
Towards a Scalable Microkernel Personality
for Multicore Processors

Jilong Kuang, Daniel G. Waddington, and Chen Tian

Computer Science Lab, Samsung Research America - Silicon Valley
{jilong.kuang,d.waddington,chen.tian}@samsung.com

Abstract. With a steady trend from singe-core to multicore processors, scala-
bility has become a significant design issue for the Operating Systems (OS),
as many critical OS functions must be re-designed in order to achieve scalable
performance. While numerous efforts have been made to improve scalability of
monolithic OS kernels, comparatively little work has been done for microkernels.

In this paper, we begin by studying the scalability of Fiasco.OC, a state-of-
the-art microkernel implementation. We then present OmniRE, a new person-
ality for the Fiasco.OC microkernel that is aimed at being multicore scalable.
Compared to L4Re (the vanilla “off-the-shelf” Fiasco.OC personality), OmniRE
aims to eliminate contention by decentralizing resource management, scheduling,
and kernel access. The design also aims to minimize inter-process communica-
tion (IPC) across CPUs by localizing resource functionality such as page-fault
handling. We conduct experiments to compare OmniRE against L4Re as well
as Linux on a 48-core AMD server and a 6-core Intel workstation. Our results
indicate that OmniRE provides better scalability than L4Re and can in fact ex-
ceed absolute performance of Linux in memory page management at higher core
counts.

1 Introduction

Compared to monolithic kernels such as Linux and Windows, microkernel architectures
have unique advantages in simplicity, security, robustness and customization. To date,
research has predominantly focused on improving microkernel uniprocessor perfor-
mance and enriching the feature set. These efforts have lead to third generation micro-
kernels, such as Fiasco.OC[7], NOVA[15], and OKL4 [6]. As microkernel technology
has matured, it has begun to get traction in both mobile platforms (e.g., L4Android [2],
OKL4 [6]) as well as embedded and safety-critical systems. More recently microkernels
have been explored as a more effective platform for HPC-like applications [14] [17].

The move towards multicore processors has driven many OS communities to reex-
amine fundamental internal design decisions in order to improve multicore scalability.
For example, in the Linux kernel, little use of coarse-grained locks remained by version
2.6; most notably code locking had been converted to data locking, advanced “lock-
less” data structures had been applied (e.g., Read-Copy-Update [12]) and schedulers
had been re-implemented to support per-core scheduling queues.

Nevertheless, as of now, not much work has been done for microkernels. Although a
number of research OSes, including Barrelfish [4], Helios [13], FOS [18], and Corey [20],

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 620–632, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards a Scalable Microkernel Personality for Multicore Processors 621

have taken an approach based on the concept of multi-kernels to improve OS scalability
on multicore processors, they have shied away from shared-memory kernels due to the
need to partition resources. However, shared-memory kernels provide obvious advantage
with respect to integration and resource sharing across cores. It is for this reason that we
have chosen a shared-memory microkernel, Fiasco.OC [7,10], as the basis of our work.

In this paper, we propose OmniRE, a scalable runtime personality (user-land) for the
Fiasco.OC microkernel. OmniRE is a direct replacement for the L4Re personality from
the Fiasco.OC group [7]. OmniRE incorporates a hierarchical resource management
design that eliminates central points of contention and provides sufficient flexibility to
allow tailoring of the OS to underlying processor, memory and IO topologies. Com-
pared to L4Re, OmniRE offers the following differentiation: 1) It eliminates contention
on resource management by decentralization of memory management, scheduling, and
access to kernel services. 2) It minimizes cross-core IPC on multicore architectures by
forcing resource management, resource access and page-fault handling to be localized
to the same core whenever possible.

The principal contributions and structure of the paper are as follows:

– We study and investigate the scalability potential of the Fiasco.OC microkernel and
examine performance scaling for the L4Re personality (Sections 2 and 3).

– We present a design and implementation of OmniRE, a scalable multicore user-land
based on the Fiasco.OC microkernel that uses a hierarchical arrangement of multi-
threaded services and decentralized resource management to successfully achieve
scalability (Section 4).

– We conduct experiments to empirically compare Fiasco.OC/OmniRE against Fi-
asco.OC/L4Re as well as Linux 3.0 running on a 48-core AMD server and a 6-core
Intel workstation (Section 5).

2 Fiasco.OC and L4Re Overview

As a representative third generation microkernel, Fiasco.OC and its user-land runtime
environment (L4Re), have become increasingly popular due to the availability of ad-
vanced features (e.g., capabilities, multicore support, multi-ISA support, Linux para-
virtualization) and general maturity.

The basic components of an L4Re-based system are:

– Microkernel - provides primitives to execute programs in tasks, to enforce isolation
among them, and to provide means of secure communication in order to let them
cooperate. As the kernel is the most privileged, security-critical, software compo-
nent in the system, it provides only a minimal set of mechanisms that are necessary
to support applications.

– L4 Runtime Environment - L4Re comprises low-level software components that
interface directly with the microkernel. The root pager Sigma0 and the root task
Moe are the most basic components of the runtime environment. Other services
(e.g., for device enumeration) use interfaces provided by them.

622 J. Kuang, D.G. Waddington, and C. Tian

– Applications - run on top of the system and use services provided by the runtime en-
vironment or other applications. Applications include conventional user-local pro-
grams that face the end-user, as well as virtual machine monitors, device drivers
and other system services.

3 Study of Off-the-Shelf L4Re Scalability Characteristics

Although the Fiasco.OC kernel is explicitly designed to support multicore processors [9],
there are scalability limitations in the current L4Re platform. To investigate the L4Re
scalability characteristics, we have developed micro-benchmark applications to test mem-
ory management and thread creation (corresponding to kernel object creation) as key in-
dicators of system scaling. The test platform is a 48-core AMD Magnycours server (see
Section 6 for more details).

Figure 1 shows the memory management results, where each iteration performs a
single page (4K) allocation (via std::malloc API), writes to each integer element in the
page and then frees the memory (via std::free). The results show that memory manage-
ment (allocation, physical-to-virtual mapping and paging) on the L4Re-based platform
degrades significantly from only two cores. Figure 2 shows the thread creation results,
where each iteration creates a new child thread which executes an empty function. The
parent thread (per-core worker) waits for a child thread to complete before starting the
next thread. Similarly, it is evident that L4Re does not scale well with respect to thread
creation.

Fig. 1. L4Re Memory Allocation Scaling Fig. 2. L4Re Thread Creation Scaling

We believe that the current scalability limitations in L4Re-based system are predom-
inantly a result of centralized resource management in the L4Re personality.

4 OmniRE Design

OmniRE is a new personality for the Fiasco.OC microkernel [7,10]. OmniRE directly
replaces the L4Re personality [3]. Key design elements are:

– Decentralized management of memory (physical and virtual), thread/process, IO
and IRQ resources.

Towards a Scalable Microkernel Personality for Multicore Processors 623

– Minimization of cross-core IPC by localization of page-fault handling and service
access.

– Explicit resource management and quota control for all resources in the system.
Secure access control to resources realized through the microkernel’s capability
feature.

4.1 OmniRE Detailed Design

OmniRE is responsible for managing all of the resources in the system. This includes
controlling allocation of kernel objects (e.g., threads, semaphores, IPC gates) as well
as resources directly used by the application (e.g., memory, I/O ports). The fundamen-
tal basis of OmniRE’s design is that resource management (e.g., allocation, freeing),
resource access (e.g., invocation on an IPC-gate), and page-fault handling should all
be localized to the same processor core whenever possible. Permissions and quotas are
arranged hierarchically and managed locally. Reallocation and resource balancing is
performed at a coarser granularity. The rationale for core-localization is to both mini-
mize cross-core communications and decentralize resource management (reducing con-
tention). Cross-core IPC is approximately ten times slower (see Section 6.1) than same
core IPC. Cross-core data sharing leads to unpredictable levels of degradation due to
serialization on locks and underlying side-effects such as false-sharing.

Multi-
threaded

Omni-Core

Multi-
threaded
App-Core

App

L4 Microkernel

Multi-
threaded
App-Core

App

App

Pager

Pager

Pager

tr
us

te
d

tr
us

te
d

tr
us

te
d

factory instantiation

factory instantiation

Resource
Manager

RESOURCES

RESOURCESRESOURCES

Fig. 3. OmniRE High-level Architecture

Our design includes two key elements: 1) Omni-Core and 2) a set of App-Cores.
Omni-Core forms the root of the resource management tree; it manages the highest
level of resource partitioning. App-Cores are localized delegates that are instantiated by
Omni-Core (see Figure 3). Each App-Core is isolated in a separate process. They are
assigned a coarse-grained allocation of resources from Omni-Core, which is dynami-
cally load-balanced across App-Cores as needed. The detailed architecture is given in
Figure 4.

App-Cores are the direct representative of the runtime environment for applications.
They are instantiated by Omni-Core (either at boot time or dynamically) and indirectly
used to load applications. The logical resource partition (i.e., set of quotas) for an appli-
cation is managed by an App-Env (Application environment) that is instantiated inside
the App-Core. Application requests to the App-Env are associated with Service Points
that can be used to further partition the application’s resources on a per-thread basis.

624 J. Kuang, D.G. Waddington, and C. Tian

Application

core
1

core
2

core
0

core
4

core
3

Application

App-Env
Page-fault

Handler

Page-fault
Handler

App-Core

App-Core

Omni-Core

Resource
Manager

Service
PointService

Domain
Thread

Service
Domain
Thread

Service
Domain
Thread

Service
Domain
Thread

Service
Domain
Thread

Memory
IPC

Semaphore

Service
Point

Service
Point

App-Env

App-Env

Service
Point

Service
Point

Service
Point

Resource
Allocator

Quota Mgt

Thread

Memory
IPC

Semaphore

Resource
Allocator

Quota Mgt

Thread

Resource
Allocator

Quota Mgt

Memory

Resource
Allocator

Quota Mgt

Memory

core
1

core
2

core
3

core
4

Service
Domain core

5

core
0

core
1

core
2

core
0

core
4

core
3

Application

core
5

core
5

Page-fault
Handler

Fig. 4. Detailed OmniRE Architecture

Service Points are also useful (as a level of indirection) for transferring resources as a
thread migrates between cores or applications.

Resource management in each App-Core is decentralized so that resources that have
non-uniform access properties (e.g., memory, CPUs) can be separated out. To facili-
tate this, each App-Core maintains a number of Service Domain Threads that redirect
resource requests to different Resource Allocators. Resource Allocators exist for each
type of resource in the system (thread, process, memory, IPC gate, semaphore, IRQ ob-
ject). They manage a strict quota of resources, defined by a secure system specification,
that is assigned to the App-Core by Omni-Core during start-up. A key use of Resource
Allocators is to support NUMA memory allocation across multiple memory controllers.

Essential to the design is that both Omni-Core and the App-Cores are part of the
Trusted Computing Base (TCB). This means that the App-Core is trusted to, 1) prevent
violation of quotas agreed with Omni-Core, and 2) not abuse its privilege to directly in-
voke the kernel and request kernel-level resources (e.g., threads). It is the responsibility
of the App-Core to manage the application’s access to resources according to defined
quotas. Applications do not have direct access to either the kernel or to the Omni-Core
process. Doing so would break the security model and open up potential for QoS inter-
ference between applications.

5 Case Study: Physical Memory Management

This section addresses in more detail the hierarchical resource management scheme in
the context of physical memory management, which is one of the most basic functions

Towards a Scalable Microkernel Personality for Multicore Processors 625

any OS must provide. Different from monolithic kernels (e.g., Linux), where all page-
level memory requests are ultimately handled in kernel mode, microkernels such as
Fiasco.OC have two Physical Memory Allocators (PMA), one in the kernel and another
in user-land.

Kernel functions can directly allocate physical memory through the kernel PMA.
However, by default, the amount of memory managed by the kernel is less than 10%
of the total. The rest of the memory is managed by a user-level PMA, which allocates
memory to applications. We therefore only focus on the user-level PMA design.

Existing PMA Design. Figure 5 shows a typical sequence of operations for allocating
a page in Fiasco.OC. First, a process allocates a stack variable or heap data through a
virtual memory allocator such as malloc (step 1). When the virtual address is touched a
page-fault exception is raised by the processor, which transfers execution to the kernel’s
page-fault handler (step 2). The handler forwards the request to a special user-level
application, Sigma0 (also known as the pager), which by default handles all page-faults
in the system (step 3). In a multicore environment, it is possible to have multiple page-
faults taking place on different cores simultaneously. In this case the kernel page-fault
handler serializes them and forwards the request to Sigma0 one by one. When Sigma0
receives a page-fault notification IPC call, it requests a physical page from its PMA
(steps 4 and 5). The result is then sent back to the kernel (step 6), which then populates
the page table for the faulting process. After that, the kernel page-fault handler switches
back to the faulting instruction so the application process can continue (step 7).

While the entire process is transparent to applications, it involves four context switches
(steps 2, 3, 6 and 7), two of them being IPC calls (step 3 and 6). This is the cost that a
microkernel design must pay for security and reliability.

Kernel func�ons Kernel PMA

Sigma0 Process

User PMA

Kernel Mode

Kernel page fault
handler

Applica�on Process

VMA

User Mode

1. Virtual mem.
alloca�on

Write virtual
memory

2. Page fault (PF) 3. Redirect PF
to sigma0

5. Physical
Page allocated

4. Physical mem.
alloca�on req.

6. Resolve PF

Direct physical
mem. alloca�on

7. Return to faul�ng
instruc�on

Fig. 5. PMA Process in Fiasco.OC Kernel

Scalable PMA Design in OmniRE. The user-level PMA can be arranged globally,
for each NUMA zone, for each core or even for each process. In order to minimize
cross-core IPC we chose a per-core PMA and per-core pager design (see Figure 6).

626 J. Kuang, D.G. Waddington, and C. Tian

The benefit of this design is that it addresses two prominent scalability inhibitors.
First, it reduces pager contention by distributing page handling across cores. Second,
it eliminates all cross-core IPCs of page allocations, as each core now has a pager and
every process can use same-core IPC to communicate with the local pager. All page
requests can be handled on the same core rather than a different core - making the
behavior comparable to that of a monolithic kernel design. The result is that general
performance and scalability of page allocation is largely improved. Furthermore, CPU
utilization can also be maximized because no local physical memory requests interrupt
applications executing on a remote cores.

The implementation of the per-core PMA scheme in OmniRE is to first partition
physical memory and then construct per-core pagers as shown in Figure 7. When Om-
niRE is booted, it first loads Sigma0 as the default pager and then hands off the paging
for applications to Omni-Core. It is necessary to load Sigma0 as this provides paging
for the kernel and Omni-Core itself. As illustrated in Figure 7, Omni-Core first obtains
all physical memory that is made available by the kernel. Management of this memory
is then delegated to App-Cores which are localized with the applications.

To “link” the associated App-Core to each application, the kernel Process Control
Block (PCB) pager field is modified. This effectively enables per-core paging (see Fig-
ure 6).

Kernel mode
User mode

P
ag

er
 N

Core N

P
ro

ce
ss

 N

Page alloca�on
request & reply

...

Pa
ge

r
1

Core 1

P
ro

ce
ss

 1

Page alloca�on
request & reply

Idle
Running

Fig. 6. Creating One Pager For Each Core Im-
proves Scalability

App_Core NApp_Core 1

Omni -Core

Kernel mode
User mode

Core 1

Service Domain
Thread 1

...

...

...

Fiasco.OC kernel

Sigma0

PMA N

Core N

Step 1: Par��on memory

Step 2: Create
per-core pagers and
Ini�alize their PMAs

Region 1

PMA 1 Service Domain
Thread N

Region N

Fig. 7. Initialization of Per-core Paging and
PMA

6 Experimental Results

The current OmniRE prototype is implemented on a 32-bit x86 platform. Performance
and scalability results are collected from benchmark executions on both a 48-core
(4x12) AMD Opteron-based server platform and a single 6-core Intel Xeon workstation.
Timing measurements are taken using the on-chip time stamp counters. Measurements
for performance and scalability are taken from a series of micro-benchmark applica-
tions. All benchmarks are based on replicated processes (pinned to individual cores) to
remove the effects of contention on a shared page table by threads in a single process.
Table 1 gives additional detail of the two test platforms.

6.1 Fiasco.OC IPC Scalability

In this section, we provides results for the scalability of IPC. We chose to include this
data because of the fundamental importance of IPC performance and its broad effect

Towards a Scalable Microkernel Personality for Multicore Processors 627

Table 1. Test Platform Specification

L4Re Fiasco.OC Revision 36. x86 32-bit build.

Linux Ubuntu Linux kernel 3.0.0-16 server stock build (x86 64).

Compiler GNU GCC 4.4.6 with optimizations on (O2).

AMD
Magnycours
Server
(Dell R815)

CPU: 4x AMD Opteron 6174 2.2MHz CPU. Each multi-chip module package (processor) combines 2
dies of 6 cores. DVFS is turned off.

L1 cache (64KB data per core, 64KB instruction per core). L2 cache (512KB per core). L3 cache
(12MB per socket).

32GB DRAM; integrated DDR3 with support up to 42.7 GB/s memory bandwidth per CPU.

Four x16 Hypertransport links @ up to 6.4GT/s per link.

Intel Xeon
Workstation

CPU: 1x Intel W3670 3.2GHz 6-core. DVFS is turned off. HT is turned off.

L1 Cache (64KB data per core, 64KB instruction per core). L2 cache (256KB per core). L3 12Mb
shared.

4GB DRAM on single memory controller.

on scaling on the OmniRE personality. In this benchmark processes are arranged in pairs
either on a single core (same-core) or on adjacent separate cores (cross-core). For cross-
core, pairs are built up in clusters on the same die. Each pair exchanged 1 million IPC
messages in a ping-pong fashion. The implementation has identical semantics to the
L4Re functions l4 ipc call and l4 ipc reply and wait. Total time to complete
the exchange is measured and the mean taken across all cores.

Figure 8 shows the IPC scaling results. Same-core performance is approximately
one order of magnitude faster than cross-core. On the AMD platform, mean (per-pair)
performance actually improved by 16% over an increase of 36 cores (6-42). We believe
that this increase in performance is an artifact of the hardware architecture, specifically
the size and design of the Opteron’s cache. A similar trend is observed for the memory
management benchmark on the AMD platform, which we will describe later. On the
Intel platform, the data shows negligible performance change for both cross-core and

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 12 18 30 42 60 84

IP
C

 R
ou

nd
-t

rip
 T

im
e

(K
C

yc
le

s)

Pairs

Same-Core (AMD Magnycours)
Same-Core (Intel Xeon)

Cross-Core (AMD Magnycours)
Cross-Core (Intel Xeon)

Fig. 8. Fiasco.OC IPC Performance

628 J. Kuang, D.G. Waddington, and C. Tian

same-core IPC. In summary, Figure 8 validates our design in the following two aspects:
1) Minimizing cross-core IPC on multicore architecture whenever possible has signif-
icant performance gain. 2) Decentralizing resource management is preferable as both
same-core and cross-core IPC are scalable.

6.2 Memory Page Management with L4Re

In this Section, we measure the basic memory page allocation, mapping and freeing
in both OmniRE and L4Re. Each benchmark is executed as a single process running
on a dedicated core. The benchmark performs 100 iterations of a memory allocation
sequence. Each task first allocates a batch of 100 pages (1 page per allocation), then
touches the first byte of each page, which invokes the physical memory allocation,
and finally frees all 100 allocated pages. A coordinator process is used to synchro-
nize the launch of benchmarks after loading to ensure as close as possible start-times.
Similarly, L4Re benchmark uses a sequence of alloc(..), attach(..) followed by
detach(..) and free(..) during each iteration for fair comparison.

 0

 5000

 10000

 15000

 20000

 25000

 4 8 12 16 20 24 28 32 36 40 44

M
ea

n
T

im
e

P
er

 It
er

at
io

n
(K

C
yc

le
s)

Cores

L4Re

Fig. 9. Scalability of L4Re Memory Page Man-
agement (AMD Platform)

 0

 1

 2

 3

 4

 5

 1 6 12 18 24 30 36 42 48

N
or

m
al

iz
ed

 T
im

e
F

or
 P

ag
e

A
llo

ca
tio

n-
M

ap
-F

re
e

Cores

OmniRE
L4Re

Fig. 10. Normalized Scalability Comparison
with L4Re (AMD Platform)

Figure 9 shows the absolute mean time per iteration for L4Re as the number of cores
increases. From this figure we can clearly see that degradation of L4Re for the equiv-
alent benchmark using the alloc, attach, free, detach APIs is measured at 89%
over 40 cores (2.2% degradation per core). We believe that the cause of the degrada-
tion in L4Re is due to contention of the page-fault handler (Sigma0) which is, in this
implementation, single-threaded.

Figure 10 shows a normalized comparison of OmniRE and L4RE memory scaling.
As the number of cores increases up to 48, the normalized time of OmniRE remains
effectively flat; the degradation is only about 5% when 48 cores are used. In the case
of L4Re, however, the performance degrades over 240%. Due to the multi-threaded
page-fault handler in OmniRE, this resource contention is largely eliminated.

Towards a Scalable Microkernel Personality for Multicore Processors 629

6.3 Memory Page Management Compared with Linux

In this section, we present experimental comparison data for Linux. The benchmark for
OmniRE is the same as described in the previous section, except that we allocate a total
number of 100K pages in batches of 600 pages (2.4MB). Each allocation is still one 4K
page. The Linux implementations of this benchmark use mmap and malloc based APIs.
The mmap API provides a means to eagerly map physical pages so that a page-fault is
not generated. The OmniRE benchmarks also use eager mapping for fair comparison.

The results given in Figure 11 show that for single-page allocations on the AMD
platform, OmniRE’s page management is able to scale almost linearly whilst Linux de-
grades exponentially going from 9000 cycles on a single core to 1.1M on 48 cores (note
the logarithmic y axis scale). Figure 12 shows the single-page allocation data for the In-
tel Xeon platform using 6 cores. The data shows OmniRE degradation of less than 0.8%
over 6 cores and degradation of more than 35.5% for Linux. However, at this low core
count absolute performance of Linux is higher than that of OmniRE, as the OmniRE’s
scalability advantage has yet to offset its inherent microkernel limitations (e.g., doubled
IPC communications between kernel and user-land compared to a monolithic kernel).
In fact, Figure 11 clearly shows that only when core count exceeds 9 does OmniRE
outperform Linux.

 1

 10

 100

 1000

 10000

 1 6 9 12 18 24 30 36 42 48

M
ea

n
T

im
e

P
er

 It
er

at
io

n
(K

C
yc

le
s)

Cores

OmniRE
Linux

Fig. 11. Linux vs. OmniRE Comparison of
Memory Page Management Scalability (AMD
Platform)

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6

M
ea

n
T

im
e

P
er

 It
er

at
io

n
(K

C
yc

le
s)

Cores

OmniRE
Linux

Fig. 12. Linux vs. OmniRE Comparison of
Memory Page Management Scalability (Intel
Platform)

The poor scalability in Linux across 48 cores demonstrates that some critical func-
tions of today’s Linux OS do not scale well for even a few cores. Both Figure 11 and
Figure 12 show significant degradation of memory management as the number of cores
increases. Additional in-house experiments indicate that the cause of this serialization
likely relates to the locking strategy on the LRU (Least-Recently Used) page replace-
ment list. It is worth noting that although our Linux data is congruent with data collected
by other projects (FOS [19,5], Corey [20] and Barrelfish [4]), we speculate that any

630 J. Kuang, D.G. Waddington, and C. Tian

difference in the h/w platform (e.g., BIOS, memory) and/or the kernel build may affect
the performance. The reader should not focus on this work as a criticism of Linux but
simply as a comparison point.

7 Related Work

OmniRE is based on the Fiasco.OC microkernel [7] developed by the Operating Sys-
tems group of TU Dresden. As part of the Fiasco.OC work the team developed the
L4Re user-level personality. However, although the Fiasco.OC kernel has been explic-
itly designed to support multicore processors [9] there are scalability limitations in the
current L4Re mainly relating to the pager Sigma0, the IO server and cross-core IPC.
Furthermore, L4Re does not provide a secure resource management model but allows
applications to directly interact with the kernel and pager, which can potentially result
in QoS crosstalk and denial-of-service issues.

The resource management philosophy of OmniRE is inspired by work done by Feske
et al. in their Bastei Architecture [8]. The basic premise of their approach is to explicitly
manage all resources that are required by both applications and sub-systems. Resources
are securely managed through a parent-child trust relationship. The original concepts
developed in this work have now been carried through into the commercially supported
Genode OS Framework [1]. However, multicore scalability is not currently a primary
concern for the Genode Labs group. The current design incurs many cross-core IPC
invocations and scalability is limited by single-threaded contention points. OmniRE
addresses these concerns at the implementation level and also introduces a different trust
model from the Bastei architecture. Also worth mentioning is the resource container
work done in the K42 OS [16] that also developed approaches to resource management
and donation as a means to alleviate denial-of-service attacks.

The Barrelfish OS [4] developed by Microsoft Research and ETH Zurich Systems
Group was started in 2008. Barrelfish is a multi-kernel design that uses the notion
of User-level RPC (URPC) to facilitate high-performance IPC exchange via shared-
memory region without transitions through the kernel. OmniRE uses a URPC-like
approach for communications between the App-Cores and Omni-Core. As with Fi-
asco.OC, Barrelfish uses a capability model to perform access control to different mem-
ory regions. The current implementation is based on 64-bit x86. Data given in [4] shows
that Barrelfish degradation for the unmap memory operation is approximately 80% at
32 cores on an 8x4 (x8 quad Opteron 8350) AMD platform.

Another prominent OS for multicore processors that is based on a multi-kernel de-
sign is the Factored Operating System (FOS) work from MIT [18] [19]. This work is
driven by their work on scalable multicore MIMD processors and focuses on the use of
spatial distribution to scale OS services including physical resource management, file
systems, network protocols and applications. Each system service is “factored” into a
collection of Internet-inspired servers that communicate via user-level message passing.
The FOS solution is based on a proprietary microkernel and is currently implemented
on 64-bit x86. Results collected from a 48-core AMD platform (quad Opteron 6168) re-
ported in [19] showed that over 20 “clients”, which we assume correlates to individual
processes, FOS’s page allocator performance degraded by 60%.

Towards a Scalable Microkernel Personality for Multicore Processors 631

Finally, Tessellation OS [11] from UC Berkeley is a more recent effort to develop a
multicore OS that integrates both space and time partitioning to share resources across
system services and applications. The Tessellation OS design uses a hierarchical (two-
level) scheduling scheme to manage global and local (partition) resource management.
As with OmniRE, Tessellation also aims to provide QoS enforcement and minimization
of QoS crosstalk. This OS is still in its early stages and as yet no performance and
scaling results have been published.

8 Conclusions

In this paper we presented OmniRE, a new OS design based on the shared-memory
Fiasco.OC microkernel that uses multi-threaded (per-core) system services and resource
management delegation to eliminate points of contention and thus promote scalability.
We have shown that the Fiasco.OC kernel’s use of per-core data structures and internal
separation, coupled with the OmniRE personality, provide a complete scalable solution.
We implemented and evaluated OmniRE on both AMD and Intel platforms against
L4Re and Linux 3.0. Our experimental data shows that OmniRE is able to successfully
remove contention on memory management and kernel object management across 48
cores, which substantially outperforms Fiasco.OC and, at higher core counts, exceeds
the scaling performance of Linux.

References

1. Genode, http://www.genode.org
2. L4android, http://l4android.org/
3. L4re, http://os.inf.tu-dresden.de/l4re/
4. Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe, T.,

Schüpbach, A., Singhania, A.: The multikernel: a new OS architecture for scalable multi-
core systems. In: Proc. of SOSP 2009 (2009)

5. Boyd-Wickizer, S., Clements, A.T., Mao, Y., Pesterev, A., Kaashoek, M.F., Morris, R., Zel-
dovich, N.: An analysis of linux scalability to many cores. In: Proc. of OSDI 2010 (2010)

6. G. D. Broadband: Okl4 microkernel, http://www.ok-labs.com
7. T. U. Dresden: Fiasco.oc microkernel, http://os.inf.tu-dresden.de/fiasco/
8. Feske, N., Helmuth, C.: Design of the Bastei OS Architecture. Technical report, Technische

Universität Dresden (December 2006)
9. Hohmuth, M., Peter, M.: Helping in a multiprocessor environment (2001)

10. Liedtke, J.: On micro-kernel construction. SIGOPS Oper. Syst. Rev. 29, 237–250 (1995)
11. Liu, R., Klues, K., Bird, S., Hofmeyr, S., Asanović, K., Kubiatowicz, J.: Tessellation: space-

time partitioning in a manycore client OS. In: Proc. of HotPar 2009 (2009)
12. Mckenney, P.E.: Exploiting deferred destruction: an analysis of read-copy-update techniques

in operating system kernels. PhD thesis (2004)
13. Nightingale, E.B., Hawblitzel, C., Hodson, O., Hunt, G., Mcilroy, R.: Helios: Heterogeneous

multiprocessing with satellite kernels. In: Proc. of SOSP 2009 (2009)
14. Schubert, L., Wesner, S., Kipp, A.: Reputing microkernels. In: Proc. of UK e-Science All

Hands Meeting 2009 (2009)
15. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization architecture.

In: Proc. of EuroSys 2010 (2010)

http://www.genode.org
http://l4android.org/
http://os.inf.tu-dresden.de/l4re/
http://www.ok-labs.com
http://os.inf.tu-dresden.de/fiasco/

632 J. Kuang, D.G. Waddington, and C. Tian

16. Tam, A., Tam, D.K.-F., Azimi, R.: Implementing resource containers in k42 (2003)
17. Thibault, S., Deegan, T.: Improving performance by embedding hpc applications in

lightweight xen domains. In: Proc. of HPCVIRT 2008 (2008)
18. Wentzlaff, D., Agarwal, A.: Factored operating systems (fos): the case for a scalable operat-

ing system for multicores. SIGOPS Oper. Syst. Rev. 43(2), 76–85 (2009)
19. Wentzlaff, D., Gruenwald III., C., Belay, A., Kasture, H., Youseff, L., Miller, J.E.,

Modzelewski, K., Agarwal, A.: Fleets: Scalable services in a factored operating system. Net-
work (2011)

20. Wickizer, S.B., Chen, H., Chen, R., Mao, Y., Kaashoek, F., Morris, R., Pesterev, A., Stein,
L., Wu, M., Dai, Y., Zhang, Y., Zhang, Z.: In: Proc. of OSDI 2008 (2008)

	Towards a Scalable Microkernel Personality for Multicore Processors
	1 Introduction
	2 Fiasco.OC and L4Re Overview
	3 Study of Off-the-Shelf L4Re Scalability Characteristics
	4 OmniRE Design
	4.1 OmniRE Detailed Design

	5 Case Study: Physical Memory Management
	6 Experimental Results
	6.1 Fiasco.OC IPC Scalability
	6.2 Memory PageManagement with L4Re
	6.3 Memory Page Management Compared with Linux

	7 Related Work
	8 Conclusions
	References

