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Abstract. MapReduce has emerged as a very popular programming model for 
large-scale data analytics. Despite its industry-wide acceptance, the open source 
Apache™ Hadoop™ framework for MapReduce remains difficult to optimize, 
particularly in large-scale production environments. The vast search space de-
fined by the hundreds of MapReduce configuration parameters and the complex 
interactions between them makes it time consuming to rely on manual tuning. 
Hence something more is needed. In this paper we evaluate approaches to the 
automatic tuning of Hadoop MapReduce including ones based on cost-based 
and machine learning models. We determine that they are inadequate and in-
stead propose a search-based approach called Gunther for Hadoop MapReduce 
optimization. Gunther uses a Genetic Algorithm which is specially designed to 
aggressively identify parameter settings that result in near-optimal job execu-
tion time.  We evaluate Gunther on two types of clusters with different resource 
characteristics. Our experiments demonstrate that Gunther can obtain near-
optimal performance within a small number of trials (<30), outperforming exist-
ing auto-tuning solutions and industry recommended configurations. We also 
describe a methodology for reducing the dimensionality of the auto-tuning 
problem, further improving search efficiency without sacrificing performance 
improvement. 
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1 Introduction 

MapReduce is a distributed programming model used to process large datasets across 
thousands of machines. It has gained much popularity due to its simple yet expressive 
interface, scalability and fine-grained fault tolerance [5, 9]. Apache™ Hadoop™ [9] 
is an open-source implementation of the MapReduce model and is widely used for 
data mining, log processing and machine learning [7, 16, 17, 18, 22].  Hadoop expos-
es 200+ parameters providing users the flexibility to customize it according to their 
need [26]. Some parameters have significant performance impact. The major chal-
lenge lies in quickly identifying the best parameter settings for a particular application 
on a given cluster [1, 4, 25]. 

The common practice is to tune up Hadoop using rule-of-thumb settings published 
by industry leaders, such as Cloudera and MapR [4, 9, 25], but these recommenda-
tions are too general and fail to capture the specific requirements of a given applica-
tion and resource constraints (i.e., amount of CPU, network and storage) of a given 
cluster. Additionally, the large parameter space, with its complex inter-dependencies, 
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and the sheer scale of many clusters increases the complexity of manual tuning, in 
which a person repeatedly runs jobs in an attempt to identify the best parameter set-
tings using trial-and-error. An efficient, effective and automated approach to parame-
ter optimization is the only viable solution. 

Cost-based auto-tuning is used in database systems [3]. Motivated by this, researchers 
proposed a cost-based approach for Hadoop MapReduce optimization [12, 13]. However, 
it is extremely difficult for simple cost-based models to accurately predict the perfor-
mance of a wide range of Hadoop applications over a wide range of clusters provisioned 
with different CPU, storage, memory and network technologies. Furthermore, cost-based 
models are strictly bound to a particular version of a framework and do not evolve with 
the framework. Machine learning models are another popular approach [3, 15, 24]. In 
contrast to cost-based models they rely on training sets to “learn” model coefficients and 
hence are more adaptive and flexible. Unfortunately, our studies show that it is difficult 
to construct an accurate machine learning model without a large training set involving 
hundreds or potentially thousands of trials. 

In this paper we propose Gunther, a search-based auto-tuner for Hadoop MapReduce 
that addresses these challenges. It employs a search algorithm that iteratively evaluates the 
variation in performance of a MapReduce application for different configuration settings 
and often attains a near-optimal solution. Our method extends to any version of the Ha-
doop framework and different types of clusters and thus is flexible and adaptive. 

We evaluate auto-tuning approaches using the two metrics – (i) efficiency or how fast 
the search can find a good configuration, and (ii) effectiveness which measures the per-
formance improvement achieved. We study the performance of Hadoop on a number of 
clusters and discover that it is a nonlinear and multimodal function of Hadoop’s configura-
tion settings. We evaluate search algorithms that are popular for finding global optima on 
multimodal surfaces and select Genetic Algorithm (GA) as our search strategy [23]. We 
then optimize GA for the Hadoop auto-tuning problem to strike the right balance between 
search efficiency and effectiveness. We evaluate the result on two clusters with different 
resource characteristics for several applications. Our experiments demonstrate that Gunth-
er obtains near-optimal configurations within 30 trials in both types of clusters, and yields 
better performance improvement than configurations recommended by a cost-based ap-
proach and industry rule-of-thumb settings.  Studies of workload characteristics show less 
than 10% of the jobs have runtimes of 5 hours or more [31]. Hence for majority of Ha-
doop users 30 trials is a small price. For larger jobs tuning time is ameliorated when many 
users keep running their applications for years.  

While Gunther is very effective at identifying near-optimal configurations, its efficien-
cy can be further improved by reducing the dimensionality of the search space by ignoring 
parameters that have little performance effect. We propose a methodology that uses job 
counters to classify applications into groups that are sensitive to the same or nearly the 
same subset of parameters. Once applications are classified we limit the search to the sub-
set and achieve near-optimal performance while reducing the search time. 

2 Background and Motivation 

2.1 Hadoop and MapReduce 

In MapReduce, users need only implement map and reduce functions and the rest is han-
dled by the framework. The Hadoop MapReduce framework takes care of task scheduling, 
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2.3 Issues with Manual Tuning 

Hadoop parameter optimization requires domain-specific knowledge of the applica-
tion, the Hadoop framework, and the cluster systems architecture. And manual tuning 
is extremely challenging given explicit and implicit dependencies between different 
configuration parameters and their effect on the different aspects of the system. Figure 
2(a) illustrates a scenario where joint exploration of two parameters, namely the num-
ber of map and reduce slots, results in a complicated non-linear surface representing 
the runtimes of a Sort job. This problem is exacerbated as more parameters are added 
to the exploration. Figure 2(b) presents the performance as a function of the number 
of map slots and reduce slots 2 and 3. Clearly, the optimal number of map slots  
depends on the number of reduce slots. Hence, the parameters need to be examined 
jointly to locate the global optimal configuration. The manual evaluation of all possi-
ble combinations of all performance-related configuration parameters may take 
months, rendering it impractical. These issues motivate auto-tuning approaches. 

3 Approaches to Auto-Tuning 

Performance models are used to automatically tune databases and other complex sys-
tems [3, 8, 15, 21, 24]. The common approaches involve cost-based or machine learn-
ing models. Cost-based models are constructed a priori and calibrated by evaluating 
the costs of various operations. Machine learning models are used similarly but de-
rived by learning from training sets. 

3.1 Cost-Based Models 

Cost-based models are built using domain-specific knowledge. In the context of Ma-
pReduce, researchers at Duke University recently proposed a Hadoop auto-tuner 
called Starfish [1, 11, 12, 13]. In Starfish, cost is measured in terms of CPU cycles of 
different execution phases, such as CPU cost of processing a key-value pair in the 
map function. To the best of our knowledge, Starfish is the first attempt to address the 
Hadoop auto-tuning problem. In this subsection, we use it as a case study and reveal 
its limitations due to model inaccuracy. 

Starfish’s model uses the average CPU and I/O cost of reads and writes to estimate 
average map execution time [11]. These costs are measured by profiling a job with a 
single configuration and the model predicts the same map time as the number of re-
duce tasks is swept from 64 to 256, as shown in Figure 3, even though the actual time 
changes considerably. 

Additionally, we present task execution information for three configurations in Ta-
ble 1. The map times are highly variable, with standard deviations of up to ~90%. 
This complicates task scheduling and could skew the job execution time. The model 
does not consider these effects, thus introducing errors. The above problems  
occur because the contention for hardware resources between map and reduce tasks  
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changes with configurations and this contention largely affects task time. While a 
more complex cost-based model (e.g., one that sensitizes costs to these effects) may 
address these issues, it is challenging to build such a model. 

Fig. 3. Map time for sort with 8 map, 4 
reduce slots, and 64 or 256 reduce tasks 

Table 1. Map task times for three configurations 

 

The other limitation of cost-based modeling is its inability to adapt as frameworks 
evolve. Hadoop MapReduce is a relatively new framework and is evolving at a very 
fast pace. For instance, the next generation framework called YARN [27] has a signif-
icantly different architecture. Hence existing cost-based models may not work and 
need to be redesigned. The same issue arises as clusters evolve with new processors, 
memory, and storage technologies. 

3.2 Machine Learning Models 

Machine Learning (ML) models have been proposed in many fields to estimate the 
performance of complex systems [8, 15, 24]. However, they are impractical for Ma-
pReduce auto-tuning as they require large training sets in order to build an accurate 
model. Our exploration of this method using models like artificial neural network, 
support vector regression, multiple linear regression and M5 decision tree revealed 
that more than 200 evaluations are needed to obtain an accuracy of ~90% with five 
configuration parameters. Since most MapReduce applications involve batch 
processing with long execution times (tens of minutes to hours), collection of training 
sets is slow. Although we can use logs as training sets, they typically capture a small 
number of configurations. This leads to data under-fitting.  

4 Gunther: A Search-Based Auto-Tuner 

To overcome the inadequacies of cost-based and ML models, we propose a search-based 
auto-tuner, called Gunther, to optimize configuration settings in Hadoop MapReduce. 
We perceive auto-tuning as a black-box optimization problem and use search algorithms 
to solve it. The objective of the search is to evaluate candidate solutions with the stimulus 
of different parameters to minimize an objective function. The minimization problem is 
expressed below: 
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where ݂: ܺ ՜ ܻ is the response function, ௜ܺ denotes the ݅௧௛ parameter, D is the num-
ber of parameter dimensions, ݁݃݊ܽݎሺ݅ሻ is range of the ݅௧௛ parameter ௜ܺ, and ܺכ is  
the optimal configuration for which ݂ሺܺሻ attains minimum value. In our case, the 
Hadoop MapReduce configuration parameters define the parameter space and each 
functional evaluation involves measuring the execution time of a Hadoop job. This 
approach offers three ben-
efits. First, we overcome 
modeling inaccuracy since 
we use job execution 
times during search. 
Second, our approach can 
be used to optimize future 
MapReduce frameworks. 
Hence it is more adaptive. 
Third, our approach does 
not require the large train-
ing set, hence, is more 
practical.  

4.1 Gunther Overview 

Gunther’s architecture is illustrated in Figure 4. The search algorithm is implemented 
in the search engine (SE). SE generates a new configuration and asks the driver pro-
gram to run the application through the JobTracker with the new configuration. After 
the run is complete, SE writes log files to the repository and analyzes them to obtain 
execution times. The search terminates after the algorithm meets the convergence 
criteria or reaches a specified number of trials, and we have designed management 
console to facilitate progress monitoring.  

4.2 Evaluation of Search Algorithm 

The effectiveness and efficiency of the search algorithm is critical. To select the right 
search algorithm, we evaluated both local and global search algorithms on Hadoop 
performance surfaces using three parameters: map slots, reduce slots and number of 
reduce tasks. For these, we exhaustively evaluated job execution time. Figure 2 illu-
strates the response surface of Hadoop sort for two dimensions. We do not show data 
for other applications but they exhibit similar behavior. From experiments, we ob-
serve that Hadoop surfaces are non-linear and multimodal, with many local minima.  
Local search techniques widely used for unimodal surfaces, such as Nelder Mead and 
Powell Search, are inadequate for multimodal surfaces because they easily get stuck 
at local minima. We found that Nelder Mead and Powell Search easily settle in local 
minima on our response surfaces, which are 15% worse than the optimal solution in 
most cases. This indicates that global search techniques may be more effective. 

Global search algorithms are classified into gradient-based search, stochastic 
search and evolutionary search. Due to the lack of gradient information, we rule out 

Fig. 4. Gunther Architecture 
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the gradient based techniques. We identify four stochastic and evolutionary search 
methods for evaluation: simulated annealing (SA) [20], genetic algorithm (GA) [23], 
particle swarm optimization (PSO) [19] and recursive random search (RRS) [28]. We 
used Rastrigin function [28] to perform evaluation. This function generates a multi-
modal surface and is challenging due to its large search space and number of local 
minima. We searched the surface using SA, RRS, GA, and PSO on 10-dimensional 
surfaces. We observed that SA exhibits the worst performance and GA is the best, 
followed by PSO. Due to page limits, we do not present detailed results here. 

4.3 Applying Genetic Algorithms to the Auto-Tuning of MapReduce 

The studies in the previous section motivated us to apply GA to our problem. Algo-
rithm 1 describes a typical GA cycle.  The algorithm encodes the potential solutions 
to a problem as candidates. The solutions are evaluated with a fitness (or objective) 
function that is tailored to the problem. Candidates with higher fitness scores are 
deemed better solutions.   

Algorithm 1. Traditional GA 

Input: P0 : A randomly selected initial population of size M 

Output: ܥ஻௘௦௧ 
1. ܲ ൌ ଴ܲ  
2. For all ܥ௜ in P do evaluate ࢙࢙ࢋ࢔࢚࢏ࢌሺܥ௜ሻ 3. ܥ஻௘௦௧ ൌ  ௜ሻሻܥሺ࢙࢙ࢋ࢔࢚࢏ࢌሺ݉ݑ݉݅ݔܽ݉ 
4. For N generations (or while search converges) do 

5. For ݅ ൌ  1,2, … , ெଶ  do 

 ܲ parents from ࢚ࢉࢋ࢒ࢋࡿ .6
7. With probability ݌௖ crossover ݐ݊݁ݎܽ݌௜ and ݐ݊݁ݎܽ݌௜ାଵ to create candidate ݄݈ܿ݅݀௜ and ݄݈ܿ݅݀௜ାଵ 
8. With probability ݌௠ mutate ݄݈ܿ݅݀௜ and ݄݈ܿ݅݀௜ାଵ 
9. Evaluate ࢙࢙ࢋ࢔࢚࢏ࢌሺ݄݈ܿ݅݀௜ሻ and ࢙࢙ࢋ࢔࢚࢏ࢌሺ݄݈ܿ݅݀௜ାଵሻ 
10. Update ܲ 
11. Recalculate ܥ஻௘௦௧ 

GA begins with an initial population of randomly generated candidates. It evolves 
the population during each generation by using the genetic operators select, crossover, 
mutate, and update. A popular selection operator is the Roulette Wheel mechanism. In 
this method, if fitnessሺC୧ሻis the fitness of candidate C୧ in the population, its probabili-

ty of being selected is P୧ ൌ f୧୲୬ୣୱୱሺC౟ሻ∑ f୧୲୬ୣୱୱሺC౟ሻM౟సభ  , where M is population size. This allows 

candidates with good fitness values to have a higher probability of being selected as 
parents. A crossover function is called with a given probability. It is used to cut the 
sequence of elements from two chosen parents/candidates and swap them to produce 
two children/candidates. The mutation function aims to avoid local optima by  
randomly mutating an element with a given probability. Both crossover and mutation 
probabilities are input parameters of GA. At the end of each generation, a new  
population replaces the current population. 
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In our application, each element g୧ represents a Hadoop parameter. A candidate C୧ consisting of all parameters, denoted as C୧ ൌ gଵgଶ. . gD, represents a Hadoop job 
configuration, where D is the number of parameters. The fitness of a candidate is 

calculated using fitnessሺC୧ሻ ൌ ଵJ୭ୠ ୡ୭୫୮୪ୣ୲୧୭୬ ୲୧୫ୣ౟  . We choose a population of size 

2D.  GA is a generic search strategy and its operators need to be implemented in an 
application-specific manner. We define the operators for our problem as follows. 

Select Operator 

Input: P 

Output: parent୧ and parent୧ାଵ 
1. List L = Sort P in decreasing order of fitnessሺC୧ሻ 
2. AvgP = 

ଵM ∑ fitnessሺC୨ሻM୨ୀଵ  

3. if fitnessሺL୩ሻ ൐ AvgP then parent୧  ൌ  L୩  

4. if fitnessሺL୩ାଵሻ ൐ AvgP then parent୧ାଵ  ൌ  L୩ାଵ 

Select Operator: From experimentation we observe that it is unlikely that two low 
fitness candidates will produce an offspring with high fitness. This is because, in real 
clusters, bad performance is often caused by the improper configuration of a few key 
parameters and these bad settings continue to be inherited. For instance, for an appli-
cation that is both CPU and shuffle-intensive in a cluster with excessive I/O band-
width and limited CPU resources, enabling compression of map outputs would stress 
the CPU and degrade application performance, regardless of others. The selection 
method should eliminate this configuration quickly. We also observe that good candi-
dates are more likely to produce good offspring/candidates.  

The popular Roulette-Wheel selection mechanism has a higher probability of se-
lecting good candidates to be parents than bad ones, but this approach still results in 
too many job evaluations. Therefore, our selection procedure is more aggressive and 
deterministically selects good candidates to be parents. The idea is to quickly elimi-
nate poor candidates from the population. To do this, we calculate the mean fitness of 
the population for each generation and only select parents with fitness scores that 
exceed the mean. 

Update Operator 

Input: child୧, child୧ାଵ, L 

Output: L 

1. k ൌ  sizeofሺLሻ 

2. If fitnessሺchild୧ሻ ൐ L୩ then L୩ ൌ child୧ 
3. If fitnessሺchild୧ାଵሻ ൐ L୩ିଵ then L୩ିଵ ൌ child୧ାଵ  

 

Update Operator: In GA, the update operator directly replaces parents with their 
offspring, even if their offspring have lower fitness values. Thus the algorithm does 
not always retain better solutions, which slows convergence. We modify the update 
procedure so that child୧ and child୧ାଵ only replace poorer solutions, i.e., parents whose 
fitness values are lower than the created candidates in the population. If the offspring 
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are less fit, they are discarded and the parents survive. This directs the search more 
efficiently toward better solutions. 

Mutate: The mutated value of a parameter is randomly chosen from its range. Since 
our select aggressively prunes poor regions, we can use an atypically high mutation 
rate (e.g., p୫=0.1) without impacting convergence. The value of p୫ is empirically 
determined. 

Crossover: We use a one-point crossover. A cut point is randomly chosen in each 
parent’s candidate/job configuration and all parameters beyond that point are swapped 
between the two parents to produce two children. We empirically set crossover prob-
ability pୡ to be 0.7.  

Non-redundancy: Classical GA does not remember prior search and is likely to eva-
luate some regions more than once. We enhanced our GA to remember search to 
avoid duplication. 

5 Performance Evaluation 

5.1 Experimental Setup 

We deployed Gunther with Hadoop 0.20.3 on Cluster1 and Cluster2. Each cluster has 
one master node and 16 slaves. Each node is configured with 16GB memory and one 
Quad Core Intel Xeon processor E3 with HT enabled. The nodes are interconnected 
through a 1GbE switch. Cluster1 was designed to be storage bottlenecked and used 3 
1TB HDDs for HDFS and intermediate data and a separate 1TB HDD for OS, and 
Cluster2 was designed to be network bottlenecked, with 3 240GB Intel SSD (520 
Series) [14] for HDFS and intermediate data. We selected Sort, Nutch, Kmeans and 
Terasort from the HiBench suite as our applications. We use rule-of-thumb (RoT) 
configurations as our baseline.  We used Starfish 3.0 in the comparison. 

Table 2. Hadoop parameters considered 

 

Table 2 shows the ranges and recommended values of the six parameters we tuned. 
Our motivation for exploring these parameters is two-fold. First, these parameters 
affect the utilization of different resources, such as CPU, memory, storage, and  
network. By tuning them, we believe we can achieve better balance among these  

     Parameter Name    Range 
Rule-of- 

Thumb 
Description 

mapred.tasktracker.map.tasks.maximum 2:12::1 8 Maximum number of map tasks for a node 

mapred.tasktracker.reduce.tasks.maximum 2:12::1 4 Maximum number of reduce slots for a node 

  mapred.reduce.tasks 4N:16N:4N 4N # reduce tasks in a job. N is the number of nodes 

io.sort.mb 100:500::50 100 Size (MB) of buffer to use while sorting map output 

mapred.output.compress True/False False Compress the output of the job 

mapred.compress.map.output True/False False Compress the output of each map task 
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resources and improve performance. Second, these parameters impact both task- and 
cluster-level performance. io.sort.mb affects task-level performance and the rest of 
parameters change the distributed system’s data flow and have cluster-level perfor-
mance effects. The second column in the table describes the parameter bounds and 
step sizes explored (e.g., map slots vary between 2 and 12 in steps of 1).  

5.2 Search Effectiveness and Efficiency 

In Figure 5a, we compare the best execution time found by Gunther and Starfish with 
the RoT and best performance for Cluster1. We randomly sampled the space by run-
ning a large number of experiments offline for each application. The best performance 
found is considered best. The figure demonstrates that Gunther achieves near-optimal 
performance and is more effective than Starfish. Compared to RoT, Gunther yields a 
25% performance improvement on average across all workloads. The maximum im-
provement of 30% is achieved for Terasort. Correspondingly, Starfish achieves an 
11% improvement on average, with a maximum improvement of 29%. Figure 5b 
presents results from Cluster2. Starfish shows no improvement compared to RoT. 
This is because Starfish assumes sufficient network bandwidth is available, which 
leads to inaccurate estimation of shuffle time in Cluster2. However, Gunther is able to 
capture the network bottleneck. As a result, Gunther improves performance by up to 
33%, which is close to best. Note that in this cluster RoT is indeed the best configura-
tion for Terasort and there is no opportunity to improve performance. Table 3 enume-
rates the number of trials it took Gunther to converge. It was able to converge within 
30 trials in all cases.   

 

               Fig. 5. a) Comparison on Cluster1   b) Comparison on Cluster2    

Table 3. Number of trials to reach the best performance 

Sort Terasort Nut Kmeans
Cluster1 20 15 14 12
Cluster2 24 10 21 10

5.3 Comparison with Other Algorithms 

Figure 6 shows comparison of Gunther’s modified GA with PSO and RRS on Clus-
ter1 and Cluster2 for all four applications. The figure shows the best execution times 
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achieved for budgets of 20, 30, and 40 trials, normalized to RoT (lower is better). 
Overall, Gunther achieves higher performance than PSO and RRS and also converges 
in ~ 20 trials, whereas PSO and RRS often take more than 40 trials. Our results dem-
onstrate that Gunther is more effective and efficient than PSO and RRS.  

 

Fig. 6. Search algorithms on clusters for (a) Sort, (b) Nutch, (c) Kmeans, and (d) Terasort 
benchmarks 

6 Using Classification to Improve Search Efficiency 

The efficiency of search can be further improved with a minor impact on effective-
ness by selectively reducing the dimensionality of the search space. This is possible 
because some parameters affect performance more than others and the impact de-
pends on what resources are bottlenecked. By profiling an application once with RoT 
settings, we can rule out parameters that affect resources that are not bottlenecked.  

 

Fig. 7. Classification of applications based on m1 and m2  
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In this section, we present an application classification methodology based on two 
metrics that are calculated from five Hadoop job counters. The metric m1 is defined 
as the ratio between the count of spilled records and the sum of counts of map input 
records and reduce input records. Spill records are the number of key-value pairs 
written from memory to storage during the shuffling phase. This metric represents 
shuffle intensity. We can rule out io.sort.mb, mapred.compress.map.output, ma-
pred.reduce.tasks when m1 values are low because they primarily impact shuffle  
performance. The metric m2 is defined as the ratio of the count of hdfs_bytes_written 
to hdfs_bytes_read. These count the amount of data read and written by map and  
reduce tasks, respectively. Low m2 indicates the compression controlled via ma-
pred.output.compress will have small performance effects and can be ruled out.  

We classify applications into four classes (C1, C2, C3, and C4) and results are shown in 
Figure 7. The threshold of 0.5 is derived empirically and in the future we intend to auto-
matically determine its value using a clustering algorithm. Sort, Terasort and Nutch are 
placed into Class C1 with high m1 and m2, indicating that we cannot rule out any parame-
ters. On the other hand, Kmeans is placed into Class C3 with low m1 and m2 because it is 
compute-intensive, with low I/O utilization.  This means we can rule out 4 parameters 
prior to search.  Experimental results in Table 4 are supportive. Limiting the Kmeans 
(Class C3) search to 2 dimensions had a negligible effect on search effectiveness but cut 
the search time in half.  But, when we ruled out the same parameters for Class C1 applica-
tions, both the effectiveness and efficiency were impacted. For example, Sort on Cluster1 
improved only 3.9% when 4 parameters were rule out compared to 29.5% when no para-
meters were ruled out. The improvement on Cluster2 was also impacted. We observe 
similar patterns for Nutch and Terasort. 

Interestingly, applications in C1 are more strongly affected by dimensionality re-
duction on Cluster1 than Cluster2 even though the metrics m1 and m2 are the same.  
This is because our metrics do not reflect differences in dynamic cluster runtime in-
formation (e.g., resource utilization). We believe that developing new metrics consi-
dering dynamic information will improve the selectivity of classification. Moreover, 
our classification only rules out parameters and cannot rule them in. A more powerful 
method would do both. Finally, the current metrics were selected based on domain 
expertise.  In future, we plan to use machine learning-based classifiers (e.g. principal 
component analysis, etc.) to automate the selection process. 

Table 4. Results of dimensionality reduction 

Cluster Workload 
2 Dimensions 6 Dimensions 

Trials Improvement (%) Trials Improvement (%) 

Cluster1 

Sort 14 3.90 20 29.48 

Kmeans 7 24.77 12 25 

TeraSort 14 0 15 30 

Nutch 4 6.77 14 15 

Cluster2 

Sort 10 7 24 11 

Kmeans 5 11.5 12 12 

TeraSort 5 0 10 0 

Nutch 14 25 21 33 
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7 Other Related Work 

7.1 Hadoop Optimization 

Hadoop tuning has been studied [1, 4, 11, 12, 13, 22]. The conventional practice is to 
rely on rules-of-thumb to find good configurations for applications [4]. In contrast to 
rule-based approaches, Starfish [11, 12, 13] leverages a cost-based model to tune 
Hadoop applications. Some studies look beyond Hadoop tuning to library extensions 
and runtime improvements. Manimal [16] performs static analysis of Hadoop  
programs and deploys optimizations to avoid reads of unneeded data. Panacea [22] 
proposes a compiler that performs transformations for Hadoop applications to reduce 
overheads of iterative applications. Twister [7] proposes a new in-memory library to 
improve the performance of iterative MapReduce applications.  

7.2 Auto-Tuning Other Systems 

Cost-based, ML and search-based models are used to auto-tune complex systems [3, 6, 8, 
15, 21, 24, 28, 29].  Most of the work in database systems uses cost-based models to find 
the optimal configuration. For instance, IBM DB2 [21] provides an advisor for setting 
default values for a large number of parameters, which relies on built-in cost models. Si-
milarly, machine learning models are used for auto-tuning many systems. Ganapathi et al. 
[8] proposed KCCA to derive the relationship between configurations and performance. 
The search algorithms evaluated in this paper have been used to identify near-optimal 
configurations for other complex systems. For example, Ye et al. [28] used RRS to tackle 
network configuration. In addition, Zheng et al. [29] constructed a parameter dependency 
graph and applied a simplex search method to find good configurations for web services. 
Duan et al. [6] tuned database parameters by developing adaptive sampling based on a 
Gaussian process. Zhu et al. [30] used an online learning algorithm to adjust the  
parameters of applications and optimize performance.  

8 Conclusion and Future Work 

In this paper, we assessed model-based approaches for Hadoop MapReduce optimiza-
tion and identified major limitations. Our findings motivated us to propose and  
implement Gunther, a search-based auto-tuner. We studied several global search algo-
rithms and selected GA as our search strategy. We modified GA to strike the right 
balance between search efficiency and effectiveness and evaluated the resulting 
search algorithm on two clusters. Experimental results demonstrate that Gunther 
achieves near-optimal performance in a small number of trials (<30) and yields better 
performance improvement than rule-of-thumb settings and a cost-based auto-tuner. 
We also proposed an application classification method that further improves the 
search efficiency of Gunther by ruling out less important parameters. Our preliminary 
results are very encouraging, demonstrating that the number of trials can be reduced 
by half without sacrificing performance. In the future, we intend to extend our classi-
fication method to include both static application characteristics and cluster runtime 
information.   
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