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Abstract. In this paper we describe an implementation for exploring the
scheduling of aborted transactions within transactional memory systems.
We consider application semantics to be just as important as guarantee-
ing linearizability in arriving at an appropriate execution strategy. Our
approach exploits parallelism to simultaneously create different execution
orderings for rescheduled aborted transactions and chooses the most ben-
eficial for application progression. The overall solution guarantees a lock-
free universal construction if there exists at least one transaction that can
commit. The appropriateness of our approach is demonstrated via micro-
benchmark performance figures.
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1 Introduction

Given the current barriers to processor frequency scaling, processor manufac-
turers have focused developments on parallel scaling of processing, in what has
become known as the parallel revolution [1]. Unfortunately, writing concurrent
software and solving problems in parallel is notoriously difficult for a wide class
of problems (particularly in the area of system design). The key to exploiting
parallelism effectively lies in the concurrency control mechanism used to provide
correctness and progress guarantees to the concurrent program.

Transactional Memory has offered programmers a technique which simplifies
the implementation of concurrency control. Atomic blocks allow sections of con-
current code to be composed, in a manner which is trivial in comparison to
locking-based approaches. The problem with Transactional Memory lies in the
occurrence of conflicts which require transactions to abort and retry their ex-
ecution. If conflicts occur regularly and persistently, the Transaction Manager
requires a Contention Management Policy (CMP) to mitigate the degradation
of performance caused by aborted transactions.

From the programmer’s perspective, conflicts fall into two categories: concur-
rent conflicts and semantic conflicts. A concurrent conflict occurs when the reads
and writes of a transaction encounter an inconsistent state of shared memory
and many contention managers combat these types of conflicts. A transaction
may execute without interference however and still need to re-execute because
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semantically, the application cannot progress. For example, a transaction may
need to consume an item from a shared buffer but finds it empty, or a bank
account may have insufficient funds to permit a withdrawal.

Typically, a ‘semantic conflict’ can be dealt with in the application by (i)
letting the transaction commit and re-execute in the future, (ii) or by using
primitives (retry, orElse etc) as provided by Harris et al [2] which essentially
allow ad-hoc coordination of transaction execution. We believe that the former
approach is detrimental for application progression, raising the possibility of
needless future conflicts when transactions re-execute. Meanwhile, the use of
primitives places a burden on the application developer that must be addressed
with an ad hoc solution, (re-introducing a fundamental problem of coordina-
tion with pessimistic concurrency control, which Software Transactional Memory
originally sought to address).

In this paper we present an implementation of a Universal Construction ap-
proach to Contention Management called Hugh, that tackles both concurrent
and semantic conflicts in an atomic object based STM model. We describe a
speculative technique which serializes conflicting transactions to resolve concur-
rent conflicts and a parallel exploration which tackles semantic conflicts. Within
the scope of this paper we consider a semantic conflict as simply the intentional
abortion of a transaction by its own thread, and assume such conflicts can be
avoided by executing the transaction in an alternative schedule.

The remainder of the paper is organized as follows: Section 2 describes the
implementation. Section 3 describes the related work and Section 4 provides an
evaluation of results obtained from an implementation of our technique. Section
5 concludes the paper and describes possible avenues for future work.

2 Implementation

The concept of the Universal Construction (hereafter UC) was first proposed
by Herlihy [3] and allows any sequential data structure to be transformed into a
linearizable representation that can be accessed and updated by n threads. There
are three phases of UC operation: (i) threads prepare and announce a proposed
input to add to the UC, (ii) each announcing thread performs consensus to decide
which input will be added and (iii) a log of inputs is updated by the winning
thread to reflect its input. We begin with an overview of how we use the UC
technique and then provide greater detail in the remainder of this section.

2.1 Overview

We use the UC technique to provide conflict resolution and therefore the threads
which use our implementation consist of the threads of aborted transactions.
Hugh accepts as input a permutation of one or more sequentially executed trans-
actions and decides which permutation will be added to the log.

When some threada encounters a conflict it prepares its input to the UC
by first adding its aborted transaction to a global Transaction Table; after this
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Registration Phase the parameters of threada’s permutation are set. The thread
then enters a Speculative Phase where it re-executes aborted transactions that
have been added to the Transaction Table. We provide threada with a private
cache to hold copies of modified atomic objects, but no transaction is committed.
Transactions are executed sequentially to prevent concurrent interference, but
application semantics may still cause a transaction to abort explicitly (i.e. a
semantic conflict).

During the Speculative Phase of threada, other threads may execute their
own speculative transactions in parallel with threada. Once the Speculative
Phase ends, each participating thread then enters a Commit Phase to decide
which single thread’s cache of modified atomic objects will be committed using
a consensus algorithm. Threads whose transactions are committed return to nor-
mal execution, while those that remain aborted commence another Registration
Phase.

Figure 1 contrasts our approach with a serializing CMP (like [4] for example).
Two hypothetical scenarios, both containing a depositor and withdrawer trans-
action access a shared object. In scenario 1, the CMP reorders transactions to
avoid concurrent conflicts. Although the withdrawer transaction can commit, it
may need to re-execute in future (if deposits must precede withdrawals for ex-
ample). In scenario 2, our approach is illustrated where a semantic abort occurs
and each thread re-executes a different permutation of the aborted transactions.

Fig. 1. In scenario 1 a read/write conflict has occurred between two transactions called
withdraw (w/draw) and deposit. The depositor is aborted and rescheduled to execute
after the withdrawer has committed. In scenario 2, Thread 1 aborts the depositor but
then also aborts because of a semantic conflict caused by attempting to execute a
withdrawal before a deposit. The conflict is resolved by the execution of an ordering
which allows both to commit (deposit then withdraw).
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Fig. 2. In phase 1, threads add their transactions to the Transaction Table. In phase 2,
a thread executes permutations of transactions within the window of the Transaction
Table. In phase 3, transactions perform consensus to decide which permutation will be
committed, and the result is added to the log of the Universal Construction and the
Transaction Table window is advanced.

2.2 Aims and Contribution

Serializing aborted transactions to avoid concurrent conflicts has already been
explored [5,6,4] given that under high contention, serialization can produce bet-
ter throughput than a parallel approach. To our knowledge however, Hugh is the
first to use additional threads to provide multiple serialized executions of aborted
transactions in parallel and does not require the overhead of a thread-pool.

We combine both direct-update and deferred-update approaches in our imple-
mentation; until a transaction aborts, threads modify atomic objects directly
but when transactions are retried, thread-private caches hold updates to ac-
cessed objects (as in the deferred-update model). While the use of direct-updates
(sometimes called encounter time locking) is not a requirement of our approach,
this technique was preferred having been shown to reduce the degree of wasted
transaction execution [7]. Although the use of thread-private caching increases
memory usage, it is hoped that this can reduce the occurrence of ‘cache bouncing’
(this approach was found to be particularly effective in Remote Core Locking [8]).

While the serial execution of aborted transactions tackles the problem of con-
current interference, we address semantic conflict by requiring that each thread
execute different permutations of aborted transactions:

1. The possibility of having to re-execute a transaction because of a semantic
conflict can be minimized given that there is a greater chance some permu-
tation will avoid the semantic conflict;

2. If more transactions are aborted and conflicts are high, then this results in a
greater number of threads available to explore more permutations of trans-
action execution. This in turn increases the possibility of finding an optimal
transaction ordering so that more aborted transactions can be committed;

3. If parallel processing resources are increased, then a greater number of
permutations can be explored in parallel, theoretically increasing the ex-
ploratory capacity of our approach within a shorter time-frame. Concur-
rency control is essentially transformed into a parallel state-space exploration
problem.
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List point 3 suggests our approach would benefit from a policy controlling the
operating system scheduling of threads to processors and a platform with a
plentiful supply of cores. This is beyond the scope of this paper and we confine
our discussion to a purely ‘user-level’ implementation. We now describe each of
the three phases of conflict resolution in detail.

2.3 Registration Phase

In order to re-execute its transaction, a thread is first required to register its
transaction within a global table which we call the Transaction Table. When
the transaction is added to this table it then belongs to the set of transactions
from which permutations may be generated during the Speculative Phase. To
avoid concurrency errors, threads use the synchronization primitive compare-
and-swap to atomically increment an integer variable (called current) and thus
gain a unique entry into the table.

Figure 2(1) shows the layout of the Transaction Table. In addition to cur-
rent, the Transaction Table also maintains two integer variables called start and
cap, which provide a ‘window’ (of size cap minus start) within which a thread’s
transactions must lie before it may execute its Speculative Phase. The window
is the maximum length of the permutation the thread submits to the consensus
algorithm. The first index of the permutation is equal to the threads index in
the Transaction Table and subsequent entries are indices in the Transaction Ta-
ble within the range of the window. For example, suppose some thread6 registers
and takes the 6th entry into the Transaction Table and start = 5 while cap = 9,
then a valid permutation for thread5 is {6, 5, 7, 8} (see Figure 2(2)).

During the commit phase, the window is ‘advanced’ to allow new threads to
begin their Speculative Phase (Figure 2(3)). Note that increasing the size of the
window increases the maximum number of transactions that may commit in a
single commit phase (throughput) but also incurs extra computational overhead,
including the computation of consensus (the maximum number of participants in
the consensus algorithm is equal to the window size). While our own experiments
found that a maximum window size of 16 produced the best performance, an
attractive avenue for future work would be to expand and contract the size of
the window at runtime, based on the level of contention.

2.4 Speculative Phase

Once a thread has registered its aborted transaction, it commences its Speculative
Phase (for brevity, we shall hereafter refer to these threads as speculators). The
speculator executes transactions held in the Transaction Table with the aim of
executing as many transactions to completion as possible. While the speculator
is executing, new speculators may register (causing newly aborted transactions
to appear in the Transaction Table) and begin their own speculative execution.
All speculators must ensure two conditions are met: (i) exclusivity of atomic
objects to ensure any speculative execution is sequentially consistent and (ii)
the Speculative Phase must terminate.
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Consistency. While speculators modify private copies of atomic objects, they
must ensure that no active (non-aborted) thread modifies the original, otherwise
their execution would be inconsistent and could not commit. Speculators must
therefore have exclusive access to any atomic object they update, (as they do
not update the objects directly, they do not require exclusivity from other spec-
ulators). We require that each atomic object has an owner field and that active
transactions have to install themselves as owner of any atomic object they wish
to modify. To support exclusivity, each atomic object also possesses an integer
field denoting its version (version) and a reference to a global clock (clock).
In addition, we provide a global transaction (spec) to denote that an object is
currently owned by a speculator. The procedures for accessing atomic objects
are:

– The first time an atomic object is accessed by a speculator, it checks whether
the object is owned by another speculator (owner = spec). If true, the thread
caches a copy of the object and continues its transaction (subsequent accesses
modify the copy);

– If the object is not owned by a speculator and (version <= clock), it sets
(version = clock+1), aborts the current owner of the object, and installs the
spec transaction as the new owner. Setting the value of version eliminates
the possibility that another thread can repeatedly prevent the speculator
from changing the owner of an atomic object;

– Once consensus has been reached and the winning transactions have been
committed, clock is atomically incremented so that (version ≤ clock) is true,
and any thread may once again own the object.

Before a thread executing an active transaction tries to install itself as the owner
of any atomic object, it first checks whether version ≤ clock. If this evaluates to
false, then the thread knows it must abort because the object is currently being
modified by a speculator. The thread will now register and become a speculator
itself.

Terminating Speculation. Transactions are executed according to the indices
of the speculator’s permutation until either: (i) a transaction aborts, (ii) all
transaction at the indices in the permutation have been executed, (iii) or the next
index in the Transaction Table does not contain a transaction. The maximum
number of transactions any speculator may execute during a single Speculative
Phase is equal to the the size of the window. As each speculator executes a
unique permutation, then for n speculators this means that a maximum of n
permutations may be executed during a single session. Each speculator records
the indices of the transactions it has executed successfully. Once a speculator
has finished its Speculative Phase, it moves onto the Commit Phase.
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2.5 Commit Phase

Once each speculator has completed its Speculative Phase, the log of the UC must
be updated with the permutation of transactions the speculator has executed.
To accomplish this:

1. Each speculator submits its permutation of executed transactions to the
decide method of a consensus protocol;

2. The winner is decided by the permutation with the greatest number of ex-
ecuted transactions. The winning speculator commits the changes to the
atomic objects in its cache and appends the permutation to the log (a linked
list) provided by the UC.

The log provides each speculator with the necessary information to determine
whether its own transaction has been successfully committed. Each speculator
searches for its allocated index into the Transaction Table within the winning
permutation appended to the log. If the permutation contains a speculator’s in-
dex, that speculator’s transaction has been committed. Once the winning spec-
ulator has committed the atomic objects in its cache, it atomically increments
the global clock (such that version ≤ clock is true), indicating that any thread
may once again own any atomic object. The window in the Transaction Table is
then advanced by the winning speculator.

3 Related Work

Implementing an optimum Contention Management Policy (CMP) itself is a
non-trivial task and numerous approaches have been developed. The first CMP
techniques can be categorized by their employment of a wait-based criteria [9]
(such as Greedy, Karma, Polka etc). These approaches were relatively trivial
to integrate with existing STMs, requiring no involvement from the schedul-
ing mechanism of the platform. Heber et al [10] observed an inefficiency with
wait-based approaches given the difficulty in ascertaining the duration that an
aborted transaction should wait before re-executing; too short could cause a
repeat conflict and too long would be inefficient.

Serializing Contention Managers attempt to improve the inefficiency of wait-
based CMPs by rescheduling aborted transactions to execute after a conflicting
transaction and Hugh loosely follows this approach. Bai et al [5] introduced
an approach which used ‘keys’ to predict the likelihood of conflicts between
transactions; such transactions could then be scheduled to execute in sequence to
avoid the possibility of concurrent conflict. Dolev et al introduced CAR-STM [6]
which like Bai’s work predicts the likelihood of conflicts between transactions
and executes those transactions serially. Ansari et al developed an approach
called Steal on Abort [4] where transactions could be ‘stolen away’ from threads
with high workloads and work sharing between transaction executing threads
was facilitated. Hugh differs from these serialising techniques by considering
the effects of semantic conflicts and executing multiple transaction orderings in
parallel.
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Adaptive CMPs have also been developed, Yoo and Lee for example, intro-
duced ATS [11]; a serializing CMP which used a threshold value to dynamically
determine when aborted transactions should be serialized, based on a measure
called the contention intensity and Heber et al provided CBench, a useful bench-
mark for evaluating serializing CMPs [10]. Heber et al identified a phenomenon
they call mode oscillations, (where performance is hurt because the Contention
Manager repeatedly switches between serialization and parallel execution) and
implemented a stabilization algorithm to address the problem. Although adap-
tation has not been explored in our approach, potential future work may involve
varying the window size with respect to contention levels.

Like Hugh, several contributions have approached transaction memory in the
context of building a UC. Wamhoff [12] and Chuong [13] demonstrated how
transactions could be used with a UC to handle failure. More recently Crain et
al [14] developed a UC which in theory could remove the need for programmers to
observe aborts. Unlike previous UC approaches,Hugh uses the UC for contention
management only and submits multiple transactions as input to the consensus
algorithm.

4 Evaluation

In this section we present results from a set of micro-benchmarks performed on
an implementation of our system. The tests were executed on a Dell Alienware
desktop PC featuring 4 x dual-core 3.40GHz Intel(R) processors (i7-2600) with
16GB of RAM, running Windows 7. The Transactional Memory software was ex-
ecuted in Visual Studio 2010 with a C Sharp implementation of the Java DSTM2
benchmark suite [15] (using the obstruction free factory with visible reads). Each
experiment is carried out using an increasing number of threads (from 2 to 12)
and executed 10 times with the average results provided. The Polka Contention
Management Policy [16] has been cited as providing the best performance of
wait-based Contention Managers, and so this was used to provide a comparison
with our implementation (using the default parameters with respect to back-off
time).

Two benchmarks were used to test the performance of our implementation:
a linked list and a hash table. In both benchmarks, threads are divided into
‘producers’ and ‘consumers’ in equal number. Producers and consumers take a
random value and attempt to insert this into the data structure in the case of
the producer, or remove it in the case of the consumer. The highest frequency
of read/write conflicts is expected in the linked list benchmark compared to the
hash table which distributes items in an array of linked lists based on hashes
generated from each item.

Performance results under increasing levels of semantic conflicts are pro-
vided. When there are no semantic conflicts (labelled S-L0), then threads only
abort transactions if there is a read/write conflict. With Level 1 semantic con-
flicts (S-L1), consumer threads explicitly abort their transaction if they attempt
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Fig. 3. Transaction Throughput

to remove an item which is not already present in the data-structure. Using Level
2 semantic conflicts (S-L2) also causes producers to abort their transactions if
they attempt to add an item to a data-structure which is already present.

4.1 Transaction Throughput

Figure 3 illustrates the results for transaction throughput. The Y-axis denotes
the number of transactions committed per millisecond and X-axis shows the
number of threads present. In Graph A, using the list benchmark with S-L0
semantic conflicts we can see that the Polka manager performs better than
Hugh once the number of threads increases beyond 6 due to the increase in
read/write conflicts. One possible explanation is that the serialization of aborted
transactions used by Hugh is less effective in this situation than the Polka policy
and the lack of semantic conflicts means there is little benefit from the execu-
tion of permutations. In Graph B where the hash table reduces the number of
read/write conflicts we see better performance under both policies, though the
greatest increase in throughput is witnessed with Hugh.
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Fig. 4. Transaction Timing (Ticks)

Once semantic conflicts are introduced, Hugh performs markedly better than
Polka under both benchmarks. With S-L1 semantic conflicts, Hugh shows a min-
imum improvement in throughput over Polka by a factor of approximately 4.3
and 4.5 for the list (Graph C) and hash table (Graph D) respectively. With
S-L2 semantic conflicts, Hugh shows a minimum improvement by a factor of
approximately 40 and 18, for the list (Graph E) and hash tables (Graph F)
respectively.

Observe that with the Polka manager, as semantic conflicts are introduced
the type of data structure used has less of an effect on mitigating the presence
of aborts. It seems reasonable to assume that strategies for mitigating conflicts
in transactional memory which rely on more ‘concurrent’ data-structures are of
little benefit if one takes into account the kinds of semantic conflicts generated
in these experiments.

4.2 Average Transaction Execution Time

In Figure 4 the average transaction execution time (ATET) is shown. In each
graph, the Y-axis measures the ATET but note that the scale used is logarithmic
for greater clarity and the maximum value is 105 ticks for all graphs. Each
graph provides the results for a particular contention manager with a particular
benchmark, and each bar shows the performance under a different semantic
conflict level. The time is measured in elapsed ticks, (the fastest unit of time
that can be measured on the platform) and denotes the average time spent
executing a transaction by all threads.



480 C. Sharp and G. Morgan

One would expect that greater throughput generally corresponds to less aver-
age time spent executing a transaction (this is not guaranteed however, as unlike
execution time, throughput also includes time spent outside of transaction exe-
cution). Given that Hugh resolves both concurrent and semantic conflicts, there
should be less time required to execute a transaction when semantic conflicts are
introduced, whereas with the Polka manager, transaction time should increase
if repeated conflicts cause threads to back off (which involves calling the sleep
function).

The performance of the Polka manager is shown in graphs A and C. One may
observe that the ATET increases substantially as the level of semantic conflicts
is increased. Conversely, the performance of Hugh (graphs B and D) does not
exhibit the same degree of increase in ATET as the number of semantic conflicts
is increased. This seems to suggest that the overhead of executing our policy
does not increase substantially as semantic conflicts increase, unlike the Polka
manager.

5 Conclusion and Future Work

This paper presents Hugh, a UC where threads conduct speculative execution
of aborted transactions and ‘commit by consensus’, to mitigate both concurrent
conflicts, and semantic conflicts; where some logical condition in the application
ultimately prevents the progress of threads. We have described how conflicts
can be resolved by a parallel exploration of transaction permutations and pro-
vided initial results which demonstrate increased throughput over a published
contention manager.

The evaluation section presented some encouraging results via micro bench-
marks in a custom scenario. Future work will require further testing with more
sophisticated benchmarks. One issue with existing benchmarks, however, is that
they evaluate performance with respect to concurrent conflicts, rather than the
progress of the application (although this is not surprising given the immense
scope of what can be defined as a semantic conflict).

We believe the most significant contribution made by our approach is the
treatment of transaction conflict resolution as a state space exploration prob-
lem and in future we plan to conduct experiments with transactions of greater
complexity, (nested transactions for instance). We anticipate that far from being
a hindrance, semantic conflicts are useful as they will allow the state space of
aborted transactions to be ‘pruned’ in favour of permutations which actually
provide greater progress to the application.
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