Giraphx: Parallel Yet Serializable
Large-Scale Graph Processing

Serafettin Tasci and Murat Demirbas

Computer Science & Engineering Department
University at Buffalo, SUNY

Abstract. Bulk Synchronous Parallelism (BSP) provides a good model
for parallel processing of many large-scale graph applications, however
it is unsuitable/inefficient for graph applications that require coordina-
tion, such as graph-coloring, subcoloring, and clustering. To address this
problem, we present an efficient modification to the BSP model to imple-
ment serializability (sequential consistency) without reducing the highly-
parallel nature of BSP. Our modification bypasses the message queues
in BSP and reads directly from the worker’s memory for the internal
vertex executions. To ensure serializability, coordination is performed—
implemented via dining philosophers or token ring— only for border ver-
tices partitioned across workers. We implement our modifications to BSP
on Giraph, an open-source clone of Google’s Pregel. We show through a
graph-coloring application that our modified framework, Giraphz, pro-
vides much better performance than implementing the application using
dining-philosophers over Giraph. In fact, Giraphx outperforms Giraph
even for embarrassingly parallel applications that do not require coordi-
nation, e.g., PageRank.

1 Introduction

Large-scale graph processing finds several applications in machine-learning [IJ,
distributed simulations [2], web-search [3], and social-network analysis [4]. The
significance of these applications led to the development of several graph pro-
cessing frameworks recently. Due to the large size of the graphs considered, these
frameworks employ a distributed/parallel execution model; Most adopt the Bulk
Synchronous Parallel (BSP) [§] approach to this end. A popular example is the
Pregel [3] framework from Google. Pregel inspired several open-source projects,
including Apache Giraph [B], Hama [6], and Golden Orb [7], all of which use
the BSP model. Although asynchronous graph processing frameworks such as
GraphLab [1] and PowerGraph [16] were proposed recently, the BSP model is
still used the most due to its simplicity, flexibility, and ease of use.

In the BSP approach to graph processing, the large input graph is partitioned
to the worker machines, and each worker becomes responsible for execution of
the vertices that are assigned to it. Then BSP’s superstep concept is used for
coordinating the parallel execution of the workers. A superstep consists of three
parts. Concurrent computation: Concurrently every participating worker exe-
cutes computations for the vertices they are responsible for. Communication:

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 458469, 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 459

The workers send messages on behalf of the vertices they are responsible for
to their neighboring vertices. The neighboring vertices may or may not be in
the same worker. Barrier synchronization: When a worker reaches this point
(the barrier), it waits until all other workers have finished their communication
actions, before the system as a whole can move to the next superstep. A com-
putation involves many supersteps executed one after the other in this manner.
So, in a superstep, the worker uses values communicated via messages from the
previous superstep, instead of most recent values.

BSP provides good parallelism and yield. However, the maz-parallel execution
model used in BSP is not suitable for writing applications that require coordi-
nation between vertices. Consider the graph coloring problem, where the aim
is to find a minimal coloring of the vertices such that no two adjacent vertices
share the same color. A simple program is that, at each superstep a vertex picks
the smallest color not used by any of its neighbors and adopts it as its color.
If executed in a max-parallel manner, this program does not converge: If two
neighboring vertices have the same color at any superstep, they loop on back
and forth changing their colors to be the same. This max-parallel style concur-
rency violations can occur even when the worker has a single thread of controﬂ,
because vertices in a worker communicate via message-passing in queues, and as
such they operate on each other’s previous round states. So, in effect, all vertices
in a worker are executing concurrently for a superstep, even though in reality
the vertices execute in a serial manner since the worker has a single thread.

For developing applications that require coordination, the serializability se-
mantics [9] (also known as interleaving or sequential consistency) is better. Se-
rializability ensures that for every parallel execution, there exists a sequential
execution that produces an equivalent result. This model provides “in effect” the
guarantee that any vertex computation is executed atomically (or in isolation)
with respect to the rest of the system and this gives a cleaner abstraction to
write graph programs.

The problem with serializability, however, is that it may throttle the paral-
lelism /performance of the system, so how serializability is implemented matters.
The straightforward implementation (executing all vertex computations sequen-
tially in the graph and disallowing any parallel execution across workers) is, of
course, very inefficient. It is easy to observe that if two vertices are not neighbors
they can be executed in parallel, and since they do not share state, their execu-
tions do not conflict with each other, and they can be serialized (pretending as if
one occurs before the other). One can implement this restriction using a dining
philosopher program [10] to regulate that no two neighboring nodes execute at
the same superstep. Running the application on top of dining philosophers in
Giraph accomplishes serializability, but with a steep cost (as we show in our
experimental results in Section []).

Our Contributions. We present a simple extension to achieve serializability
in BSP-based frameworks while keeping the highly-parallel and bulk-efficient

! This is the case in Giraph. Even when the worker is executed on a multicore machine,
the worker executes as a single thread to keep concurrency issues manageable.

460 S. Tasci and M. Demirbas

nature of BSP executions. We implement our extension on the open-source
Apache Giraph framework, and call the extended framework Giraphz. To provide
interworker serializability, we augmented Giraphx with two alternative coordi-
nation mechanisms: dining philosophers and token ring.

We give experimental results from Amazon Web Services (AWS) Elastic Com-
pute Cloud (EC2) with upto 32 workers comparing the performance of Giraphx
with that of Giraph. We show through a graph-coloring application that Gi-
raphx consistently provides better performance than implementing the applica-
tion using dining-philosophers over Giraph. Our experiments use mesh graphs
and Google Web graphs, and show the effects of edge-locality in improved per-
formance (in some cases upto an order of magnitude improvement) of Giraphx
compared to Giraph. The results reveal that while dining-philosopher-based Gi-
raphx performs better for large worker numbers, the token-ring-based Giraphx
is superior for smaller clusters and low edge-locality situations.

Our experiments also show that Giraphx provides better performance than
Giraph even for applications that are embarassingly parallel and do not require
coordination. We show this through running a PageRank [II] application on
both Giraph and Giraphx. The improved performance in Giraphx is due to the
faster convergence it achieves by providing the vertices the ability to read the
most recent data of other vertices in the serializability model.

Overview of our Method. In Giraphx, we categorize vertices as border ver-
tices and internal vertices. If all the neighbors of a vertex are in the same worker
as that vertex, then it is an internal vertex; else it is called a border verter.
In order to provide serializability, we modify Giraph to bypass the message
queue and read directly from worker’s memory for the internal vertex execu-
tions (we can have direct memory reads because the vertices are in the same
worker). Since vertices read current values of neighbors (instead of using previ-
ous round values from the messages), interleaving execution, and hence atomic
execution is achieved. In the above example, this modification solves the graph
coloring problem easily and efficiently (without being hampered by running din-
ing philosophers on vertices and slowing execution). When border vertices, par-
titioned across workers, are involved, additional synchronization is needed. For
this, we use dining-philosopher or a worker-based token ring algorithm for syn-
chronizing execution. Giraphx is much cheaper than running dining philosophers
over Giraph because dining philosophers is run only on cross-worker edges of bor-
der vertices (which is generally a small fraction of all the vertices) in Giraphx, so
the overhead comes only on this fraction not on the entire graph as in Giraph.

Outline of the Rest of the Paper. We discuss Giraph and dining philoso-
phers implementation on Giraph in Section 2l In Section [3, we present Giraphx,
and introduce our dining-philosopher-based Giraphx (d-Giraphx) and token-
ring-based Giraphx (t-Giraphx). We present our experiment results from EC2
deployments in Section [l and related work in Section

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 461
2 Giraph

Giraph leverages Hadoop’s MapReduce framework [12]. The master and all work-
ers in Giraph are started as MapReduce worker tasks. [4 Hadoop’s master-worker
setup readily solves the monitoring/handling reliability of the workers, opti-
mizing performance for communication, deploying distributed code, distributing
data to the workers, and load-balancing.

Writing a Giraph program involves subclassing the BasicVertex class and
overriding the Compute() method. Each worker goes over the graph vertices in
its assigned partitions and runs Compute() for each active vertex once in every
superstep. At each Compute operation, the vertex can read the messages in its
incoming queue, perform computations to update its value, and send messages
to its outgoing edges for evaluation in the next superstep. A Giraph program
terminates when there are no messages in transit and all vertices vote to halt.

2.1 d-Giraph

While Giraph fits the bill for many graph-processing applications, it fails to pro-
vide a mechanism for applications where neighboring vertices need to coordinate
their executions. Also, while the synchronous execution model in Giraph is easy
to use, the inability to read the most recent data may lead to slow convergence.
Consider the graph coloring problem. If two neighboring vertices have the same
color at any superstep, they loop on back and forth changing their colors to be
the same.

To solve this problem, we need to schedule the computation of vertices such
that no conflicting vertices operate at the same superstep. For this purpose, we
developed a serializable Giraph implementation called d-Giraph, that ensures
that in each neighborhood only one vertex can compute at a superstep while
others have to wait for their turn. d-Giraph uses the hygienic dining philosophers
algorithm for vertex coordination [10]. The basic d-Giraph operation consists of
the following steps:

1. At superstep 0, every vertex sends a message containing its id to all outgoing
edges so that at superstep 1 vertices will also learn their incoming edges.

2. At superstep 1, every vertex sends its randomly generated initial fork acquisi-
tion priority to all edges together with its vertex value for initial distribution
of forks in a deadlock-free manner.

3. Computation starts at superstep 2 in which every vertex gathers its initial
forks and learns initial values of neighbors.

4. Then each vertex checks if it has all its forks. If so, it performs vertex com-
putation, otherwise it executes a skip (state is not changed).

5. Each vertex replies incoming fork request messages, and then sends request
messages for its missing forks. New vertex value is sent only if it is updated.

2 Giraph does not have a reduce phase: It uses only the map phase of MapReduce and
this single map phase runs until all supersteps are completed.

462 S. Tasci and M. Demirbas

Despite achieving serializability, d-Giraph hurts parallelism significantly by al-
lowing only a small fraction of all vertices to operate at each superstep; a steep
price to pay for serializability.

3 Giraphx

In order to provide efficient serializability, in Giraphx we modify Giraph to by-
pass the message queue and read directly from worker’s memory for the internal
vertex executions (we can have direct memory reads because the vertices are in
the same worker). Since vertices read current values of other vertices’ variables
(instead of using previous round values from the messages), interleaving execu-
tion, and hence atomic execution is achieved. When border vertices, partitioned
across workers, are involved, additional synchronization is needed. A border ver-
tex cannot make direct memory reads for its interworker edges and blocking
remote reads are costly. In this case, we revert to the BSP model and use mes-
saging in tandem with a coordination mechanism for these border edges. We
propose two such mechanisms: a dining philosopher based solution as in Section
2.1l called d-Giraphz and a simpler token-based solution called t-Giraphz.

The only side effect of these modifications to Giraph semantics is the increase
in update frequency of internal vertices compared to border vertices. However
this difference causes no complications in most graph problems.

To ease migration from Giraph, Giraphx closely follows the Giraph API except
small modifications in handling of intra-worker communications. To implement
Giraphx, we added approximately 800 lines of Java code to Giraph (including
the coordination mechanisms). While T-Giraphx has no memory overhead over
Giraph, d-Giraphx uses ~ 30% more memory primarily for synchronization mes-
sages (i.e. fork exchange) in dining philosophers.

3.1 d-Giraphx

d-Giraphx uses dining philosophers for establishing coordination of the inter-
worker edges in Giraphx. To implement d-Giraphx, d-Giraph is modified as
follows:

1. Each vertex prepares a list that denotes the locality information about the
neighbors. If all neighbors are local then the vertex marks itself as internal,
else as border.

2. If a vertex is internal, it operates at each superstep. If it is a border vertex,
it checks whether it has gathered all forks or not. If yes, it first iterates over
local neighbor list and reads their values and then iterates over its incoming
messages to learn the values of its nonlocal neighbors.

3. Border vertices are also responsible for sending and replying fork exchange
messages while internal vertices skip it.

Since the amount of messaging in d-Giraphx is proportional to the number of
interworker edges and border vertices, partitioning plays an important role in

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 463

improving the performance of the system. In a smartly-partitioned graph, since
the border nodes is a small fraction of the internal nodes, d-Giraphx performs
upto an order of magnitude better than d-Giraph as we show in Section [l

3.2 t-Giraphx

Despite d-Giraphx is an obvious improvement over d-Giraph, it suffers from
large coordination overhead when the number of border nodes is large (i.e., the
edge-locality is low). To address these low edge-locality situations for which any
smart-partitioning of the input graph does not provide much benefit, a solution
which avoids coordination messages would be preferred. For this purpose, we
implement a token-based version of Giraphx called t-Giraphx.

In t-Graphx, coordination is done at the worker level instead of at the vertex
level. At each superstep one of the workers has the token for computation. When
a worker acquires the token, it runs Compute() on all its vertices whether they
are border or internal. Similar to d-Giraphx, vertices use messaging for inter-
worker neighbors and direct memory reads for same-worker neighbors. When a
worker does not have the token, it can only operate on internal vertices. In a non-
token worker, the border vertices skip computation in this superstep, but they
still broadcast their state to neighboring vertices in other workers by sending a
message. Since t-Giraphx does not have any fork exchange overhead, it uses less
messaging and thus converges faster than d-Giraphx, whenever the number of
workers is sufficiently small.

t-Giraphx does not scale as the number of workers increase. Consider a graph
problem where convergence is acquired after k iterations at each vertex. In a
graph with average vertex degree w, d-Giraphx processes all vertices once in
approximately every w supersteps independent of worker number IV, and thus
converges in at most w * k supersteps independent of N. On the other hand,
t-Giraphx will need N * k supersteps, resulting in longer completion times when
N >> w, and shorter completion times when N << w.

Some problems, such as graph subcoloringE, require multi-hop coordination.
While dining philosophers achieves 1-hop neighborhood coordination, it can be
extended to provide multi-hop neighborhood coordination by defining the multi-
hop neighbors as “virtual” neighbors. For example, for 2-hop coordination, this
can be done by adding another superstep in d-Giraphx after superstep 0 in which
vertices send a message containing the ids of all neighbors to every neighbor. This
way, in the following superstep all vertices will have a list of vertices in its 2-hop
neighborhood and then can run dining philosophers on this list. The primary
drawback of these multihop coordination extensions is the significant increase in
the number of edges per vertex, and the resulting increase in the total running
time of the protocol. In applications that require multihop coordination, since w
will grow exponentially, t-Giraphx becomes a better alternative to d-Giraphx.

3 In graph subcoloring, the aim is to assign colors to a graph’s vertices such that each
color class induces a vertex disjoint union of cliques. This requires 2-hop neighbor-
hood coordination.

464 S. Tasci and M. Demirbas

4 Experiments

To evaluate the performance of Giraphx, we conducted experiments on EC2
using medium Linux instances, where each instance has two EC2 compute units
and 3.75 GB of RAM. In our experiments, we used up to 33 instances, where
one instance is designated as the master, and the remaining 32 instances are
workers. We used two network topologies for our experiments. First is a planar
mesh network where each node is connected to its 4 neighbors in the mesh
(right, left, top, bottom) plus one of the diagonal neighbors (e.g. right-top).
The second is Google’s web graph dataset [I4] in which vertices represent web
pages and directed edges represent hyperlinks between them. The Google web
graph dataset consists of approximately 900,000 vertices and 5 million edges.
This dataset is quite challenging since it has a highly skewed degree distribution
where some vertices have degrees up to 6500.

We used three partitioners in our experiments: a hash partitioner (which as-
signs vertices to workers pseudo-randomly), a mesh partitioner (which assigns
each worker a neighborhood in the mesh), and the metis partitioner (which
smartly-partitions a graph to provide high edge-locality) [13]. For Giraphx, the
cost of learning internal versus border vertices are included in the provided ex-
periment results. In all experiments, the partitioning run times are included in
the results.

4.1 Graph-Coloring Experiments on Mesh Graph

We first fix the number of workers as 16, and perform experiments with in-
creasing the number of vertices in a mesh graph. We use a mesh-partitioner so
the percentage of local vertices in these experiments stays between 94%-99%.
Figure [[l demonstrates that as the size of the graph increases the running time
of d-Giraph increases at a much faster pace than Giraphx-based methods. The
basic reason is the lack of d-Giraph’s ability to make use of the locality in the
graph. Every vertex needs to coordinate with all neighbors causing large delays.
While the local nodes in Giraphx can compute at every superstep, in d-Giraph
vertices have to wait until all forks are acquired to make computation. In con-
trast, d-Giraphx avoids a significant fraction of the messaging in d-Giraph by
incorporating local memory reads for internal vertices.

Figure shows that increase in the graph size does not necessarily increase
the number of supersteps for the three frameworks compared. Since the graph
topology does not change, average vertex degree and hence the number of super-
steps is stable as the graph size changes in d-Giraph and d-Giraphx. Since worker
number does not change, superstep number in t-Giraphx is also stable. We also
see that t-Giraphx takes more supersteps than the other methods, since it takes
16 supersteps for the token to return to a worker. However, t-Giraphx compen-
sates this disadvantage and converges in less time than d-Giraph by avoiding the
coordination delays that dining-philosophers induce for d-Giraph.

Next in Figure [2] we fix the number of vertices as 1 million, and increase the
number of workers to observe the effects of parallelism on the runtime. As long

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 465

@
S
]

65 t-Giraphx

a

g % d-Giraph
H Girapl
£ as

g

d-Giraphx 35

@
=}
S}

IS
S
3

t-Giraphx

Time (sec)
w
8
8

N
S
S}

d-Giraphx

=
1)
S}

o

250k 500k ™M ™M am 8m
Number of Vertices

250k 500k im M am am
Number of Vertices

Fig. 1. Change in time and superstep number as the graph size increases for 16 workers

1000 140
900
800
700
600
500
400
300
200 t-Giraphx
100

d-Giraph t-Giraphx

d-Giraph

40 .\0—.___‘_,,’——‘_0
- 20 A " d-Giraphx

— e —a ®

1 2 4 8 12 16 32 1 2 4 8 12 16 32
Number of Workers Number of Workers

Time (sec)
Supersteps

Fig. 2. Change in time and superstep number as the amount of worker machines in-
creases for 1 million vertices

as the edge-locality is high, d-Giraph and d-Giraphx take advantage of every
worker added since the load per worker decreases accordingly. t-Giraphx also
benefits from the increase in computation power. But after 8 workers, adding
more workers hurts t-Giraphx due to the increase in the superstep numbers
proportional to the number of workers.

Finally, in Figure[3] we ran an experiment where we use the hash partitioner on
the mesh network to show the effects of partitioning. While the mesh partitioner
provides an optimal partitioning in a mesh network, using a hash partitioner
causes vertices to lose their locality and most of them become border vertices.
As a result, d-Giraphx loses the performance improvement it gains from internal
vertices, and performs only slightly better than d-Giraph. The performance of
t-Giraphx is not affected too much, since it does not suffer from the increased
coordination cost on border vertices.

4.2 Graph-Coloring Experiments on Google Web Graph

To reveal the performance of the proposed frameworks on a real-world graph,
we ran another set of experiments on the challenging Google web graph. This
graph has a highly skewed degree distribution and it is hard to find a parti-
tioning that will provide good edge-locality. These high-degree vertices cause
communication and storage imbalance on vertices as well as imperfect partition-
ing. In this graph, using the hash partitioner 99% of all vertices become border

466 S. Tasci and M. Demirbas

600

M hash partitioner

400 N mesh partitioner

200

Time (sec)

d-Giraph d-Giraphx t-Giraphx

Fig. 3. Computation times with hash versus mesh partitioners for 16 workers and 1M
vertices

600 -

d-Giraphx hash

500

d-Giraphx hash d-Giraph metis
d-Giraph hash K

o

10000 d-Giraph metis

400

~~o
~
S~

a
3 ~ - g . .
%— d-Giraphx metis Sso i i 300 d-Giraphx metis
£ = 3 o
IS \\\ @ Boeeeee, I Beei_ _.-""
1000 Sse .o &
=== 200
t-Giraphx hash t-Giraphx metis
100
t-Giraphx metis t-Giraphx hash
0
100 - - -
2 4 8 16 32
2 4 8 16 32

Number of Workers
Number of Workers

Fig. 4. Results with hash versus metis partitioner on the web graph. Solid lines indicate
hash partitioner, and dashed lines metis partitioner. Time is given in log scale.

vertices, and this hurts parallelism immensely. To prevent the loss of parallelism
and improve the locality, we preprocessed the graph using the metis partitioner.
When metis is used, ratio of border vertices drops to around 6%. However these
vertices are mostly high-degree hubs which have a lot of interworker neighbors.
Therefore even with metis, webgraph still performs worse than the same-sized
mesh-partitioned mesh network.

Figure shows a comparison of the three frameworks on the Google web
graph as the number of workers increase. Regardless of whether metis is used
or not, t-Giraphx always performs better than other methods. This is because
t-Giraphx has a predictable number of supersteps independent from the degree
distribution while the number of high-degree vertices adversely affect the number
of supersteps in d-Giraph and d-Giraphx (see Figure H The skewed degree
distribution leads to a star topology centered on high-degree vertices resulting
in larger fork re-acquisition intervals for d-Giraph and also for d-Giraphx to a

4 In the mesh graph where the maximum degree is 5, the number of supersteps required
for all vertices to compute at least once is around 10. In comparison, in the web graph
where the maximum degree is 6000 the number of supersteps jumps to 50 for metis
partitioning and 70 for hash partitioning.

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 467

degree. d-Giraphx improves with better partitioning in terms of both time and
supersteps, because even the highest degree vertices now have a much higher
number of local neighbors decreasing the size of the subgraph on which coordi-
nation through fork exchange is required.

An interesting result is the increase in runtime as the number of workers
exceeds 16 in metis partitioning. In t-Giraphx, the increase in the number of
supersteps is the dominant reason for this. In case of d-Giraph and d-Giraphx,
after 16 workers the computation power gained by adding new workers is over-
shadowed by the loss of locality.

4.3 Pagerank Experiments on Google Web Graph

Giraphx also provides performance improvements for graph applications that
do not require coordination among vertices. To demonstrate this, we modified
the PageRank implementation in the Giraph framework, and ran it on Giraphx
to compare their performances. PageRank computes the importance of the ver-
tices/webpages iteratively using a weighted sum of neighbor values, and does
not require serializability among vertex computations.

=-=6=-=Giraph

5000 e=fl== Giraphx

Time (sec)

1000

200

2 4 8 16 32
Number of Workers

Fig. 5. Comparison of Giraph and Giraphx on Pagerank application (log scale)

In this experiment we used the Google web graph with metis partitioning.
In our implementation, vertices vote for termination when A < 1072 where
A is the total change in vertex values from the previous superstep. Figure
shows that Giraphx finishes computation %35 faster than Giraph, for all worker
numbers. The improved performance in Giraphx is due to the faster convergence
it achieves. The experiment logs reveal that convergence takes just 64 supersteps
in Giraphx compared to 117 supersteps in Giraph.

In Giraphx, the internal vertices take advantage of the direct memory reading
feature, and read the most recent data of other vertices, which leads to faster
convergence times. In fact, the same argument is also cited as the main advan-
tage of asynchronous systems (e.g. GraphLab [I]) over the BSP model as we
discuss in Section Bl Giraphx can provide faster convergence as in asynchronous
systems without sacrificing the convenience of the BSP model for application
development and debugging.

468 S. Tasci and M. Demirbas

5 Related Work

The alternative approach to synchronous BSP-based systems is to use an asyn-
chronous system which updates the vertices immediately and therefore uses the
most recent data at any point in computation. In addition, asynchronous sys-
tems avoid the barrier synchronization cost. However asynchrony brings along
programming complexity and may require consideration of consistency issues.

Distributed GraphLab [1] is a well-known powerful and flexible asynchronous
framework. Asynchrony helps faster convergence and vertex prioritization but it
requires selection of a consistency model to maintain correct execution in differ-
ent problems. In addition, unlike GiraphX, it does not allow dynamic modifica-
tions to graph structure. PowerGraph [16] proposes a unified abstraction called
Gather-Apply-Scatter which can simulate both asynchronous and synchronous
systems by factoring vertex-programs over edges. This factorization helps reduc-
tion of communication cost and computation imbalance in power-law graphs.
However, it has the same shortcomings as GraphLab. GRACE [15] also provides
a parallel execution engine which allows usage of both execution policies.

Since partitioning plays an important role in efficient placement of graph data
over cluster nodes, some studies focus on partitioning the graph data. A recent
work [I8] shows that SPARQL queries can be processed up to 1000 times faster
on a Hadoop cluster by using a clever partitioning, custom data replication
and an efficient data store optimized for graph data. A bandwidth aware graph
partitioning framework to minimize the network traffic in partitioning and pro-
cessing is proposed in [19]. Finally, another recent work [20] shows that using
simple partitioning heuristics can bring a significant performance improvement
that surpasses the widely-used offline metis partitioner.

6 Conclusion

In this paper, we proposed efficient methods to bring serialization to the BSP
model without changing its highly-parallel nature and clean semantics. We
showed how dining philosophers and token ring can be used for achieving co-
ordination between cross-worker vertices. We alleviated the cost of these coor-
dination mechanisms by enabling direct memory reads for intraworker vertex
communication.

We implemented Giraphx on top of Apache Giraph and evaluated it on
two applications using real and synthetic graphs. We showed through a greedy
graph coloring application that Giraphx achieves serialized execution in BSP
model with consistently better performances than Giraph. Our experiment re-
sults showed that while d-Giraphx performs better for large worker numbers,
t-Giraphx performs better for small worker numbers and low edge-locality situa-
tions. Finally we showed that, due to the faster convergence it provides, Giraphx
outperforms Giraph even for embarrassingly parallel applications that do not
require coordination, such as PageRank.

Giraphx: Parallel Yet Serializable Large-Scale Graph Processing 469

References

1.

SIS NG S

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5(8), 716-727 (2012)

. Braun, S.A.: A cloud-resolving simulation of hurricane bob (1991): Storm structure

and eyewall buoyancy. Mon. Wea. Rev. 130(6), 1573-1592 (2002)

. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-

jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, pp. 135-146. ACM, New York (2010)
http://www.facebook.com/about/graphsearch/
http://incubator.apache.org/giraph/

. http://hama.apache.org/
. http://goldenorbos.org/
. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),

103-111 (1990)

. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers (1993)

Chandy, K.M., Misra, J.: The drinking philosopher’s problem. ACM Trans. Pro-
gram. Lang. Syst. 6(4), 632646 (1984)

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proceedings of the Seventh International Conference on World Wide Web 7,
WWW?7, pp. 107-117 (1998)

http://hadoop.apache.org/

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1), 359 (1999)
http://snap.stanford.edu/data/web-Google.html/

Wang, G., Xie, W., Demers, A., Gehrke, J.: Asynchronous large-scale graph pro-
cessing made easy. In: Proceedings of CIDR 2013 (2013)

Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2012, Hollywood (October 2012)

Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: Large-scale graph computation on
just a pc. In: Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood (October 2012)

Huang, J., Abadi, D.J., Ren, K.: Scalable sparql querying of large rdf graphs.
PVLDB 4(11), 1123-1134 (2011)

Chen, R., Yang, M., Weng, X., Choi, B., He, B., Li, X.: Improving large graph pro-
cessing on partitioned graphs in the cloud. In: Proceedings of the Third ACM Sym-
posium on Cloud Computing, SoCC 2012, pp. 3:1-3:13. ACM, New York (2012)
Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs.
In: Yang, Q., Agarwal, D., Pei, J. (eds.) KDD, pp. 1222-1230. ACM (2012)

http://www.facebook.com/about/graphsearch/
http://incubator.apache.org/giraph/
http://hama.apache.org/
http://goldenorbos.org/
http://hadoop.apache.org/
http://snap.stanford.edu/data/web-Google.html/

	Giraphx: Parallel Yet Serializable
Large-Scale Graph Processing
	1 Introduction
	2 Giraph
	2.1 d-Giraph

	3 Giraphx
	3.1 d-Giraphx
	3.2 t-Giraphx

	4 Experiments
	4.1 Graph-Coloring Experiments on Mesh Graph
	4.2 Graph-Coloring Experiments on Google Web Graph
	4.3 Pagerank Experiments on Google Web Graph

	5 Related Work
	6 Conclusion
	References

