
Programming with BSP Homomorphisms

Joeffrey Legaux2, Zhenjiang Hu1, Frédéric Loulergue2,
Kiminori Matsuzaki3, and Julien Tesson4

1 National Institute of Informatics, Tokyo, Japan
Hu@nii.ac.jp

2 LIFO, Université d’Orléans, France
{Joeffrey.Legaux,Frederic.Loulergue}@univ-orleans.fr

3 Kochi University of Technology, Kochi, Japan
matsuzaki.kiminori@kochi-tech.ac.jp

4 Université Paris Est, LACL, UPEC, France
Julien.Tesson@lacl.fr

Abstract. Algorithmic skeletons in conjunction with list homomorph-
isms play an important role in formal development of parallel algorithms.
We have designed a notion of homomorphism dedicated to bulk syn-
chronous parallelism. In this paper we derive two application using this
theory: sparse matrix vector multiplication and the all nearest smaller
values problem. We implement a support for BSP homomorphism in the
Orléans Skeleton Library and experiment it with these two applications.

Keywords: Algorithmic skeletons, Constructive algorithms, Bulk syn-
chronous parallelism, All nearest smaller values, Sparse linear algebra.

1 Introduction

Parallel programming needs to be as widespread as parallel machines that now
range from smartphones to supercomputers. Structured models of parallelism
such as algorithmic skeletons [2] or bulk synchronous parallelism [21], ease the
writing and reasoning on parallel programs. Algorithmic skeletons are, or can
be seen as, higher-order functions that capture usual parallel patterns but that
have a semantics identical or close to usual higher-order functions on collections,
in particular lists. The most famous ones are the map and reduce skeletons. Bulk
synchronous parallelism offers an abstract and simple model of parallelism yet
allowing to take realistically into account the communication costs of parallel
algorithms. It has been used in many application domains.

The theory of lists [1] is a powerful tool to systematically develop correct
functional programs. From a specification, or naive implementation of a program,
it allows to derive step-by-step, a more efficient version. Algorithmic skeletons
in conjunction with list homomorphisms (or homomorphisms for short) play an
important role in formal development of parallel algorithms [3, 7, 14].

We have defined a notion of homomorphism dedicated to bulk synchronous
parallelism, and explored its theory [5,17] in the context of the Coq proof assis-
tant [18]. Our SDPP [19] framework allows to derive step-by-step correct par-
allel programs in Coq and then to extract functional parallel programs for the

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 446–457, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Programming with BSP Homomorphisms 447

OCaml [10] language and the BSML library [11] that can be compiled and run
in parallel. If our long term goal is to provide sufficient automation to use the
Coq proof assistant to ease the development of efficient parallel programs, our
framework still lacks automation and the purely functional programs we can ex-
tract cannot compete yet with high-level C++ hand-written code. Therefore on a
practical side it would be interesting to have a support for BSP homomorphisms
in an efficient library of algorithmic skeletons such as OSL : the C++ Orléans
Skeleton Library [8]. The work presented in this paper provides such a support
and we illustrate its use through the derivation of non-trivial applications.

The main technical contributions of this paper can be summarised as follows.

– We derive two applications in a systematic way using the theory of BSP
homomorphisms: a sparse-matrix vector multiplication and the all nearest
smaller values algorithm;

– We implement support for the execution of BSP homomorphisms in the
Orléans Skeleton Library;

– We experiment with these applications implemented with OSL on parallel
machines.

The organisation of this paper is as follows. We start by reviewing the basic
concepts of homomorphism and recall the definition of the BSP homomorphisms
and their theory (section 2). We then show how to derive BSP homomorphisms
from specifications in section 3. Section 4 is devoted to the Orléans Skeleton
Library, in particular support for BSP homomorphisms with the bh skeleton.
We experiment with the derived applications in section 5. We discuss the related
work in Section 6 and conclude the paper in section 7.

2 BSP Homomorphisms

Our notations are basically based on the programming language Haskell [15].
Functional application is denoted by a space and an argument may be written
without brackets. Thus f a means f(a). Functions are curried, i.e. functions take
one argument and return a function or a value, and the function application
associates to the left. Thus f a b means (f a) b. Infix binary operators will
often be denoted by ⊕, ⊗, �. Functional application binds stronger than any
other operators, so f a ⊕ b means (f a) ⊕ b, but not f(a ⊕ b). Lists are finite
sequences of values of the same type. A list is either the empty list, a singleton
or a concatenation of two lists. We denote [] for the empty list, [a] for a singleton
list with element a, and x ++ y for a concatenation of two lists x and y. The
concatenation operator is associative. Lists are destructed by pattern matching.

Definition 1 (Homomorphism). Function h is said to be a homomorphism,
if it is defined recursively in the form of

h [] = id� h [a] = f a h (x++ y) = h(x)� h(y)

where id� denotes the identity unit of �. Since h is uniquely determined by f
and �, we will write h = ([�, f]).

448 J. Legaux et al.

Definition 2 (BSP Homomorphism (BH)). Given a function k, and two
homomorphisms g1 = ([⊕, f1]), g2 = ([⊗, f2])

1, h is said to be a BH, if it is
defined in the following way.

⎧
⎨

⎩

h [] l r = []
h [a] l r = [k a l r]
h (x++ y) l r = h x l (g1 y ⊕ r) ++ h y (l ⊗ g2 x) r

The above h defined with functions k, g1, g2, and associative operators ⊕ and
⊗ is denoted as h = BH (k, ([⊕, f1]), ([⊗, f2])).

Function h is a higher-order homomorphism, which computes on a list and re-
turns a new list of the same length. In addition to the input list, h has two
additional parameters, l and r, which append necessary information to perform
computation on the list. The information of l and r, as defined in the third equa-
tion, is propagated from left and right with functions g2,⊗ and g1,⊕ respectively.
By definition, a BH can be computed in parallel since it is a composition of local
computations and of homomorphisms which can be easily parallelised [3].

Rather than checking directly that a function is a BH we use an indirect
way using the mapAround function. mapAround , compared to map, captures
more interesting independent computations on each element of lists. Intuitively,
mapAround maps a function to each element (of a list) but is allowed to use
information of the sublists on the left and right of the element, e.g.,

mapAround f [x1, x2, . . . , xn]
= [f ([], x1, [x2, . . . , xn]), f ([x1], x2, [x3, . . . , xn]), . . . , f ([x1, . . . , xn−1], xn, [])].

Theorem 1 (Parallelization mapAround with BH). For a function h =
mapAround f , if we can decompose f as f (ls , x, rs) = k (g1 ls , x, g2 rs) where
gi is a composition of a function pi with a homomorphism, gi x = pi(([⊕i, ki]) x),
then

h xs = BH (k′, ([⊕1, k1]), ([⊕2, k2])) xs ι⊕1 ι⊕2

where k′ (l, x, r) = k(p1 l, x, p2 r) holds, where ι⊕1 is the (left) unit of ⊕1 and
ι⊕2 is the (right) unit of ⊕2.

Proof. This can be proved by induction on the input list of h. The detailed proof
in Coq is discussed in [5, 17].

Theorem 1 is general and powerful in the sense that it can parallelize not only
mapAround but also other collective functions, such as scan, to BH [5, 17].

3 Program Derivation Using BSP Homomorphisms

In this section, we demonstrate with two nontrivial examples how to derive
applications using the BH theory. One is the all nearest smaller values problem
and the other is the sparse matrix-vector multiplication.

1 See [17] for a discussion about weaker conditions for the definition of BSP homo-
morphism.

Programming with BSP Homomorphisms 449

3.1 All Nearest Smaller Values

The All Nearest Smaller Values (ANSV) problem is as follows:

Let as = [a1, a2, . . . , an] be an array of elements from a totally ordered
domain. For each aj , find the nearest element to the left of aj and the
nearest element to the right of aj that are less than aj . If there is no
such an element, we put −∞ instead.

An example of the input and the output for the function ansv that solves this
problem is as follows.

ansv [3, 1, 4, 1, 5, 9, 2, 6, 5]
= [(−∞, 1), (−∞,−∞), (1, 1), (−∞,−∞), (1, 2), (5, 2), (1,−∞), (2, 5), (2,−∞)]

A direct specification of the ANSV algorithm is as follows:

ansv as = mapAround nsv as
where nsv (ls , x, rs) = (nsvL x ls , nsvR x rs)

nsvL x [] = −∞
nsvL x (ls ++ [l]) = if l < x then l else nsvL x ls
nsvR x [] = −∞
nsvR x ([r] ++ rs) = if r < x then r else nsvR x rs

where we simply use mapAround to compute on each element and its surround
(left and right arrays) with the function nsv . In the definition of nsv , nsvL x ls
is to compute the rightmost element in ls that is less than x, while nsvR x rs
computes the leftmost element in rs that is less than x.

However, to use the Theorem 1, the computations on the left and right arrays
need to be expressed as homomorphisms independent from the center element
(this precondition derives from the function shape requirement in the theorem).
We can give such a definition where we first select the candidates from the left
and right arrays and then choose a correct one from them. Since the computation
for the left and right is symmetrical, we here discuss the right one.

We are looking for the nearest smaller values, thus we can discard values
that are equal or superior to the previous elements and only retain a sample of
decreasing candidates as shown in Figure 1. Therefore, we can decompose the
definition of nsvR as follows into a homomorphism that removes unnecessary
elements from an array and a function that picks up the nearest smaller value.
Since the result of the homomorphism is a list in which elements are in decreasing
order, the binary operator of the homomorphism just removes elements from the
right list that are larger than the rightmost element.

nsvR v rs = pickupR v (([⊕, id]) rs)
where (ls++ [l])⊕ rs = ls ++ [l] ++ dropWhile (λx.x > l) rs

pickupR x [] = −∞
pickupR x ([r] ++ rs) = if r < x then r else pickupR x rs

450 J. Legaux et al.

3 [4 3 5 4 2 1 4]

Fig. 1. The candidates in a right array. The values that keep a decreasing order are
kept as candidates (in black), while the others are discarded (in gray). Here the value
2 will be kept as the final solution since it is the closest candidate that is inferior to
the center value 3 (in white).

We have decomposed nsvR into a function pickupR and a homomorphism ([⊕, id]);
the function nsvL can be similarly decomposed into pickupL and ([⊗, id]). Thus
we can rewrite nsv as follows :

nsv (ls, x, rs) = k (([⊗, id]) ls, x, ([⊕, id]) rs)
where k (l, x, r) = (pickupL x l, pickupR x r)

This form matches the one needed to apply the Theorem 1 in order to derive
the ANSV into a BH.

3.2 Sparse Matrix-Vector Multiplication

Sparse matrices are often compressed into array representations. We develop a
parallel program to compute the multiplication of a sparse matrix and a vector.

Here we consider an array representation that consists of triples (y, x, a):

– y: the row-index of the nonzero element,
– x: the column-index of the nonzero element, and
– a: the value of the nonzero element.

We assume that elements are sorted with respect to the indices y and x. For
example, the following matrix A is represented by the array as with five triples.

A =

⎛

⎝
1.1 2.2 0
0 1.3 1.4
0 0 3.5

⎞

⎠ as = [(0, 0, 1.1), (0, 1, 2.2),
(1, 1, 1.3), (1, 2, 1.4), (2, 2, 3.5)]

In the matrix-vector multiplication, there is a result element for each row. Let
us put the result on the first element in the row, and clear the other values with
a dummy value denoted as �. For example, multiplying a vector [3.0, 4.0, 1.0] to
the array representation as yields

mult as [3.0, 4.0, 1.0] = [(0, 0, 12.1), (0, 1,�), (1, 1, 6.6), (1, 2,�), (2, 2, 3.5)] .

Note that we can apply the array packing [5] to compact the result into the
result vector [12.1, 6.6, 3.5].

Programming with BSP Homomorphisms 451

Now we develop the specification of this problem using the mapAround func-
tion. The first and important step is to determine which kind of values are
needed from the left or from the right. To check whether an element is the first
one in the row, we simply compare the row-index of the element with that of
the left element. When we compute the result value, we need the partial sum of
the rightward values in the row, multiplied by the vector. Therefore, the values
passed from the right are the row-index of the right element and the partial sum
in the row (of right element). Based on these insights, we can develop a specifi-
cation with the mapAround function. In the following program, v〈i〉 denotes the
ith element of the vector v.

mult as v = mapAround (f v) as
where f v (ls , (y, x, a), rs) = let yl = gl ls ; (yr, sr) = gr v rs

in if (yl == y) then (y, x,�)
elseif (yr == y) then (y, x, v〈x〉 ∗ a+ sr)
else (y, x, v〈x〉 ∗ a)

Now we give the definition of the auxiliary functions and check that they are
homomorphisms. The function gl just takes the row-index of the last element in
a list. It is a homomorphism

gl = ([, λ(x, y, a).y]) where a 	 b = b ,

and any value (here we use −1) is a left unit of the operator 	. The function
gr v is a bit more complicated and is defined as follows.

gr v [(y, x, a)] = (y, a ∗ v〈x〉)
gr v [as ++(y, x, a)] = let (y′, s) = gr v as

in (y′, if y′ == y then s+ a ∗ v[x] else s)

This function is indeed a homomorphism as follows.

gr v [(y, x, a)] = (y, a ∗ v〈x〉)
gr v (ls ++ rs) =gr v ls � gr v rs

where (yl, sl)� (yr, sr) = if yl == yr then (yl, sl + sr) else (yl, sl)

A right unit of the operator � is (−1, 0).
Now we can apply the Theorem 1 to the specification above and obtain the

following BH.

mult as v = BH (k v, ([�, λ(y, x, a).(y, a ∗ v〈x〉)]), ([, λ(x, y, a).y])) as
where k v (yl, (y, x, a), (yr, s)) = if y == yl then (y, x,�)

elseif y == yr then (y, x, a ∗ v〈x〉 + s)
else (y, x, a ∗ v〈x〉)

a 	 b = b
(yl, sl)� (yr, sr) = if yl == yr then (yl, sl + sr) else (yl, sl)

452 J. Legaux et al.

4 BH in the Orléans Skeleton Library

4.1 An Overview of Orléans Skeleton Library

Orléans Skeleton Library is a C++ library of data-parallel algorithmic skeletons.
It is implemented on top of MPI and takes advantage of the expression templates
optimisation techniques [22] to be very efficient yet allowing programming in a
functional style. Programming with OSL is very similar to programming in se-
quential as OSL offers a global view of parallel programs [4]. OSL programs
operate on distributed arrays that are one dimensional arrays such that, at the
time of the creation of the array, data is distributed among the processors. Dis-
tributed arrays are implemented as a template class DArray<T>. A distributed
array consists of bsp_p partitions, where bsp_p is the number of processing ele-
ments of the parallel (BSP) machine. Each partition is an array of elements of
type T.

To give a quick, yet precise, overview of OSL, Fig. 2 presents an informal
semantics for the main OSL skeletons together with their signatures. In this
figure, bsp_p is noted p. A distributed array of type DArray<T> can be seen “se-
quentially” as an array [t0, . . . , tt.size−1] where t.size is the (global) size of the
(distributed) array t (and we use the same notation if t is a C++ vector). But
as with the getPartition skeleton, the user can expose the distribution of the
distributed array, this informal semantics should also indicates how the array is
distributed. We write the distribution as a subscript D of the distributed array.
D is a function from {0, . . . , bsp_p − 1} to N.

The first skeleton, map (and variants such as zip, mapIndex, etc.) is the usual
combinator used to apply a function to each element of a distributed array (or
two for zip). The first argument of both map and zip could be a C++ functor
either extending std::unary_function or std::binary_function, respectively.

Parallel reduction and parallel prefix computation with a binary associative
operator ⊕ are performed using respectively the reduce and scan skeletons. Com-
munications are needed to execute both skeletons.

permute and shift are communication skeletons. The next skeleton only mod-
ifies the distribution of the distributed array, not its content: redistribute dis-
tributes the content of the distributed array according to a vector of integers
representing the target distribution. All the skeletons up to redistribute pre-
serve the distribution. It means that if they are applied to evenly distributed
arrays, the result will be an evenly distributed array. The redistribute skeleton
may thus seems useless. However, some algorithms such as BSP regular sampling
sort, require intermediate and final results that are not evenly distributed. To
implement such algorithms, two additional skeletons are needed: getPartition
and flatten. The getPartition skeleton exposes how a distributed array is dis-
tributed among the processors, while flatten is the inverse operation.

As a very short OSL example program, we can compute the variance
∑n−1

i=0 (xi −
∑n−1

j=0 xj

n) of a sequence of random variables xi:

Programming with BSP Homomorphisms 453

Skeleton
Signature

Informal semantics

map
DArray<W> map(W f(T), DArray<T> t)

map(f, [t0, . . . , tt.size−1]D) = [f(t0), . . . , f(tt.size−1)]D

reduce
<T> reduce(T⊕(T,T), DArray<T> t)

reduce(⊕, [t0, . . . , tt.size−1]D) = t0 ⊕ t1 ⊕ . . .⊕ tt.size−1

scan
DArray<T> scan(T⊕(T,T), DArray<T> t)

scan(⊕, [t0, . . . , tt.size−1]D) = [⊕0
i=0ti; . . . ;⊕t.size−1

i=0 ti]D

permute
DArray<T> permute(int f(int), DArray<T> t)

permute(f, [t0, . . . , tt.size−1]D) = [tf−1(0), . . . , tf−1(t.size−1)]D

shift
DArray<T> shift(int o, T f(T), DArray<T> t)

shift(o, f, [t0, . . . , tt.size−1]D) = [f(0), . . . , f(o− 1), t0, . . . , tt.size−1−o]D

redistribute
DArray<T> redistribute(Vector<int> dist, DArray<T> t)

redistribute(dist, [t0, . . . , tt.size−1]D) = [t0, . . . , tt.size−1]dist

getPartition
DArray< Vector<T> > getPartition(DArray<T> t)

getPartition([t0, . . . , tt.size−1]D)
=

[
[t0, . . . , tD(0)−1], . . . , [tji , . . . , tji+D(i)−1], . . . , [tjp−1 , . . . , tt.size−1]

]
Ep

where Ep(i) = 1 and ji =
∑k=i−1

k=0 D(k)

flatten
DArray<T> flatten(DArray< Vector<T> > t)

flatten([a0, . . . , aa.size−1]D)
=

[
a0[0], . . . , a0[a0.size− 1], a1[0], . . . , aa.size−1[aa.size−1.size− 1]

]
D′

where D′(i) =
∑

ji≤k<ji+D(i) ak.size and ji =
∑k=i−1

k=0 D(k)

Fig. 2. OSL Skeletons

double avg = osl::reduce(std::plus<double>(), x) / x.getGlobalSize();

double variance = osl::reduce(std::plus<double>(),

osl::map(boost::bind(std::minus<double>(),avg, _2), x));

4.2 Using the BH Skeleton

The signature of the bh skeleton is:

DArray<typename K::result_type>

bh(K k, Homomorphism<T, L> * hl, Homomorphism<T, R> * hr,

L l, R r, const DArray<T>& temp)

According to Definition 2, a BH is defined by a function k and two homomor-
phisms g1 and g2, which are applied on a list (in the form of a distributed array
temp) with two boundary elements L and R.

k can be easily implemented as a usual functor whose () operator takes three
arguments: the left summary (which will be the result of the application of g1
on the left part of the list), the current element and the right summary. For
g1 and g2, we define a generic virtual base class Homomorphism which defines
the needed function f , operator � and its unit id� (Definition 1). The user can
then implement its own homomorphism by creating a derived class that provides
concrete implementations of those 3 items.

k, g1 and g2 are the first three parameters of our generic BH skeleton. To
apply it to actual data, we need to provide three last arguments: the boundary

454 J. Legaux et al.

elements L and R, and the list in the form of a DArray. The return value will be
a list of the same size, whose type of elements will be the result type of k.

Implementing for example the computation of the prefix-sum on an array of
integers can be easily done. First, we need the left homomorphism that subse-
quently adds all the values:

class HAdd: public Homomorphism<int, int> {

public:

HAdd() { neutral = 0;}

inline int f(const int& i) {return i;}

inline int o(const int& i1, const int& i2) {return i1+i2;}

};

We do not have any computation to conduct on the right side. However we still
need to provide an homomorphism to the bh skeleton, so we can define one that
always returns the same value. This homomorphism, named HConst, is defined
in a similar way than HAdd but with each operator returning 0.

We now only have to define the k function which will simply add the computed
sum of the left sub-array with the current element:

struct AddLeft {

typedef int result_type;

inline int operator()(int l, int i, int r) const { return l+i; }

};

We can now apply the skeleton to compute the prefix sum on any distributed
array d, using zeros for the boundary values:

DArray<int> result = osl::bh(AddLeft(),new HAdd(), new HConst(), 0, 0, d);

4.3 Implementation of the BH Skeleton

The bh skeleton is implemented with the usual expression template mechanism
of our library, so it can be integrated seamlessly in any OSL expression and
trigger the fusion optimisation when it is relevant. The recursive definition of
homomorphisms provides room for a major optimisation. If we apply the defini-
tion to an array of elements, we can write the third recursive rule as such:

h [x1, . . . , xn] = h [x1, . . . , xn − 1]� h [xn] = h [x1, . . . , xn − 1]� f (xn).
This allows us to pre-compute locally the application of the homomorphism to
each sub-array in a linear time as we only have to apply f and� once per element.
Without this optimisation, we would have to conduct these operations i times
for each of the n xi elements, thus resulting in a square complexity. Thanks to
the associativity of homomorphisms, we can symmetrically implement the same
optimisation for the right homomorphism that applies on the end of the array.

A disadvantage is that in order to achieve this purpose we have to consider
the local part of the array on each node in its entirety: This forces us to break
the loop fusion mechanism, which is based on the fact that each element of the
array is treated separately. However fusion can still occur on the expression (if
there actually exists one) that produces the input array temp.

Programming with BSP Homomorphisms 455

5 Experiments

We implemented programs computing the ANSV and sparse-matrix vector mul-
tiplication using our implementation of the BH skeleton in the OSL library. We
then measured the scalabity of those programs when parallelised over several
cores on two architectures : a shared-memory computer containing 4 processors
with 12 computer cores each (thus a total of 48 cores), and a distributed-memory
cluster of 8 machines each containing 2 processors of 4 cores (for a total of 64
cores). More experiments are currently undergoing on a larger cluster containing
several hundreds cores. Those measures were conducted using a statistical evalu-
ation protocol [20] in order to ensure stability and reproducibility of the results.
ANSV was solved on a 107 elements array. Sparse matrix-vector multiplication
was conducted on a 109 elements matrix with 10% of non-zero elements, leading
to an actual 108 elements of data.

 1
 4
 8

 16

 24

 32

 48

 64

 1 4 8 16 24 32 48 64

S
pe

ed
up

Number of cores

Ideal curve
ANSV

Sparse Matrix-Vector Multiplication

Fig. 3. Distributed memory

 1
 4

 8

 16

 24

 32

 48

 1 4 8 16 24 32 48

S
pe

ed
up

Number of cores

Ideal curve
ANSV

Sparse Matrix-Vector Multiplication

Fig. 4. Shared memory

The ANSV problem scales well although sub-linearly, we may expect its per-
formance to peak at a greater number of cores. This could be explained by
the fact that each processor has to communicate its local array of candidate
elements to every other core. Those arrays can reach a consequent size on big
problems, and the cost of this communication operation may rapidly overcome
the parallelisation gains on larger numbers of cores.

On the other hand, the sparse matrix-vector multiplication is perfectly linear.
As in this problem the processors only have to exchange a pair of numbers, the
communication cost is probably too small to impact the scaling of the algorithm
at this level. We also get super-linear speedups on the distributed architecture
with a large number of cores, which seems to indicate that this particular compu-
tation is limited by the memory bandwidth on the shared memory architecture.

6 Related Work

There are many algorithmic skeletons libraries, for various host languages: [6] is
a recent survey of such libraries. Depending on the supported data structures,

456 J. Legaux et al.

these libraries could be used to implement programs obtained by systematic
developement based on the theory of lists [3, 14], trees [13] or arrays. However
none support BSP homomorphisms. Compared to BSP implementations of skele-
tons [23] together with usual theories, our theoretical framework and OSL library
allow to derive and implement efficient programs such as the all nearest smaller
values program.

Several researchers worked on formal semantics for BSP computations, for ex-
ample [9,16]. But to our knowledge none of these semantics was used to generate
programs as the last step of a systematic development. LOGS is a semantics of
BSP programs and was used to generate C programs [24]. The main difference
with our approach is that it starts from a local and imperative view of parts of
the program to build a larger one, and we start from a global and functional
view and refine it.

7 Conclusion and Future Work

The theory of bulk synchronous parallel homomorphism allows to derive non-
trivial applications. The support of BSP homomorphism in the Orléans Skeleton
Library through the BH skeleton can be used to implement such applications.
In the SkeTo and OSL libraries, fusion [12] is done by the expression templates
technique. More global optimisations could be done, in particular using the Proto
framework for C++: This is planned. However we still need to investigate the
theory of fusion for BSP homomorphisms before incorporing BH fusion in OSL.

Acknowledgements. This work is partly supported by ANR (France) and
JST (Japan) (project PaPDAS ANR-2010-INTB-0205-02 and JST 10102704).
Joeffrey Legaux is supported by a PhD grant from the Conseil Général du Loiret.

References

1. Bird, R.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of Pro-
gramming and Calculi of Discrete Design, pp. 5–42. Springer (1987)

2. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press (1989), http://homepages.inf.ed.ac.uk/mic/Pubs

3. Cole, M.: Parallel Programming with List Homomorphisms. Parallel Processing
Letters 5(2), 191–203 (1995)

4. Deitz, S.J., Callahan, D., Chamberlain, B.L., Snyder, L.: Global-view abstractions
for user-defined reductions and scans. In: PPoPP, pp. 40–47. ACM, New York
(2006)

5. Gesbert, L., Hu, Z., Loulergue, F., Matsuzaki, K., Tesson, J.: Systematic Develop-
ment of Correct Bulk Synchronous Parallel Programs. In: International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT),
pp. 334–340. IEEE (2010)

6. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks:
high-level structured parallel programming enablers. Software, Practrice & Ex-
perience 40(12), 1135–1160 (2010)

http://homepages.inf.ed.ac.uk/mic/Pubs

Programming with BSP Homomorphisms 457

7. Gorlatch, S., Bischof, H.: Formal Derivation of Divide-and-Conquer Programs: A
Case Study in the Multidimensional FFT’s. In: Mery, D. (ed.) Formal Methods for
Parallel Programming: Theory and Applications, pp. 80–94 (1997)

8. Javed, N., Loulergue, F.: Parallel Programming and Performance Predictability
with Orléans Skeleton Library. In: International Conference on High Performance
Computing and Simulation (HPCS), pp. 257–263. IEEE (2011)

9. Jifeng, H., Miller, Q., Chen, L.: Algebraic laws for BSP programming. In: Bougé,
L., Fraigniaud, P., Mignotte, A., Robert, Y. (eds.) Euro-Par 1996, Part II. LNCS,
vol. 1124, pp. 359–368. Springer, Heidelberg (1996)

10. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
System release 4.00.0 (2012), http://caml.inria.fr

11. Loulergue, F.: Parallel Juxtaposition for Bulk Synchronous Parallel ML. In: Kosch,
H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp.
781–788. Springer, Heidelberg (2003)

12. Matsuzaki, K., Emoto, K.: Implementing Fusion-Equipped Parallel Skeletons by
Expression Templates. In: Morazán, M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS,
vol. 6041, pp. 72–89. Springer, Heidelberg (2010)

13. Matsuzaki, K., Hu, Z., Takeichi, M.: Parallelization with tree skeletons. In: Kosch,
H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp.
789–798. Springer, Heidelberg (2003)

14. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic Inversion
Generates Divide-and-Conquer Parallel Programs. In: Conference on Programming
Language Design and Implementation (PLDI), pp. 146–155. ACM Press (2007)

15. O’Sullivan, B., Stewart, D., Goerzen, J.: Real World Haskell. O’Reilly (2008)
16. Stewart, A., Clint, M., Gabarró, J.: Barrier synchronisation: Axiomatisation and

relaxation. Formal Aspects of Computing 16(1), 36–50 (2004)
17. Tesson, J.: Environnement pour le développement et la preuve de correction

systématiques de programmes parallèles fonctionnels. Ph.D. thesis, LIFO, Uni-
versity of Orléans (November 2011),
http://hal.archives-ouvertes.fr/tel-00660554/en/

18. The Coq Development Team: The Coq Proof Assistant, http://coq.inria.fr
19. The SDPP Development Team: Systematic Development of Parallel Programs,

http://traclifo.univ-orleans.fr/SDPP

20. Touati, S.A.A., Worms, J., Briais, S.: The Speedup Test. Tech. Rep. inria-00443839,
INRIA Saclay - Ile de France (2010), http://hal.inria.fr/inria-00443839

21. Valiant, L.G.: A bridging model for parallel computation. Comm. of the
ACM 33(8), 103 (1990)

22. Veldhuizen, T.: Techniques for Scientific C++. Computer science technical report
542, Indiana University (2000)

23. Zavanella, A.: The skel-BSP global optimizer: Enhancing performance portability
in parallel programming. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R.
(eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 658–667. Springer, Heidelberg (2000)

24. Zhou, J., Chen, Y.: Generating C code from LOGS specifications. In: Van Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 195–210. Springer, Hei-
delberg (2005)

http://caml.inria.fr
http://hal.archives-ouvertes.fr/tel-00660554/en/
http://coq.inria.fr
http://traclifo.univ-orleans.fr/SDPP
http://hal.inria.fr/inria-00443839

	Programming with BSP Homomorphisms
	1 Introduction
	2 BSP Homomorphisms
	3 Program Derivation Using BSP Homomorphisms
	3.1 All Nearest Smaller Values
	3.2 Sparse Matrix-Vector Multiplication

	4 BH in the Orl´eans S
keleton Library
	4.1 An Overview of Orl´eans Skeleton Library
	4.2 Using the BH Skeleton
	4.3 Implementation of the BH Skeleton

	5 Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

