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Abstract. High-performance and energy-efficient data management ap-
plications are a necessity for HPC systems due to the extreme scale
of data produced by high fidelity scientific simulations that these sys-
tems support. Data layout in memory hugely impacts the performance.
For better performance, most simulations interleave variables in memory
during their calculation phase, but deinterleave the data for subsequent
storage and analysis. As a result, efficient data deinterleaving is critical;
yet, common deinterleaving methods provide inefficient throughput and
energy performance. To address this problem, we propose a deinterleav-
ing method that is high performance, energy efficient, and generic to
any data type. To the best of our knowledge, this is the first deinterleav-
ing method that 1) exploits data cache prefetching, 2) reduces memory
accesses, and 3) optimizes the use of complete cache line writes. When
evaluated against conventional deinterleaving methods on 105 STREAM
standard micro-benchmarks, our method always improved throughput
and throughput/watt on multi-core systems. In the best case, our deinter-
leaving method improved throughput up to 26.2x and throughput/watt
up to 7.8x.

1 Introduction

Emerging extreme-scale high performance computing (HPC) systems enable high
fidelity scientific simulations that generate data at an increasing rate [1]. Yet,
these HPC systems and data-intensive applications they support consume energy
at an ever-increasing amount [2,3]. Thus, the need for performance and energy
efficient data management applications is of utmost importance to maximize
throughput/watt while achieving improved scalability and sustainability [4].

To improve performance during scientific data analysis, which is critical for
gaining insights from the simulations, simulations often have to deinterleave data
variables. Upon deinterleaving, the data set for each variable of the simulation
is contiguous in memory and storage. This deinterleaved layout is beneficial
since most data analyses span multiple time steps of a particular variable [5].
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In contrast, most simulations perform calculations using instances of many vari-
ables from a current/previous time step. Hence, an interleaved layout in memory
provides better data locality during simulation runs by keeping each group of
variables together in memory for the active time steps, see Figure 1.

Deinterleaving data is frequently necessary after the completion of a simu-
lation step before data analysis and storage. For example, simulations such as
FLASH [6], S3D [7] and Nek5000 [8] have variables that are interleaved in mem-
ory while most storage and analysis, such as data compression [9,10] and variable
precision analytics [11], are performed using a deinterleaved layout. Through
performing numerous micro-benchmarks, we found that common deinterleaving
methods have poor throughput and energy performance.

To address this problem, we propose a deinterleaving method that is high
performance, energy efficient, and generic to any variable data type. To the
best of our knowledge, this is the first deinterleaving method that 1) exploits
data cache prefetching, 2) reduces memory accesses, and 3) optimizes the use
of complete cache line writes. As a result, our method increases the throughput
performance, reduces memory latency, and improves energy utilization.

Specifically, we compare the throughput performance and energy utilization
of our deinterleaving method to two common deinterleaving methods. We as-
sessed our method with 105 STREAM standard micro-benchmarks including 84
throughput and 21 energy performance test cases of varying input sizes and data
types. In all cases tested, our method achieved better throughput and energy
performance than the other two methods. In the best case, our method improved
throughput up to 26.2x and throughput/watt up to 7.8x, when compared to the
next best deinterleaving method.

2 Background

Simulations such as FLASH, S3D, and Nek5000 have variables that are inter-
leaved in memory. These interleaved variables can be thought of as a matrix
of data stored in row major format where each column corresponds to a par-
ticular variable. For multidimensional variables, each dimension has a separate
column. Consider an example of FLASH simulation data with a sample of three
variables ρ, P, and T corresponding to gas density, pressure, and temperature,
respectively. The interleaved layout of these variables in memory can be seen in
Figure 1a. Representing this data in matrix form would give an m × 3 matrix
where the three columns correspond to the three variables and the rows corre-
spond to different steps of the simulation, see Figure 1c. With this interpretation,
deinterleaving the data is equivalent to performing a matrix transposition, which
would change the layout of the variables in memory, see Figure 1b.

There are two common techniques for deinterleaving data by performing an
out-of-place matrix transposition. We refer to these techniques as standard trans-
position and strided transposition. These two techniques, along with our proposed
method in the following section, are considered out-of-place due to the use of
an output memory space equal to the size of the original matrix where the el-
ements are copied. In contrast, in-place transposition methods use a bounded



A Generic High-Performance Method for Deinterleaving Scientific Data 573

ρ0 P0 T0 ρ1 P1 T1 ... ρm Pm Tm

(a) variables interleaved in memory

ρ0 ρ1 ... ρm P0 P1 ... Pm T0 T1 ... Tm

(b) variables deinterleaved in memory

ρ0 P0 T0

ρ1 P1 T1

...
...

...
ρm Pm Tm

(c) interleaved matrix format

Fig. 1. FLASH data in interleaved and deinterleaved layouts; each ρf , Pf , and Tf for
f = 0 to m refers to the value of ρ,P, and T of the simulation at the f th matrix row

amount of memory space and, in some cases, can slightly outperform out-of-place
methods. However, in-place methods are often complex and can be performance
constraining for simulations requiring variable interleaving, such as FLASH, S3D
and Nek5000, to continue from where it left off in the calculation phase.

The standard and strided out-of-place transposition methods differ from each
other in how they copy elements into an output memory buffer. The standard
transposition method uses two loops to iterate row-wise and writes out the ele-
ments in a strided manner [12]. Alternatively, the strided transposition method
uses two loops to iterate column-wise and writes out the elements contiguously.

3 Method

Our deinterleaving method performs an out-of-place transposition to transform
a matrix of data stored in row major format to one stored in column major
format. During the transposition process, our method combines the strength of
both the standard transposition and strided transposition techniques.

In this section, we describe our deinterleaving method in detail. The method
section is divided into three subsections corresponding to the three major com-
ponents of our method: 1) cache prefetching on blocks of data, 2) using the
registers as a vector transposition buffer, and 3) optimizing for full cache line
writes. In addition, we provide a simple example for clarity.

3.1 Cache Prefetching on Blocks of Data

The benefit of cache prefetching is to hide latency time sinks associated with
accessing main memory [13]. The standard transposition method, as discussed
in Section 2, is able to take advantage of these benefits due to the sequential
data reads inherent in its method. In contrast, the major weakness of the strided
transposition method is that cache prefetching is not guaranteed and its effec-
tiveness is dependent on the input buffer size. The cache prefetching benefits
of the standard transposition method were the motivation for performing cache
prefetching in our method.

Given an m × n (m rows and n columns) matrix of elements, A, stored in
row major format, the first step of our deinterleaving method is to partition
A into a block matrix where the blocks correspond to submatrices of A that
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Fig. 2. Matrix A being partitioned into M blocks of size mb × n

will be consecutively prefetched into cache. As illustrated in Figure 2, matrix
A is partitioned as an M × 1 block matrix where each block is of size mb × n.
Partitioning A in this manner creates M blocks each of which we label as Bk

for k = 1 to M . The number of rows in each block, denoted mb, is chosen so a
block column can fill the entire cache line, discussed in Section 3.3.

For example, suppose the cache line is size of C bytes, which on most modern
architectures is 64 or 128 bytes [14]. Suppose the elements of matrix A are each
β bytes. Then, for mb elements to fill the cache line as full as possible we want
mbβ = C, and therefore make mb = �C/β�. It is plausible that the last block
will have fewer elements than the other blocks because mb may not evenly divide
the m elements. In this case, M = �m/mb�. To process the smaller block, the
matrix can be padded with values that will be disregarded [15].

The blocks, Bk for k = 1 toM , correspond to the submatrices of A that will be
consecutively prefetched into the cache. Block of data Bk+1 will be prefetched
into cache while the block Bk is being further processed, as described in the
following subsections. By prefetching blocks of elements in this manner, our
method can reduce memory latency associated with loading blocks from memory.

3.2 Using the Registers as a Vector Transposition Buffer

Each block Bk can further be partitioned into submatrices using the columns as
dividers, making Bk into a 1 × n block matrix, referred to as a column vector,
as seen in Figure 3a. With both partitions applied, matrix A can be viewed as
a matrix of column vectors as shown in Figure 3b. Each column vector of Bk,
which we denote as V c

k,j for j = 1 to n, consists of elements that are currently
non-contiguous in memory due to the row major storage format of A.

The goal of our deinterleaving method is the elements of the column vectors
to be contiguous in memory or, equivalently, the elements to belong to the same
row in the matrix. To make the elements contiguous, each column vector gets
transposed and temporarily stored in CPU registers until it is written out to a full
cache line. The general notation for each transposed column vector, now referred
to as a row vector, is denoted: V R

k,j = [e(k−1)mb+1,j , e(k−1)mb+2,j , · · · , ekmb,j ].
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(b) Matrix A partitioned into submatri-
ces of column vectors

Fig. 3. Each block of matrix A partitioned into n column vectors

For clarity, consider a specific example. Suppose block B1 is currently being
partitioned into n column vectors, namely V c

1,j for j = 1 to n. The elements
of a column vector V c

1,j consist of the elements e1,j, e2,j , ..., emb,j from A as
seen in Figure 3a. Starting with the first column vector (j = 1), the elements
must be loaded into a buffer of registers and in the next step written into the
extra memory space that was created for the transposition matrix. Using CPU
registers as a buffer to store these elements constitutes a transposition of the
column vector as the elements will now be contiguous instead of strided.

The motivation for using the registers as a temporary buffer is that each
column vector must be transposed into some storage location in order to achieve
full cache line writes, which is the strength of the strided transposition method.
The registers provide the most efficient location to store the row vectors due
to their minimal CPU cycles per operation [16]. In addition, using a buffer of
registers in this manner is a viable option since typically a CPU provides enough
hardware registers where the buffer size is at least equal to the cache line size.

3.3 Optimizing for Full Cache Line Writes

Once the elements of a row vector are loaded into the register buffer, our method
then writes out this data into the memory space that was created for the dein-
terleaved output. During the write process, our method utilizes the full cache
line due to the row vector containing mb elements, where mb was chosen to
fill the cache line. By utilizing full cache line writes, our method emulates the
strength of the strided transposition method [17], while avoiding the inefficient
write process of the standard transposition method.

During the write process, our method must leave enough room for m elements
of A (an entire column) between the start of each column vector, meaning there
will be a stride of m between the memory storage offset of each column vector.
So, for a given row vector V R

k,j , the elements get mapped consecutively into the
new memory storage location offset starting at (k − 1)mb + (j − 1)m.

After this process is completed and all the row vectors have been written,
the process is repeated. The next block, which should already reside in cache, is
partitioned into column vectors that are consecutively loaded into the register
buffer and written out. The entire process is completed for each block Bk for k =
1 to M . Once every block has gone through this process, the output location will
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Fig. 4. The partition and transposition steps of our deinterleaving method performed
on a simple 8× 3 matrix of 8-byte elements optimized for cache line writes of 32 bytes

contain the transpose of matrix A. The entire deinterleaving process is illustrated
by the example given in the following section.

3.4 A Simple Example of Our Deinterleaving Method

For clarity, consider a simple example of 24 data elements consisting of three
different variables interleaved in memory. Figure 4a shows the matrix represen-
tation of these interleaved variables, with each column of the matrix storing data
corresponding to a particular variable. For the sake of this example, suppose the
elements are 8-byte doubles (common in simulation data) and the cache line
size of the system is 32 bytes. The elements of the matrix are initially stored
in row major format, meaning the elements are ordered as e1, e2, e3, e4, ..., e24
in memory. The goal of our deinterleaving method is to obtain the transpose of
the matrix, illustrated in Figure 4e, so that the elements of each column will be
contiguous in memory and thus deinterleaved.

The initial step of our deinterleaving method is to create a new output memory
space to hold the transposed matrix. Next, the matrix is partitioned into two
4 × 3 block matrices, B1 and B2 consisting of elements e1 through e12 and e13
through e24, respectively. The number of rows in each block was chosen asmb = 4
so that each column within a block will entirely fill the cache line, as four 8-byte
doubles is exactly the cache line size of the system.

With the matrix partitioned into two blocks, the next step is to load B1 into
the cache. The block itself is then partitioned into the three column vectors
V C
1 , V C

2 , and V C
3 , as depicted in Figure 4b. After this partition, the first column

vector of B1, meaning the elements e1, e4, e7, and e10, is transposed into a row
vector and temporarily stored in the register buffer, see Figure 4c. The full cache
line is then utilized to write out the elements of the row vector into the output
memory space that was created for the transposed matrix, see Figure 4d. This
process is repeated on the remaining column vectors of B1 until all of them have
been written into the output memory space.

After B1 has finished transposing and writing each of its column vectors, the
same process is repeated on the second block, B2. This block would have been
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prefetched into cache during the time B1 was being processed, thus saving the
time of retrieving B2 from memory. After B2 is processed, the matrix will be
transposed and the variables deinterleaved, as illustrated in Figure 4e.

4 Performance Evaluation

In this section, we present the empirical evaluations of our deinterleaving method
via a set of micro-benchmarks to evaluate throughput and energy performance.
We compare the results of our deinterleaving method against those of the stan-
dard and strided transposition methods. For brevity, we will refer to our Out-
of-Place Deinterleaving method as OPD method in the remainder of the paper.

4.1 Experimental Setup

Performance measurements were collected on the Lens Linux cluster at Oak
Ridge National Laboratory and on a dedicated Intel server. The Lens cluster is
primarily used for data analysis and high-end visualization. Each cluster node
consists of four quad-core 2.3GHz AMD Opteron processors and 128GB of mem-
ory. Each processor has three cache levels: L1 cache is 64KB, L2 cache is 512KB,
and the shared last level cache (LLC) is 5118KB. The Intel server consists of a
quad-core i7 2.93GHz processor and 16GB of memory running CentOS-6.3. The
Intel processor has three cache levels: L1 is 32KB, L2 is 256KB, and LLC is 8MB.
All multi-core evaluations for both the throughput and energy experiments were
done utilizing all available processors and computational cores.

For collecting performance metrics, we added micro-benchmarks of all deinter-
leaving methods into the STREAM [18] framework, compiled with GNU Com-
piler Collection (GCC) version 4.7.1. STREAM is useful for evaluating memory
throughput performance of single- andmulti-core I/O-intensive functions that are
sensitive to system architecture characteristics [19]. We compared the through-
put performance metrics collected from 105 STREAM micro-benchmarks tested
across the AMD and Intel systems. The test cases spanned a diverse set of data
including multiple data types, column sizes, and input buffer sizes. Specifically,
the data types evaluated were bytes, single-precision floating-points, and double-
precision floating-points. For each data type, the variables interleaved (columns)
were 2, 4, 8, and 16. The input buffer sizes ranged from 64, 128, · · · , 4096 kilobytes
per core. To obtain the performance measurements seen in Figure 5 and
Figure 6, eachmicro-benchmarkwas run 100 times for each deinterleavingmethod.
The highest throughput of the 100 runs was recorded.

For our set of micro-benchmarks, we restricted our input buffer size between
64KB and 4096KB. The reason this lower bound was chosen is due to the preci-
sion of the timer used in the STREAM benchmark, which states at what point
the clock measurement becomes unreliable. For input sizes less than 64KB, our
deinterleaving technique ran too fast for a reliable throughput measurement.
However, at sizes of 64KB and higher, the throughput could be measured accu-
rately. The upper bound of 4096KB was chosen to represent an input size that
was beyond the size of the LLC for multi-core evaluations.
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4.2 Deinterleaving Throughput Performance

In all multi-core evaluations, our deinterleaving method performed better than
the standard and strided transposition methods, see Figure 5 and Figure 6. In
the best case, our deinterleaving method performed at a 26.2x faster throughput,
when compared to the next best method. In addition, our method consistently
reported gains of over 40GB/s on smaller input sizes (corresponding to lower
cache levels). The performance gains of our deinterleaving method were more
pronounced on smaller input buffer sizes because memory latency starts to be-
come a significant factor on larger buffer sizes.

Another characteristic seen in our results is that neither the standard trans-
position nor the strided transposition was consistently better than the other. In
some cases, the standard transposition would significantly outperform the strided
transposition and vice versa, irrespective of the instruction set architecture being
used, see Table 1. The performance inconsistency of these two techniques is an-
other strength of our deinterleaving method, as ours consistently outperformed
the other two methods.

Although not depicted in throughput performance figures, our method was
also compared against the other methods when all were utilizing only a single
core of the system. In this case, our method reported similar, but scaled down
trends to those seen in multi-core evaluations. Even in this case, our method
always had better throughput performance than the other two methods.
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Fig. 5. Throughput performance applying STREAM micro-benchmarks when deinter-
leaving single-precision, double-precision floating-point (FP), and byte variables on the
AMD Opteron system utilizing all 16 cores
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Fig. 6. Throughput performance applying STREAM micro-benchmarks when deinter-
leaving single-precision, double-precision floating-point, and byte variables with 16-
variable interleaved data on the Intel i7 system utilizing all cores

Table 1. Instruction set architecture for deinterleaving methods

Data Type Method
Column Size

2 4 8 16

Double
Standard SSE2 x86 64 x86 64 x86 64
Strided x86 64 x86 64 x86 64 x86 64

Float
Standard SSE SSE SSE SSE
Strided SSE x86 64 x86 64 x86 64

Byte
Standard SSE2 SSE2 SSE2 SSE2
Strided x86 64 x86 64 x86 64 x86 64

4.3 Deinterleaving Energy Performance

The energy performance measurements were performed on a dedicated Intel
server connected to a Watts Up Pro meter, which provides a recording of power
measurements (watts) per second during the collection of throughput metrics.
The power was measured for each deinterleaving method on 21 micro-benchmarks
of 16-variable interleaved data of varying input sizes and data types. Energy per-
formance normalization was done for the deinterleaving methods by calculating
gigabytes per joule (throughput/watt) for each test case.

In all cases tested, our deinterleaving had better energy utilization than the
other methods, with throughput/watt improvements up to 7.8x, when compared
to the next best method. The results of our energy experiments can be seen in
Figure 7. The improved energy performance of our method is attributed to the in-
creased throughput (Figure 6), the effective cache utilization similar to the stan-
dard transposition method, and the optimized cache line writes like the strided
transposition method.

5 Related Work

Out-of-place matrix transpositions have been studied extensively in the past.
Majority of these transposition algorithms, initially proposed decades ago, focus
on methodologies for optimizing use of secondary storage (tapes, disks, etc.).
Although these algorithms are not well suited for modern computer systems due
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Fig. 7. Normalized energy performance measurements (throughput/watt) collected
with power meter during STREAM throughput benchmarks on Intel system (Figure 6)

to processor cache inefficiency, we still use these techniques for references since
secondary storage of the past is analogous to RAM in modern systems. A fast
matrix transposing method was given in [20] where the algorithm was specifically
designed for 2n×2n square matrices and it is compared with many other matrix
transposition algorithms. Another algorithm called single radix algorithm was
proposed in [21], and shows better performance in disk seeks and accesses. For
transposing a large arbitrary matrix, PRIM was introduced in [22].

In-place matrix transpositions can be used as an alternative to out-of-place
methods; however, in-place methods are often complex and can be performance
inefficient for simulations requiring interleaved variables to continue with the
calculation phase. Furthermore, in-place methods commonly have constraints
on row and column sizes making them unusable as a generic method for dein-
terleaving scientific data. Six algorithms are investigated in [23] for transposing
a large square matrix in-place. They use 32-bit single-precision floating-point
numbers and have the length of both the row and column equal to 2n. In their
experiments, the non-linear array layout algorithm outperforms other algorithms
as it uses “Morton ordering” [24]. This algorithm also uses recursion to divide the
problem into smaller subproblems, as in [12], but terminates at an architecture-
specific tile size. Even by using a “blocking” and “tiling” technique, a higher
cache efficiency might not be achieved as claimed in [16]; instead, they proposed
a buffer must be used in order to be cache efficient.

Although much attention has been paid to matrix transposition, very few
of the studies focus on the utilization of cache in a specific domain requiring
deinterleaving of variables. Our method applies to any data type and utilizes
full cache line writes to be throughput and energy efficient when deinterleaving
data. Blocking, shuffling, and compression library, Blosc, was introduced in [25],
which uses a high-performance byte deinterleaving technique to reduce activity
on the memory bus. Our approach differs from this technique in that we support
not just byte-level but float- and double-level as well. Moreover, Blosc currently
utilizes 16-byte SSE2 register writes instead of full cache line writes compared
to our deinterleaving method.
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6 Conclusion

We proposed a deinterleaving method that is high performance, energy efficient,
and generic to any data type. Our method has increased throughput and energy
performance by utilizing the system architecture in three ways: 1) improving
data cache prefetching, 2) reducing memory accesses, and 3) optimizing the use
of full cache line writes.

Our method results in better throughput and energy performance when
compared against two common deinterleaving methods during 105 STREAM
standard micro-benchmarks evaluations, which includes 84 throughput and 21
energy performance test cases. When compared to the next best case, our method
improved throughput up to 26.2x and throughput/watt up to 7.8x.
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