations, each VM is allowed to have a certain allo-
cation error. To explain what the allocation error is, we introduce the following
terms. We define ari as the maximum resource allocation a VM receives for a
resource r from the capacity of its current node proportional to the bids of all
the VMs running on this node. We define arh as the resource allocation the VM
would receive for a resource r if the total infrastructure capacity is considered.
Then, if the VM is not migrated, its allocation error is the maximum error over
all resources:maxr(er), where er =

ari−arh

ari
. The goal of the migration algorithm

is to ensure that each VM has an allocation error below a given threshold (e.g.
10%). To select the VMs to be migrated at each scheduling interval, Themis uses
a tabu-search heuristic [12]. Tabu-search is a local-search method for finding the
optimal solutions of a problem. The heuristic runs for a specific number of iter-
ations. At each iteration the heuristic tries to move the VM with the maximum
allocation error that is not in the tabu list to the physical node that minimizes
it. The heuristic stops if it cannot improve the VM allocation error for the last
iterations (i.e. 100 iterations) or if reaching a better solution involves a number
of migrations higher than a threshold.

Application Resource Demand Adaptation Policy. On top of the propor-
tional-share market, applications can adapt in two ways: (i) by changing their
resource demand (i.e. number of virtual machines) to cope with modifications in
their workload (e.g. changes of computation algorithms, additional started mod-
ules, etc.); (ii) by changing their bids (which are re-considered at each scheduling
period) to cope with fluctuations in price. In this paper we focus on the last case,
for which we developed a simple policy. The application uses only information
regarding its current CPU and memory allocation and resource prices. Based on
this information, the application tries to keep the value for its remaining exe-
cution time, or the predicted time for the next iteration, close to a user-defined
reference metric. For this we use simple heuristics: the application decreases the
bids for its resources when its performance value drops below the given target
(i.e. the predicted execution time becomes smaller than the remaining time to
deadline) and it increases them otherwise.

In this paper we extend our previous work in several ways. First, we extend
the resource allocation algorithms to support for multiple resource allocation.
Second, we define a set of adaptation policies for different deadline-based SLOs.
These policies use the current application resource allocation and resource price
to adapt the application’s bids for VMs and obtain the desired resource allocation
for meeting the application’s SLO (they vertically scale the VMs). Finally, we
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show how Themis can support these different user SLOs and how its resource
allocation algorithms cope with both CPU and memory dynamic allocation.

3 SLO Policies on the Proportional-Share Market

In this section we define a set of SLOs users typically require for their applications
and a set of policies to adapt the application resource demand to these SLOs.

User and SLO Modeling. After studying the needs of HPC users from an
organization (e.g. at Electricité de France), we determined two classification cri-
terias: the required time of their application results and the required application
results.

Based on the required time of their application results, we found that there
are two classes of users:

- deadline users: they want the application results by a specific deadline.
For example, a user needs to send her manager a simulation result by 7pm.

- performance users: they want the results as soon as possible but they are
also ready to accept a bounded delay. This delay is defined by the application
deadline too. For example, a developer wants to test a newly developed algo-
rithm. She wants the results as fast as possible, but if the system is not capable
to provide them, she might be willing to wait until the morning.

Based on the required application results, we found two classes of preferences:
- strict results: to provide useful results the application needs to finish all

its computation before its deadline.
- partial results: some users might value partial application results at their

given deadline; for example, for a user who implemented a scientific method and
needs to run 1000 iterations of her simulation to test it, finishing 900 iterations
is also sufficient to show the good method behavior.

We combined these classes and obtained four user types: (i) deadline-strict; (ii)
deadline-partial; (iii) performance-strict; (iv) performance-partial. We think that
these categories can be representative for other organizations as well.

Additional Mechanisms. Besides adapting their bids, to minimize the exe-
cution cost applications can apply two policies: (i) delay their execution if the
price is too high; (ii) suspend their execution when the price becomes too high,
and resume it later when the price drops.

Algorithm 1 describes the conditions the application uses to start, resume or
suspend its execution. The suspend policy is run at each scheduling interval by
the application. The start/resume policies are run by Themis on behalf of the
application, if the application hasn’t started or is suspended.

The StartResume policy computes the initial payment for nvms VMs with
Talloc allocated resources by using the current market price. If this payment is
greater than the maximum afforded budget, bidmax, then the application post-
pones its execution/resume with a random amount of time bounded by twait.
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Algorithm 1 . Application Start/Resume/Suspend Policies

1: StartResume(bidmax, nvms, Talloc, pricecurrent, twait)
2: bid = compute initial payment(price current, Talloc, nvms)
3: start = False
4: if bid[CPU ] + bid[memory] < bidmax then
5: start = True
6: if start = False then
7: wait random time period between now and twait

8:
9: Suspend(value, T, bid, bidmax)
10: if ( value < T ) and

bid[CPU ] + bid[memory] < bidmax then
11: if suspend iterations < max iterations then
12: suspend iterations = suspend iterations + 1
13: suspend = False
14: else
15: suspend = True

The Suspend procedure describes the conditions the application uses to suspend
its execution. To minimize the execution cost, the application suspends itself
when its performance metric, value, is bigger than the reference T and the ap-
plication cannot afford to improve it. To avoid cases in which all applications
would suspend at the same time, before suspending its execution, the application
waits for a random number of scheduling periods, defined by max iterations.

Application Policies. We derive a set of application specific policies that
consider the types of users and goals previously presented. These policies run
periodically during the application execution. To ensure the best chance to finish
its execution before a deadline, an application starts as soon as the price drops
enough so the application can afford a minimum allocation for each VM (e.g.
25% of CPU time). Then, during its execution it applies the different policies
according to its SLO. These policies are the following:

- deadline-strict: Applications start when the price is low enough to ensure
a good allocation (i.e. 75% CPU time). During their execution they adapt their
bids to keep a low price in low utilization periods and to use as much resource
as their SLO allows in high utilization periods. If the application cannot pay for
the resources needed to meet its SLO it suspends its execution. In this way it
leaves resources for other applications and avoids wasting credits for nothing. The
application resumes if the price drops enough to allow it to finish its execution
within the deadline. If, during its execution, the application sees it cannot miss
the deadline it stops.

- deadline-partial: This policy is similar to the previous policy. Neverthe-
less, there are two differences: (i) the application suspends only when a minimum
allocation cannot be ensured (e.g. 30% cpu time or 30% physical allocated mem-
ory); (ii) as any work done at the deadline is useful, the application does not
stop its execution when it sees it cannot meet its deadline anymore.

- performance-strict: The policy is similar to the deadline-strict policy
and it follows the same algorithm. However, during its execution, the applica-
tion, instead of tracking a performance reference metric, tries to keep a maximum
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allocation given its budget. When the application cannot have a minimum allo-
cation at the current price, the application suspends.

- performance-partial: This policy is similar to the previous one but is used
by users accepting partial results. However, as for the deadline-partial policy, the
application does not terminate before the deadline is reached.

4 Evaluation

This section describes the evaluation of our proposed resource management poli-
cies. With our evaluation we seek an answer to the following two questions:

– How does the system perform in terms of user satisfaction when their appli-
cations behave strategically and adapt their resource demands?

– What is the performance overhead of the application adaptation, considering
that application adaptation leads to VM operations?

4.1 Implementation

Themis is implemented in CloudSim [5], a Java event-based cloud simulator.
CloudSim can be used to model applications, workload submission scenarios and
varios resource management policies. The simulated environment is composed
of a datacenter, its VM allocation policy that runs periodically, and multiple
applications, created dynamically during the simulation run. Applications are
created according to their submission times, taken from a workload trace, and are
destroyed when they finish their execution. During its lifetime, each application
runs the resource demand adaptation policy and interacts with the datacenter
to change the bids for its VMs. We extended our previous implementation [10]
by introducing dynamic memory allocation and overheads for VM boot and
suspend/resume operations; then we implemented the proposed policies.

4.2 Evaluation Metrics

The performance of a resource management system can be measured in different
ways. Traditional metrics include application wait time, resource utilization or
number of missed deadlines. Nevertheless, these metrics do not reflect accurately
the total user satisfaction, which represents an important metric in showing how
well resources are managed. To quantify the total user satisfaction, the aggregate
user satisfaction can be used. We model the user satisfaction as a function of
the budget assigned by the user to its application and the application execution
time, i.e., a utility function. As there are four different user types, we obtain
four utility functions.

Nevertheless, before discussing the signification of utility functions, we define
the following terms. texec is the application execution time. tdeadline is the time
from the submission to deadline. tideal is the ideal execution time, i.e., if the
application runs on a dedicated infrastructure. workdone represents the num-
ber of iterations the application managed to execute until it was stopped and



348 S. Costache et al.

Table 1. Utility functions

User Utility Function

Deadline-strict B, if texec ≤ tdeadline, 0 otherwise
Deadline-partial B if texec ≤ tdeadline, B · work done

work total
otherwise

Performance-strict max(0, B · (tdeadline−texec)
(tdeadline−tideal)

)

worktotal represents the total number of iterations. B is the application’s budget
per time scheduling period and per task. B is assigned by the user and reflects
the application’s importance.

Table 1 summarizes the used utility functions. The deadline-strict user values
the application execution at her budget rate if the application finishes before
deadline, otherwise she assigns a value of zero. The deadline-partial user is sat-
isfied with the amount of work done until the deadline. Thus the value of the
application execution is proportional with this amount. The performance-strict
user becomes dissatisfied proportional to her application execution slowdown.
We bound the value of her dissatisfaction at zero. The utility function for the
performance-partial user is a combination between the deadline-partial and the
performance-strict functions.

4.3 VM Operations Modeling

We implemented in CloudSim a model for several VM performance overheads:

- resource allocation. We assume pessimistically that the application’s per-
formance degrades proportionally with the allocated memory fraction, when this
fraction is less than the demanded memory.

- VM boot/resume. We simulate the VM boot and resume times sepa-
rately. The VM boot time is modeled by sending the application a message that
the VM was created with a delay of 30 seconds. The VM resume time is modeled
by assigning to the VM a processing capacity of 0 for 30 seconds.

- VM migration. We compute the migration time as the time to transfer
the VM memory state by using the available network bandwidth of the current
host. We assume that the bandwidth is shared fairly between all the requests.
The available network bandwidth is computed by considering all the suspend and
resume operations that occur on the considered host at the current scheduling
period. We model the migration performance overhead as 10% of CPU capacity
used by the virtual machines in which the application is running. We chose
this overhead as previous work found that migration brings 8% performance
degradation for HPC applications [15].

4.4 Workload Modeling

To evaluate the system performance we use a real workload trace as it reflects
the user behavior in a real system. Such traces are archived and made publicly
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available [2]. As a workload trace, we chose the HPC2N file as it has detailed in-
formation regarding memory requirements of the applications. This file contains
information regarding applications submitted to a Linux cluster from Sweden.
The cluster has 120 nodes with two 240 AMD Athlon MP2000+ processors each.
We assigned to each node 2 GB of memory. For applications with no memory
information, we assigned a random memory amount, between 10% and 90% of
the node’s memory capacity. We ran each experiment by considering the first
1000 jobs, which were submitted over a time period of 18 days. We scaled the
inter-arrival time with a factor between 0.1 and 1 and we obtained 10 traces
with different contention levels. A factor of 0.1 gave a highly contended system
while a factor of 1 gave a lightly loaded system.

We consider that all applications have a deadline and a re-chargeable budget.
As we couldn’t find any information regarding application deadlines, we assigned
synthetic deadlines to applications. The budgets assigned to applications are
inversely proportional to the application’s deadline factor.

4.5 Results

Figure 2(a) describes the total satisfaction that the system provides to users
when applications use the strict-deadline policy compared to well-known algo-
rithms like FCFS and EDF. We selected this policies as we wanted to use the
same comparison criteria as in previous work [10] and this policy performed good
in terms of user SLO satisfaction. We didn’t include the other three policies due
to lack of space. To see the behavior of our algorithms when both CPU and
memory need to be dynamically allocated, we measure the total user satisfac-
tion when the memory is enough for all the requests and when the memory is
constrained at 2GB RAM per physical node. We notice that when both CPU and
memory need to be allocated our market out-performs FCFS much more than
in the case of CPU only allocation. The proportional-share mechanism allows
applications to run with a less than required amount of resources.

Compared to EDF, we notice a performance degradation that increases with
the system load. As the inter-arrival time decreases, EDF is capable to take
better scheduling decisions: more applications with smaller deadlines, and in
the same time higher budgets, get to run on time. This provides better user
satisfaction than our system and FCFS. Then, our system is decentralized: each
application acts selfishly and independently to meet its own application SLO
while with EDF, the central scheduler sorts applications by their deadline and
executes the application with the smallest deadline first.

Figure2(b) describes the total satisfaction that the system provides to users
when applications use different policies. Themis allocates both CPU and mem-
ory. In this scenario, each application selects a policy randomly from the four
ones we provide. We notice a performance degradation compared to the case
when all applications use a strict-deadline policy. Applications using a policy
like strict-performance spend all their budget to try to receive a maximum allo-
cation, leading to other applications to miss their own deadlines. In the case of
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(b)

Fig. 2. Proportional share market performance in terms of total user satisfaction in
two cases: (a) when the strict-deadline policy is considered and (b) when all the policies
are considered
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Fig. 3. Performance of VM allocation algorithm in terms of (a) average number of
migrations per hour (b) average number of suspend/resume operations per hour and
(c) total number of applications suspended and resumed

the strict-deadline policy, applications are cost effective, leaving a larger share
of resources for other applications.

Figure 3 describes the number of VM operations performed by the VM allo-
cation algorithms and the total number of applications suspended/resumed dur-
ing the experiment. To perform this experiment we selected the strict-deadline
policy, but any other policy would have been appropriate too. We make two
observations: (i) the number of VM operations decreases when the system is
highly loaded; (ii) the number of VM operations when there are multiple al-
located resources is significantly higher than in the case of one resource. The
first observation is explained by the fact that when there is a high load, more
applications don’t start or resume their execution. The second observation is
intuitive: applications adapt their bids for multiple resources, leading to more
errors in VM allocations and thus, more migrations.
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To conclude our results, we need to stress that each application that runs on
Themis adapts individually to the market condition and its SLO (e.g. deadline).
This selfish application behavior leads to a performance degradation (or also
known as the Price of Anarchy), compared to when applications collaborate
or when they operate under strict, centralised control. To illustrate why this
uncoordinated behavior can be bad, let us take the case of suspend/resume
at price fluctuations. When multiple applications suspend, the other running
applications receive a higher resource allocation and drop their bids. This creates
a favorable condition for the suspended applications to resume again. However,
when the other applications resume, the price increases leading them to another
suspend. The performance degradation is the ”price” payed by the nature of our
system, that allows applications to behave selfishly.

5 Conclusions

In this paper we analyzed the performance of a proportional-share market mech-
anism implemented in Themis, an application and resource management plat-
form. In Themis, applications autonomously adapt their resource demand to
meet their SLOs, disregarding the other infrastructure occupants.

We extended Themis with multi-resource allocation algorithms and we sim-
ulated the application behavior by considering four SLO-driven resource de-
mand adaptation policies. Our simulation results show the efficiency of the
proportional-share market. Our policies behave reasonably in terms of appli-
cation performance and number of VM operations. When the system is lightly
loaded our policies lead to a better system performance than well-known schedul-
ing schemes. As each application adapts autonomously to its own SLO, it is
intuitive that the system’s performance degrades in high load periods.

As future work we plan to implement a resource regulation mechanism in
which applications can be more aware of the other infrastructure occupants.
For example, when there are not enough free resources to satisfy all arriving
applications we can use a double auction in which applications already running
on the infrastructure can sell their resources to more urgent applications. We
also plan to do more experiments with Themis on a real testbed.
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