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Abstract. Transactional Memory (TM) offers new possibilities for al-
gorithmic design. This paper evaluates TM implementations of two al-
gorithmic variations of the wide-spread conjugate gradients method (CG)
regarding their performance on multi-core CPUs employing TM. Through
applying tools for TM that visualize the TM application behavior, we
show that the main bottleneck for both is the waiting times at barriers
and illustrate the implementation of reduction operations with TM in a
beneficial way. Performance monitoring through using the PAPI inter-
face uncovers the quantity and type of instructions that each algorithms
requires. This basic work is the key for environment-aware numerics as
well as a hint for software developers who plan to use TM.

1 Motivation through Previous Work

Transactional Memory (TM) has been proposed to facilitate the synchronization
of multiple threads in a parallel shared memory program and promises perfor-
mance gains through optimistic concurrency. In previous work [8], we investi-
gated the possibility to apply Software Transactional Memory to the method of
Conjugate Gradients (CG) formulated according to Saad’s algorithm [11] with-
out preconditioning. The method of Conjugate Gradients is a solver for linear
systems of equations that is frequently used for problems in the area of structural
mechanics and computational fluid dynamics. Due to its relevance, we investigate
optimization opportunities through an in-depth analysis of the TM application’s
behavior and explore methods for its optimization in this paper.

Previous experiences with hardware TM systems show that transactions that
include more shared memory updates show a better performance in case the
contention between transactions is low [12]. Since contention has been low in
previous experiments, we searched for a formulation of the CG algorithm in

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 508–520, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Evaluation of Two Formulations of the Conjugate Gradients Method 509

the literature that enables larger transaction sizes to transfer the optimization
strategy from HTM to STM and found pipelined CG [10,15].

In this paper we demonstrate the implementation of the pipelinedCG algorithm
with TM and other OpenMP-based synchronization primitives to evaluate and
compare these variants and illustrate the run time behavior in a post-processing
step. In order to achieve this, we apply the components of a framework for the
Visualization and Optimization of TM Applications (VisOTMA) to the resulting
pipelined CG variant and its previous version in order to compare its performance,
convergence behavior, and utilization of the microarchitecture.Comparedwith re-
lated work in tools for Transactional Memory applications, our approach targets
the C programming language and complements TM events with readings of per-
formance counters through the use of the PAPI interface [16]. Through this addi-
tional information, we reveal the cause that restricts performance with TM and
the pipelined CG variant whereas a comparison with the previous version of CG
shows the main differences in utilization of the microarchitecture.

2 Pipelined Conjugate Gradient Solver with OpenMP

Inspired by Meurant’s algorithm [10], Strzodka and Göddeke refine the pipelined
Conjugate Gradient solver to enable mixed precision and pipelined algorithms
that accurately solve partial differential equations with low precision compo-
nents on FPGAs [15]. From these collection of proposed algorithmic variants of
the conjugate gradient method, we select the basic pipelined CG variant with
three reduction operations that should be combined in one transaction. The idea
behind the pipelined CG is that all computations on vector elements should be
done in parallel. With this rearrangement, it becomes feasible to stream a vector
instead of having to store all elements of the vector. First, Strzodka and Göddeke
reorder all vector operations so that these can be performed in parallel [15]:

uk+1 = uk + αkpk, (1)

rk+1 = rk − αkqk, (2)

pk+1 = rk+1 + βkpk, (3)

qk+1 = Apk+1. (4)

The main contribution of this algorithm is to eliminate the requirement to com-
pute all elements of the vector rk+1 in order to compute pk+1. Strzodka and
Göddeke lift this restriction through introducing σk = ρk+1 that does not re-
quire knowledge of rk+1: σk = αk(αkqk ·qk −pk ·qk). Then the scalar products
are computed after the reordered vector operations shown in Equation 1:

ρk+1 = rk+1 · rk+1, (5)

αk+1 =
ρk+1

pk+1 · qk+1
, (6)

σk+1 = αk+1(αk+1qk+1 · qk+1 − pk+1 · qk+1), (7)

βk+1 =
σk+1

ρk+1
. (8)
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This variant is useful in the case of a sparse matrix A that enables to compute
one step of the algorithm in a fully pipelined fashion. The pipelined CG variant is
suited in case the matrix A is sparse and does not require global communication.
Therefore, the pipelined CG is e.g., applicable for solving the stationary heat
equation without heat source.

The main loop of the pipelined CG with OpenMP iterates until |rk+1| <= ε
being the convergence criteria for the algorithm. In the following, we will discuss
the mapping of the algorithm from the Equation 1 and Equation 5 to this im-
plementation. First, uk+1 and rk+1 are both computed according to Equation 1
and Equation 2 in an OpenMP for loop. Then, we compute pk+1 as described in
Equation 3 and reset the vector q. The sparse matrix multiplication, involving
A and p, takes place according to Equation 4. The implementation resets the
scalar variables and performs three reductions to compute the scalar products
rk+1 · rk+1, pk+1 · qk+1, qk+1 · qk+1. In comparison with the CG according
to Saad [11], that demanded two separate reductions, the computation with
pipelined CG requires three reductions. The advantage is that one enlarged crit-
ical section or transaction embraces all three of them. These three reductions
implement the vector operations of Equation 5, 6, and 7. Please note that all of
the above steps except resetting the scalar variables are performed in parallel.
Computing Equation 8 again requires to serialize the execution and compute
the values of αk+1, σk+1, and βk+1. Finally we increment the number of iter-
ations and compute the norm of rk+1. The result is compared with ε in the
while statement. In case the norm of rk+1 already satisfies the condition, the
implementation will output the result and also compute the error. Otherwise,
the algorithm performs another iteration of the loop until reaching convergence.

Our implementation uses OpenMP pragmas to mark parallel for loops and
the single directive to implement the algorithm as described before. Note that
our approach does not take advantage of the fact that pipelined CG supports
the streaming of a vector. Instead our approach aims to implement the reduc-
tion, that can now be made three times larger than before, assuming a constant
vector size. This different reduction pattern enables us to use larger transac-
tions (or critical sections) and to implement them in two different ways. These
different ways of implementing the reduction pattern are compared and ana-
lyzed in the following. The Reduction case uses the OpenMP reduction concate-
nating three reductions in one pragma: #pragma omp for reduction(+:rho)

reduction(+:qq) reduction(+:pq) schedule(static). The three reductions
are implemented in three ways: Fast, Slow Long, and Slow Short. Fast executes
the accumulation with a thread-local variable over a thread private part of the
vector. After finishing this calculation, each thread performs one update to add
the thread-local variable (e.g., pq priv) to the shared memory one (e.g., pq).
Thus, contention between threads stems from a single update of the shared
memory variable. In the following th represents the number of parallel threads
and dim the dimension. Regardless of dim the Fast pattern leads to th updates
of the shared variable which is a huge gain compared to the Slow which updates
the shared variable directly with each computation. Of course, the complexity to
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implement the Fast pattern is slightly higher. The Fast version of pipelined CG
updates all three shared memory variables in one transaction/critical section.
This enlarges the size of the transaction because instead of one update with nor-
mal CG for each of the reduction, there are three updates in pipelined CG. Slow
Long updates the three shared memory locations in one transaction or critical
section and does not use a thread-local variable for storing intermediate results.
Slow Short also does not use thread-local variables to store intermediate results
and performs each update of a shared memory location in a dedicated transac-
tion or critical section. Thus, both Slow variants require the same amount of
updates of the shared variable and differ only in the granularity of the applied
synchronization mechanism. Slow updates the shared variable dim times. If the
work is distributed evenly among th threads, each threads performs dim

th updates.
For dim � th this pattern creates high contention on the shared variable because
each thread accesses it multiple times. In a multi-core system this will result in
coherency traffic that will invalidate the datum in the other caches, leading to
performance loss. With TM, this leads to an increasing number of conflicts and,
hence, rollbacks. For OpenMP atomic, the Fast version uses thread-local vari-
ables whereas the Slow version does not. If possible omp atomicmaps to a native
atomic instruction that updates one memory location without being interrupted
by other processors. This atomicity is limited to one memory location and can
not be extended. Thus, the Atomic Fast uses the thread-local variables to update
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Fig. 1. Execution time of pipelined CG with 1 to 24 threads on W1. W1 is a two
socket Westmere system with two Intel(R) Xeon(R) CPUs X5670 each with six cores,
two way hyperthreading, and 2.93GHz. Hence the total number of hardware threads
is 24 and the upper limit for our exeriments.
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a shared memory location and Atomic Slow updates a shared memory location
for each new value. Since each value must be updated with a separate atomic
instruction, there is no need to distinguish between long and short sections.

The execution time of the pipelined CG method is depicted in Figure 1. The
y-axis holds the average execution time in seconds over 17 runs and the x-axis the
number of threads. Again, the Fast versions of Atomic, Critical, and Reduction
show a nearly identical behavior and are hard to distinguish. Fast STM also has
a slightly higher execution time than e.g., Reduction. The ranking of the slow
variants is as follows: Atomic Slow Long, Critical Slow Long, STM Slow Long,
Critical Slow Short, STM Slow Short. Again, neither slow variant achieves the
run time of the respective single thread. Thus, all slow variants show a slowdown
for the execution with more than two threads.

The interesting insight is that neither of the short variants (STM or critical)
performed as good as or better than a long variant. Thus, enlarging the granular-
ity of critical sections under the given conditions results in a better performance,
but the only way to achieve a speedup is the use of thread-local variables that
avoid frequent updates of the shared memory and hereby reduce contention for
shared locations.

2.1 Comparison of CG and Pipelined CG

Table 1. Parameters for example problem solved
with two implementations of the CG method

Dimension Epsilon Start vector Solution
5 ∗ 106 1 ∗ 10−13 0 1

In order to compare normal CG
and pipelined CG we employ
them to solve the one dimen-
sional stationary heat equation
without heat source which has
been discretized by using finite differences with a 3-point stencil.

The key parameters for the following experiments are shown in Table 1. Both
CG variants execute a loop that iterates over the numerical algorithm. Each
iteration refines the current solution and herewith reduces the error (ek = ‖usol−
uk‖). Usually, the error cannot be computed since the exact solution is unknown.
In our experiments we have chosen the right hand side of the problem Au=b
according to the formula bj =

∑n
i=1 aj,i with A ∈ R

n×n, b, u ∈ R
n and n ∈ N. As

predicted by the theory, the error decreases monotonically. This is not sufficient
to guarantee that both formulations of the CG work correct, but it is a strong
indicator. Hence, we check the computed solution against the known solution to
verify that both CG versions reach the correct result.

In order to compare a more realistic scenario, we have chosen an absolute
stopping criteria for the residual in our experiments. The algorithm iterates as
long as the residual ‖b−Auk‖ is greater than a given epsilon.

In practice the convergence may be perturbed through round-off errors that
affect the numerical stability. Whether an algorithm is suited to find a solution
to a given problem also depends on the algorithmic details as well as the im-
plementation. Thus, a different formulation of the same algorithm may show a
different convergence behavior. Moreover, even implementation details such as
the order of elements when summing up a vector, may have an impact on the
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convergence behavior. Thus, the impact of new technologies, like TM, on the
convergence behavior has to be researched thoroughly. For more experiments
with CG see [8]. We implement both CG variants in the programming language
C and parallelize them, as described earlier, with OpenMP and the described
synchronization mechanisms. GCC in version 4.6.1 generates both executables
with the compiler options -fopenmp -O3 -g3 that affect performance.
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Fig. 2. Aborts with normal and pipelined CG with the number of threads ranging from
1 to 24 on W1

Software Transactional Memory Characteristics – The transactional char-
acteristics of both CG variants are discussed first because these may dominate
the utilization of architectural resources. For example a transaction that per-
forms mainly integer operations and aborts frequently and, thus, repeats these
operations multiple times contributes a larger share of integer operations than
a transaction that successfully commits. Hence, large abort rates may change
the utilization of the functional units. Figure 2 depicts the absolute number of
aborted transactions of all threads for the Fast (left hand side) and the Slow
variants (right hand side) of normal CG and pipelined CG. All of the presented
numbers are averages over 17 runs.

For the Fast version, illustrated in Figure 2(a), the number of aborts is below
100 for up to 16 threads and normal CG and pipelined CG. With 24 threads,
it rises to ≈ 340 for normal CG and ≈ 1800 for pipelined CG. Here, this is the
only configuration for the Fast versions where normal CG has significantly less
aborts than pipelined CG. This is remarkable because pipelined CG executes
three times the number of loads and stores per transaction and herewith should
have a higher probability of conflict. The fact that all of these transactions access
the same three variables in the same order leads to a scenario where a transac-
tion will conflict with another transaction if they both run at the exact same
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time. As pipelined CG requires more time to execute the longer transactions,
this increases the conflict probability because a longer time inside a transaction
although means a longer time in which a second thread may start a transaction
and conflict with the former. This effect is dominating only at 24 threads be-
cause prior to that, both versions of CG perform equal. The relative abort rate
for Fast with 8 threads is ≈ 3.5% for normal CG and ≈ 6% for pipelined CG.

Figure 2(b) demonstrates the reason for the missing performance with the
Slow variants. For only 2 threads, normal CG already has ≈ 460∗106 aborts. For
pipelined CG, the aborts for 2 threads are≈ 440∗106 for the short and≈ 687∗106
for the long variant. The reason for these high aborts are the transactions that
update a single variable (or in the best case three variables) for each iteration of
the loop. Due to these high abort numbers, the threads will not make progress
and, hence have long execution times with the Slow variants.
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Fig. 3. Visualization of normal and pipelined CG with 8 threads on W1. Zoomed to
relate transaction time (in green) with barrier wait time (in orange).

After studying the transactional characteristics in the previous paragraph,
we would like to demonstrate the additional values and the flexibility of the
VisOTMA framework by doing an in-depth analysis of the Fast versions of nor-
mal CG and pipelined CG. When first visualizing the TM application behavior
with Paraver, we found many gaps between extremely small transactions. Thus,
only a high zoom level would allow us to find the aborted transactions. After
investigating these cases and finding that the overall TM performance for Fast
is good (also cf. to previous paragraph), we decided to focus on the blank spots
between the transactions. A code study reveals that, apart from computation,
OpenMP constructs are most likely to consume the missing time in between the
transactions. Both CG variants comprise 5 OpenMP for loops. By default these
for loops come with an implicit barrier at the end of the execution. Thus, the
fastest thread waits for the slowest one to complete its work and reach the bar-
rier. OpenMP enables the programmer to specify the nowait clause to omit this
barrier [4]. On the other hand, there is also the explicit #pragma omp barrier

construct that produces a barrier. These manifold possibilities to generate barri-
ers in OpenMP code and the importance for CG code convinced us to investigate
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the barrier wait times to relate these to the transaction execution times. We ob-
tain the information about TM events through a tracing machinery [13] that
features low intrusiveness and also access to hardware performance counters
through PAPI [16]. The information is analyzed in a post-processing step and
transformed into traces for the Paraver1 tool for visualization. In our particular
setup using the GCC compiler, libgomp is the OpenMP run time system and
GCC does the expansion of OpenMP pragmas and the outlining of functions. In
order to implement timed barriers, we needed to intercept the call to the original
barrier function with one that would record the cycle counter of the processor on
entry and exit of the barrier. These readings are then written to a thread-local
trace file. Using the timed instead of the regular barriers is achieved through
a simple replacement on assembly level. Through simply replacing the call to
GOMP barrier with a call to ote GOMP barrier, we achieved the desired func-
tionality. Thus, ote GOMP barrier records the cycle counter before and after
calling GOMP barrier. Separate additional trace files for tracing these barriers
are necessary because barriers are independent of executing transactions and the
STM may not be initialized when calling a barrier. Thus, a post-processing step
merges the barrier traces with the TM traces. Both trace files have the same time
base and, hence, correlate in time. The visualization of the merged traces requires
to register the new events at the various processing stages, but is straightforward.
Figure 3 shows results of this effort for normal CG and pipelined. The picture is
a timeline view of barriers and transactions executed by 8 threads. The threads,
denoted with T1 to T8, each occupy a slot on the y-axis. The x-axis shows the
progress of time. The orange bars demonstrate the wait time of a particular
thread at a barrier. These orange bars dominate Figure 3(a). Green bars illus-
trate how much time the execution of a transaction with a commit takes. These
bars are present on the right hand side of Figure 3(a) and are extremely small.
Figure 3(b) illustrates the run time behavior of the pipelined CG variant that
exercises a similar execution pattern. Again, transaction times are hardly visible
although these transactions have three times the amount of loads and stores of
those transactions in normal CG. Additionally, we discover that pipelined CG
shows a small perturbation that influences the start time of the transactions. In
Figure 3(a) with normal CG all threads start their transaction at almost exactly
the same point in time, whereas Figure 3(b) reveals that three threads start
executing the transaction before all other threads. This behavior of pipelined
CG is likely the cause for a better conflict rate than expected. Surprisingly, both
figures highlight that the wait times at the barriers (colored in orange) exceed
the execution time of a transaction (shown in green). These findings not only
motivate research to avoid or omit these barriers, but also show that in a very
regular setting, such as with the CG algorithm, TM can not show its strong
side because the effects of optimistic concurrency, which enable some threads to
proceed faster than others, are potentially turned into wait times at the barriers,
waiting for the slowest thread that has been aborted to enable the progress of
the fast threads.

1 Paraver Website http://www.bsc.es/paraver

http://www.bsc.es/paraver
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Fig. 4. Speedup with normal and pipelined CG with the number of threads ranging
from 1 to 24 on W1

Speedup – We compare the achieved speedup of normal CG with that of

pipelined CG. The speedup is computed according to S(n) = T (1)
T (n) , where T (n)

denotes the execution time with n threads and T (1) is the respective single
thread execution time (cf. to [7]). Often Tseq is used instead of T (1) with Tseq

being the serial reference implementation that does not incur the overheads of
a threaded implementation. In these cases, often Tseq < T (1) holds so that the
resulting S(n) would be smaller. Figure 4(a) depicts the speedup for normal CG
whereas Figure 4(b) shows it for pipelined CG (both times on the y-axis). The
x-axis holds the number of threads. Although the plots of the runtimes from
previous sections contain the same information, this plot more evidently shows
a slow down (speedup < 1) for the slow variants and a speedup for the fast
variants. Setting the scale of the y-axis is a compromise to fit all variants on one
plot. This makes identifying the maximum achieved speedup difficult because
of the low resolution in this segment. Therefore, a second plot focuses on
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displaying the results of the fast variants only. Figure 4(c) and Figure 4(d)
show the speedup with a linear scale on the y-axis. This plot illustrates that
the achievable speedup over the respective single thread performance is higher
with pipelined CG, achieving the highest speedup of 2.97 with the regular re-
duction and 24 threads. For normal CG, STM Fast with 8 threads achieves the
best speedup of 2.38. The overhead of the single thread execution has a large
influence on the reported speedups because a larger overhead (e.g., with STM)
leads to a slower execution time. If the speedup is computed relative to this
single thread execution time, this yields a higher speedup because the baseline
is worse. This effect could be avoided by having a fixed serial execution time
for all benchmarked variants. Here, this effect leads to the situation that STM
Fast has a higher speedup for e.g., pipelined CG with 8 threads, but a higher
execution time than e.g., Reduction.

Convergence Behavior – This paragraph presents the results of examining
the convergence behavior of normal CG and pipelined CG applied to a problem
that solves the stationary heat equation without heat source. The parameters
setting is identical with the one that has been shown in Table 1. Both variants
of CG show a consistent convergence behavior across all tested thread counts
and synchronization mechanisms. Normal CG converges after 25 iterations to a
solution that satisfies the criteria. Pipelined CG finds a solution to the prob-
lem that satisfies the convergence criteria after 26 iterations. Therefore, for the
numerical problem solved in this experiment, the choice of the algorithmic vari-
ant has an impact on the convergence behavior. Pipelined CG needs to perform
one additional iteration which is equal to a relative increase of computational
complexity of 4% for the considered problem.
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Which instruction type contributes the largest share? Figure 5 shows a break-
down of instructions retired into the measured type of instructions. The available
types are: floating point instructions (denoted as PAPI FP INS), branch instruc-
tions (labeled PAPI BR INS), load and store instructions (PAPI LD INS and
PAPI SR INS respectively) and remaining instruction with the label OTHER -
INS. Other instructions have not been measured, but computed as the differ-
ence from the measured ones with the remainder of the retired instructions
(PAPI TOT INS). The Figure has a normalized y-axis that shows 100% of the
retired instructions. Each of the instruction types has a box that represents its
share of the retired instructions. These bars are grouped according to the thread
count and each group shows the used synchronization mechanisms (Reduction,
Critical Fast, STM Fast, and Atomic Fast). The number of threads for each
group is also found below the legend. Figure 5(a) shows the breakdown for nor-
mal CG and Figure 5(b) shows pipelined CG. For both the following trends
can be derived: the share of floating point instructions decreases as the number
of threads increases although the actual number of floating point instruction is
constant. This is due to the fact that the number of other instructions increases
as the number of threads increases. These additional instructions stem from the
spawning/coordinating more threads. For normal CG and Reduction the share
of FP instructions decreases from 22% for 1 thread down to 17% for 16 threads.
Pipelined CG and Reduction yields similar numbers: the FP rate decreases from
25% for 1 thread to 20% for 16 threads. To summarize Figure 5, we conclude
that loads and stores contribute the highest share to the retired instructions
(≈ 40%), floating point instructions contribute ≈ 20% and branch instructions
≈ 15% while other instructions contribute ≈ 25% and become increasingly im-
portant with larger thread counts. The actual number of events varies depending
on the synchronization variants, thread count and algorithmic choice, but the
dominant instructions in our experiments have been loads and stores.

3 Related Work

Different possibilities to realize the concept of Transactional Memory have been
proposed for Software, Hardware, or both [6]. The publications on tool support
for TM are rare. For Software Transactional Memory profiling solutions have
been shown for the programming languages C# [17], Haskell [14], Java [1], and
C [9,2] and for Hardware Transactional Memory for the TCC architecture [3].

In particular, none of these approaches attempted to optimize and evalu-
ate a numerical algorithm through selecting, implementing, and evaluating a
differently formulated variant of the algorithm that promised a higher TM per-
formance. Hence, this work with its insights into the run time behavior and
utilization of the microarchitecture through the two CG variants advances the
state-of-the-art and may inspire other researchers that face the problem of opti-
mizing a numerical algorithms that uses/with TM.
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4 Findings with Variants of CG and Outlook

Our first finding is that the right way of organizing the reductions is key to
performance. A reduction implemented with direct updates of the shared vari-
able, as seen in the Slow synchronization variants, will not yield a speedup over
execution with one thread regardless of the synchronization primitive. Instead
thread-local variables that hold intermediate results, as demonstrated with Fast
synchronization variants, are a requirement to achieve speedups. Moreover, the
pipelined CG with larger transactions is a strong competitor for normal CG be-
cause the number of aborts is modest up to 16 threads. As a downside, pipelined
CG required one more iteration to achieve convergence compared with normal
CG for our example case. For both CG variants, the wait time at the barriers
dominates the time for synchronization in the reduction operations of the Fast
variants. This does not only limit the gains of parallel execution but also masks
the effects of optimizing the TM performance. The regular problem structure
of CG demands that barriers synchronize all threads after a step in the loop.
Thus, a thread that executes a transaction and forces another thread to abort
and execute again, simply waits longer at the next barrier for the remaining
threads. This basic scenario still holds for longer transactions with pipelined CG
and pipelined CG achieves a higher speedup than normal CG. As a result, the
CG algorithm is not suited to demonstrate a performance gain with STM so that
a practical and generic implementation should use the OpenMP reduction for
now. On the other hand, the competitive execution time of pipelined CG with
larger transactions and still moderate contention confirms the basic idea of op-
timizing the TM behavior through employing larger transactions. Moreover, the
large difference in execution time for transactions and barriers suggests that fu-
ture research should target more efficient barrier synchronization or techniques
to elide barriers. Common to both CG variants, we found that higher thread
counts lead to more L2 cache misses that hinder the scalability and that loads
and stores contribute the largest amount to all kinds of instructions retired.

Future work should integrate the profiling of transactions with an existing
profiler for OpenMP applications, e.g., ompP [5], in order to complement the
time spent in transactions and barriers with other OpenMP constructs such as
parallel sections and thread create or destroy. These measurements would com-
plement the performance analysis and a programmer could relate the overheads
associated with STM to those of OpenMP in general.
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