Efficient Parallel and External Matching

Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz,
and Nodari Sitchinava

Karlsruhe Institute of Technology, Karlsruhe, Germany
marcelbirn@gmx.de, {osipov, sanders,christian. schulz}@kit .edu,
nodari@ira.uka.de

Abstract. We study a simple parallel algorithm for computing match-
ings in a graph. A variant for unweighted graphs finds a maximal match-
ing using linear expected work and (’)(log2 n) expected running time in
the CREW PRAM model. Similar results also apply to External Memory,
MapReduce and distributed memory models. In the maximum weight
case the algorithm guarantees a 1/2-approximation. Although the paral-
lel execution time is linear for worst case weights, an experimental eval-
uation indicates good scalabilty on distributed memory machines and on
GPUs. Furthermore, the solution quality is very good in practice.

1 Introduction

A matching M of a graph G = (V, F) is a subset of edges such that no two
elements of M have a common end point. Many applications require the compu-
tation of matchings with certain properties, like being maximal (no edge can be
added to M without violating the matching property), having maximum cardi-
nality, or having maximum total weight > _,, w(e). Although these problems
can be solved optimally in polynomial time, optimal algorithms are not fast
enough for many applications involving large graphs where we need near linear
time algorithms. For example, the most efficient algorithms for graph partition-
ing rely on repeatedly contracting maximal matchings, often trying to maximize
some edge rating function w. Refer to [13] for details and examples. For very
large graphs, even linear time is not enough — we need a parallel algorithm with
near linear work or an algorithm working in the external memory model [1].
Here we consider the following simple local maz algorithm [12]: Call an edge
locally maximal, if its weight is larger than the weight of any of its incident
edges; for unweighted problems, assign unit weights to the edges. When com-
paring edges of equal weight, use tie breaking based on random perturbations of
the edge weights. The algorithm starts with an empty matching M. It repeat-
edly adds locally maximal edges to M and removes their incident edges until no
edges are left in the graph. The result is obviously a maximal matching (every
edge is either in M or it has been removed because it is incident to a matched
edge). The algorithm falls into a family of weighted matching algorithms for
which Preis [24] shows that they compute a 1/2-approximation of the maximum
weight matching problem. Hoepman [12] derives the local max algorithm as a

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 659-F70] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

660 M. Birn et al.

distributed adaptation of Preis’ idea. Based on this, Manne and Bisseling [I§]
devise sequential and parallel implementations. They prove that the algorithm
needs only a logarithmic number of iterations to compute maximal matchings
by noticing that a maximal matching problem can be translated into a maximal
independent set problem on the line graph which can be solved by Luby’s algo-
rithm [17]. However, this does not yield an algorithm with linear work since it is
not proven that the edge set indeed shrinks geometrically Manne and Bissel-
ing also give a sequential algorithm running in time O(mlog A) where A is the
maximum degree. On a NUMA shared memory machine with 32 processors (SGI
Origin 3800) they get relative speedup < 6 for a complete graph and relative
speedup = 10 for a more sparse graph partitioned with Metis. Since this graph
still has average degree ~ 200 and since the speedups are not impressive, this
is a somewhat inconclusive result when one is interested in partitioning large
sparse graphs on a larger number of processors.

Parallel matching algorithms have been widely studied. There is even a book
on the subject [16] but most theoretical results concentrate on work-inefficient
algorithms. The only linear work parallel algorithms that we are aware of are
randomized CRCW PRAM algorithms by Israeli and Itai [14] and Blelloch et
al. []. We will call them IIM and BFSM, respectively. IIM runs in expected
O(logn) time and BFSM runs in O(log3 n) time with high probability.

Fagginger Auer and Bisseling [§] study an algorithm similar to [I4] which we
call red-blue matching (RBM) here. They implement RBM on shared memory
machines and GPUs. They prove good shrinking behavior for random graphs,
however, provide no analysis for arbitrary graphs.

Our Contributions. We give a simple approach to implementing the local max
algorithm that is easy to adapt to many models of computation. We show that
for computing maximal matchings, the algorithm needs only linear work on a
sequential machine and in several models of parallel computation (Section [2).
Moreover it has low I/O complexity on several models of memory hierarchies.

Our CRCW PRAM local max algorithm matches the optimal asymptotic
bounds of IIM. However, our algorithm is simpler (resulting in better constant
factors), removes higher fraction of edges in each iteration (ITM’s proof shows
less than 5% per iteration, while we show at least 50%) and our analysis is a
lot simpler. We also provide the first CREW PRAM algorithm which performs
linear work and runs in expected (9(10g2 n) time

In Section Bl we explain how to implement local max on practical massively
parallel machines such as MPI clusters and GPUs. Our experiments indicate
that the algorithm yields surprisingly good quality for the weighted matching
problem and runs very efficiently on sequential machines, clusters with reason-
ably partitioned input graphs, and on GPUs. Compared to RBM, the local max
implementations remove more edges in each iteration and provide better quality

! Manne and Bisseling show such a shrinking property under an assumption that
unfortunately does not hold for all graphs.

2 While a generic simulation of IIM on the CREW PRAM model will result in a
(’)(log2 n) time algorithm, the simulation incurs O(nlogn) work due to sorting.

Efficient Parallel and External Matching 661

results for the weighted case. Some of the results presented here are from the
diploma thesis of Marcel Birn [2].

2 Parallel Local Max

Our central observation is:

Lemma 1. Fach iteration of the local maz algorithm for the unit weight case
removes at least half of the edges in expectation.

Proof. Consider the graph remaining in the currently considered iteration where
d(v) denotes the degree of a node and m the remaining number of edges. Consider
the end point at node v of an edge {u,v} as marked if and only if some edge
incident to v becomes matched. Note that an edge is removed if and only if at
least one of its end points becomes marked. Now consider a particular edge e =
{u,v}. Since any of the d(u)+d(v) — 1 edges incident to v and v is equally likel
to be locally maximal, e becomes matched with probability 1/(d(u)+d(v) — 1)é
If e is matched, this event is responsible for setting d(u) + d(v) marks, i.e., the
expected number of marks caused by an edge is (d(u)+d(v))/(d(u)+d(v)—1) > 1.
By linearity of expectation, the total expected number of marks is at least m.
Since no edge can have more than two marks, at least m/2 edges have at least
one mark and are thus deleted []

Métivier et al. [22] uses a similar proof technique to define “preemptive removal”
of nodes for distributed maximal independent set problem.

Assume now that each iteration can be implemented to run with work linear
in the number of surviving edges (independent of the number of nodes). Working
naively with the expectations, this gives us a logarithmic number of rounds and a
geometric sum leading to linear total work for computing a maximal matching.
This can be made rigorous by distinguishing good rounds with at least m/4
matched edges and bad rounds with less matched edges. By Markov’s inequality,
we have a good round with constant probability. This is already sufficient to
show expected linear work and a logarithmic number of expected rounds. We
skip the details since this is a standard proof technique and since the resulting
constant factors are unrealistically conservative. An analogous calculation for
median selection can be found in [20, Theorem 5.8]. One could attempt to show
a shrinking factor close to 1/2 rigorously by showing that large deviations (in the
wrong direction) from the expectation are unlikely (e.g., using Martingale tail
bounds). However this would still be a factor two away from the more heuristic
argument in Footnote 4 and thus we stick to the simple argument.

3 For this to be true, the random noise added for tie breaking needs to be renewed in
every iteration. However, in our experiments this had no noticeable effect.

4 This is a conservative estimate. Indeed, if we make the (over)simplified assumption
that m marks are assigned randomly and independently to 2m end points, then only
one fourth of the edges survives in expectation. Interestingly, this is the amount of
reduction we observe in practice — even for the weighted case.

662 M. Birn et al.

There are many ways to implement an iteration which of course depend on
the considered model of computation.

Sequential Model. For each node v maintain a candidate edge C[v], originally
initialized to a dummy edge with zero weight. In an iteration go through all
remaining edges e = {u,v} three times. In the first pass, if w(e) > w(C[u]) set
Clu]:= e (add random perturbation to w(e) in case of a tie). If w(e) > w(C[v])
set C[v]:= e. In the second pass, if Clu] = C[v] = e put e into the matching
M. In the third pass, if u or v is matched, remove e from the graph. Otherwise,
reset the candidate edge of u and v to the dummy edge. Note that except for
the initialization of C' which happens only once before the first iteration, this
algorithm has no component depending on the number of nodes and thus leads
to linear running time in total if Lemma [Ilis applied.

CRCW PRAM Model. In the most powerful variant of the Combining CRCW
PRAM that allows concurrent writes with a maximum reduction for resolving
write conflicts, the sequential algorithm can be parallelized directly running in
constant time per iteration using m processors.

MapReduce Model. The CRCW PRAM result together with the simulation
result of Goodrich et al. [II] immediately implies that each iteration of local
max can be implemented in O(log,; n) rounds and O(mlog,, n) communication
complexity in the MapReduce model, where M is the size of memory of each
compute node. Since typical compute nodes in MapReduce have at least £2(m®)
memory [I5], for some constant € > 0, each iteration of local max can be per-
formed in MapReduce in constant rounds and linear communication complexity.

External Memory Models. Using the PRAM emulation techniques for algo-
rithms with geometrically decreasing input size from [5, Theorem 3.2] the above
algorithm can be implemented in the external memory [I] and cache-oblivious [9]
models in O(sort(m)) I/O complexity, which seems to be optimal.

2.1 O(log?n) Work-Optimal CREW Solution

In this section, we present a (9(10g2 n) CREW PRAM algorithm, which incurs
only O(m) work.

Consider the following representation of the graph G = (V, E). Let V be a
totally ordered set, i.e., given two vertices u,v € V' we can uniquely determine
whether u < v or not. Let E be an array of undirected edges with each entry E[k]
storing all the information of a single edge {u,v} € E, i.e., vertex endpoints u
and v, its weight or any other auxiliary data. Let A be an array of tuples (v, eg),
where v € V and ey, is the pointer to E[k] representing the edge {u, v}. Let A be
sorted by the first entry, i.e. all tuples (v, e;) pointing to the edges incident on
the same vertex v are in contiguous space in A.

Note that any edge E[k] = {u, v} contains two corresponding entries in A point-
ing to it: (u,ex) and (v, eg). During our algorithm, a processor responsible for
(u, e;) might need to find and update entry (v, e;) (and vice versa). The following

Efficient Parallel and External Matching 663

lemma describes how to compute for each entry (u, ex) the index of the correspond-
ing entry (v, ey) in A.

Lemma 2. For every edge E[k] = {u,v} entries Afi] = (u,ex) and Alj] = (v, ex)
of A can compute each other’s index in A in O(1) time and O(|A|) work in the
CREW PRAM model.

Proof. For every E[k] = {u, v} we show how A[j] = (v, ex) can compute the index
of the corresponding entry Afi] = (u, ey) in A for v < v. The indices for the other
half of the entries are computed symmetrically.

The algorithm proceeds in two phases. In the first phase, each entry Afi] =
(u, er), stores the value i in E[k] = {u,v} iff u < v. In the second phase, each
entry A[j] = (v, ex) reads the stored value ¢ from E[k] = {u, v} iff v > w.

If we assign a separate processor to each entry of A, each processor performs only
O(1) steps. Moreover, there are no concurrent writes because, at each step only
one of the two vertices of the edge e, writes to E[k]. Note, we need a concurrent
read to E[k] = {u, v} to determine the relative order of u and v.

Lemma 3. Using our graph representation, each node v in the graph can apply
an associative operator @ to all edges incident on v in O(log|A|) time and O(]A])
work on the CREW PRAM model.

Proof. First, we read for each entry (v,ex) € A the value from E[k] on which
to apply the operator. Next, we run segmented prefix sums with & operator on
these values, where segments are the portions of A representing the neighbors
of a single node and are easily identified from the definition of A. Finally, each
entry of (v,e) € A applies its result of segmented prefix sums to the edge E[k],
while using the technique of Lemma 2] to avoid write conflicts. Each step of the
algorithm can be implemented in O(log |A]) time using O(|A|) work.

Now we are ready to describe the solution to the matching problem. We perform
the following in each phase of the local max algorithm.

1. Each edge E[k] picks a random weight wy.

2. Using Lemma [3 each vertex v identifies k' such that E[k’] is the heaviest
edge incident on v by applying the associative operator MAX to the edge
weights picked in the previous step.

3. Using Lemmal[2] each entry (v, ey/) checks if E[k’] = {u, v} is also the heaviest
incident edge on wu. If so, the smaller of v and v adds ey to the matching
and sets the deletion flag f = 1 on E[K/].

4. Using Lemma [3 each entry (v, es) spreads the deletion flag over all edges
incident on v by applying MAX associative operator on the deletion flags of
incident edges on v. Thus, if at least one edge incident on v was added to
the matching, all edges incident on v will be marked for deletion.

5. Now we must prepare the graph representation for the next phase by re-
moving all entries of E and A marked for deletion, compacting E and A and
updating the pointers of A to point to the compacted entries of E. To perform
the compaction, we compute for each entry E[k], how many entries E[i] and

664 M. Birn et al.

Afi],7 < k must be deleted. This can be accomplished using parallel prefix
sums on the deletion flags of each entry in E and A. Let the result of prefix
sums for edge E[k] be dj, and for entry A[i] be r;. Then k — dj, is the new
address of the entry E[k] and ¢ — r; is the new address of A[i] once all edges
marked for deletion are removed.

6. Each entry E[k] that is not marked for deletion copies itself to E[k — dx].
The corresponding entry (v, ex) € A updates itself to point to the new entry
E[k — di], i.e., (v,er) becomes (v, ex_g4,), and copies itself to Al — 7;].

The algorithm defines a single phase of the local max algorithm. Each step of the
phase takes at most O(|A]) = O(m) work and O(log|A|) = O(logm) = O(logn)
time in the CREW PRAM model. Over O(log m) phases, each with geometrically
decreasing number of edges, the local max algorithm takes overall (9(10g2 n) time
and O(m) work in the CREW PRAM model.

3 Implementations and Experiments

We now report experiments focusing on computing approximate maximum weight
matchings. We consider the following families of inputs, where the first two classes
allow comparison with the experiments from [19].

Delaunay Instances are created by randomly choosing n = 2% points in the
unit square and computing their Delaunay triangulation. Edge weights are Eu-
clidean distances.

Random graphs with n := 2% nodes, an edges for a = {4,16,64}, and random
edge weight chosen uniformly from [0, 1].

Random geometric graphs with 2* nodes (rggz). Each vertex is a random
point in the unit square and edges connect vertices whose Euclidean distance is
below 0.55 Inn/n. This threshold was chosen in order to ensure that the graph
is almost connected.

Florida Sparse Matriz. Following [8] we use 126 symmetric non-0/1 matrices
from [6] using absolute values of their entries as edge weights, see [3] for the full
list. The number of edges of the resulting graphs m € (0.5...16) x 105. See [3]
for a detailed list.

Graph Contraction. We use the graphs considered by KaFFPa for partitioning
graphs from the 10’th DIMACS Implementation Challenge [25].

We compare implementations of local max, the red-blue algorithm from [8]
(RBM) (their implementation), heavy edge matching (HEM) [I0], greedy, and
the global path algorithm (GPA) [19]. HEM iterates through the nodes (option-
ally in random order) and matches the heaviest incident edge that is nonadjacent
to a previously matched edge. The greedy algorithm sorts the edges by decreas-
ing weights, scans them and inserts edges connecting unmatched nodes into the
matching. GPA refines greedy. It greedily inserts edges into a graph G, with
maximum degree two and no odd cycles. Using dynamic programming on the
resulting paths and even cycles, a maximum weight matching of G5 is computed.

Efficient Parallel and External Matching 665

Algorithms involving sorting use standard STL Visual Studio 2010 sort
routine.

Sequential and shared-memory parallel experiments were performed on an
Intel i7 920 2.67 GHz quad-core machine with 6 GB of memory. We used a
commodity NVidia Fermi GTX 480 featuring 15 multiprocessors, each containing
32 scalar processors, for a total of 480 CUDA cores on chip. The GPU RAM is
1.5 GB. We compiled all implementations using CUDA 4.2 and Microsoft Visual
Studio 2010 on 64-bit Windows 7 Enterprise with maximum optimization level.

3.1 Sequential Speed and Quality

We compare solution quality of the algorithms relative to GPA. Via the experi-
ments in [19] this also allows some comparison with optimal solutions which are
only a few percent better there. Figure [l shows the quality for Delaunay graphs
(where GPA is about 5 % from optimal [19]). We see that local max achieves al-
most the same quality as greedy which is only about 2 % worse than GPA. HEM,
possibly the fastest nontrivial sequential algorithm is about 13 % away while RBM
is 14 % worse than GPA, i.e., HEM and RBM almost double the gap to optimality
of local max. Looking at the running times, we see that HEM is the fastest (with
a surprisingly large cost for actually randomizing node orders) followed by local
max, greedy, GPA, and RBM. From this it looks like HEM, local max, and GPA
are the winners in the sense that none of them is dominated by another algorithm
with respect to both quality and running time. Greedy has similar quality as lo-
cal max but takes somewhat longer and is not so easy to parallelize. RBM as a
sequential algorithm is dominated by all other algorithms. Perhaps the most sur-
prising thing is that RBM is fairly slow. This has to be taken into account when
evaluating reported speedups. We suspect that a more efficient implementation
is possible but do not expect that this changes the overall conclusion. In [3] we
report similar results for the rgg instances and random graphs.

Looking at the wide range of instances in the Florida Sparse Matrix collection
leads to similar but more complicated conclusions. Figure [2] shows the solution

T T T T T T T T T T
0.98 * * * * ¥
< 0.96 N ‘@ 128 %k 7
% 2 *i '''' X S SRV
o 094 local max —+— - ® 64 L IRVEERORES
o Greedy ——><-- 3 | KR *—
2 092 HEM (random) ---%-- o o 2 T a
= HEM (original) & g
_;;2 09 RBM —m—- qé 16 L |
$ ossf 4 = 1 R o SRl Rnint i
,,,,,, S\ TLLTEEY. EETEEER . REREEEN | 8 + RBM —=— local max -+ o
0.86 == ﬁ.; — - -l - GPA --©6-- HEM (random) —-k—--
4 -GreedY B HEM (original) --B-- o
0.84 1 1 1 1 1 1 1 1
216 H17 518 519 520 21 222 16 217 518 219 220 521 222
nodes nodes

Fig. 1. Ratio of the weights computed by GPA and other algorithms for Delaunay
instances and running times

666 M. Birn et al.

1.1 T T I+ T T
TRk X gl S OOkoBe RO KBIROR IOk ROOK K OB oIk IO
¥ R Y)) ! n X
09 % # X ;@%%* %; ;EK i %@@; X *** Xk % K]
< |+ * X 7 —
S o7L * X A
e - x X x . X x
o 06 % N
‘é 05 - x 3
— X K ¥
£ 04t% ¥ X * X x X o
¢ o3 * XX ocalmax 4+
0.2 [* x Greedy -
RBM
0.1 _I¥ | | X HEM (randlom) ¥
0
19 520 521 522 523
edges
400 T T T T
GPA © +
350 ~ local max + N
Greedy
- 300 | -
k= o +
o 250 _
> +
8 200 |- o © -
® o 6 0O o9, 82 &
2 50 ®o 2% 2 txg 909 +§©O‘-’ o
o Q n + + 5
£ o lio 2 N °R e + 4 T 9d
B . 200F 59 4 Sik® 8 on B°
50';@06 g Lo+ ok 82 %gﬁg 5%*@ ng; R g ++
o) o 090 o @ o)
0 b q 1 1 1
19 520 521 522 523
edges

Fig. 2. Ratio of the weights computed by GPA and other sequential algorithms for
sparse matrix instances and running time

qualities for greedy, local max, RBM and HEM relative to GPA. RBM and even
more so HEM shows erratic behavior with respect to solution quality. Greedy
and local max are again very close to GPA and even closer to each other although
there is a sizable minority of instances where greedy is somewhat better than
local max. Looking at the corresponding running times one gets a surprisingly
diverse picture. HEM which is again fastest and RBM which is again dominated
by local max are not shown. There are instances where local max is considerably
faster then greedy and vice versa. A possible explanation is that greedy becomes
quite fast when there is only a small number of different edge weights since then
sorting is quite an easy problem.

Experiments on the graph contraction instances in [2] show local max about
1 % away from GPA. For these instances the average fraction of remaining edges
after an iteration is well below 25 %. Notable exceptions are the graphs add20

Efficient Parallel and External Matching 667

and memplus which both represent VLSI circuits. Nevertheless, none of the
instances considered required more than 10 iterations.

3.2 Distributed Memory Implementation

Our distributed memory parallelization (using MPI) on p processing elements
(PEs or MPI processes) assigns nodes to PEs and stores all edges incident to
a node locally. This can be done in a load balanced way if no node has degree
exceeding m/p. The second pass of the basic algorithm from Section [has to
exchange information on candidate edges that cross a PE boundary. In the worst
case, this can involve all edges handled by a PE, i.e., we can expect better
performance if we manage to keep most edges locally. In our experiments, one
PE owns nodes whose numbers are a consecutive range of the input numbers.
Thus, depending on how much locality the input numbering contains we have
a highly local or a highly non-local situation. We have not considered more
sophisticated ways of node assignment so far since our motivating application
is graph partitioning/clustering where almost by definition we initially do not
know which nodes form clusters — this is the intended output. Since Lemma [I]
also applies to the subgraph relevant for a particular PE, we can expect that the
graph shrinks fairly uniformly over the entire network.

We performed experiments on two different clusters at the KIT computing
center both using compute-nodes with two quad-core processors each. Refer to
[2] for details. We ran experiments with up 128 compute-nodes corresponding to
1024 cores with one MPI process per core.

Figure [illustrates how our distributed local max implementation scales for
the random geometric graphs 19923 and r9g2/ (using random edge weights)
which have fairly good locality. We plot the decrease in running time for suc-
cessive doubling of p, i.e., a value of two stands for perfect relative speedup
for this step and a value below one means that parallelization no longer helps.

2
o~

2

runtime(?) /runtime(p)

2 4 8 16 32 64 128256 2 4 8 16 32 64 128256
Number of processes p Number of processes p

Fig. 3. Scaling results of the parallel local max algorithm on random geometric graphs
with random edge weights. Left: rgg23 (/63 million edges). Right: rgg24 (~ 132 million
edges).

668 M. Birn et al.

16 T T T T T T T = 256 T
rgg24 —+— M@—@i
8 rgg23 -->-- | 128 - 4 .
™ — L R e o TTRTTTTTR
4 4 2 efowoomoo W b
Tl g GPA —o—
@ 2 X 1 v 32f local max --—+--
2 N > N RBM 4 cores ---®--
s 1r X, 1 g 16F ™~ RBM GPU @ |
A) i . S local max GPU ——-
12 F x. 4 g GPeaew i
L F TN,
114 | x_] AL T
N T]
18 ! ! ! ! ! R SN 2 ! ! ! ! !
1 2 4 8 16 32 64 128 256 218 g7 18 19 20 o2 o2
Number of processes p nodes

Fig. 4. Running time for distributed memory implementation on rgg23 and rgg24 (left).
Time per edge of sequential and GPU algorithms for Delaunay instances (right).

We see values slightly below two for the steps 1 — 2 and 2 — 4 which is typical
behavior of multicore algorithms when cores compete for resources like memory
bandwidth. For p = 8 we start to use two compute-nodes (with 4 active cores
each) and consequently we see the largest dip in efficiency. Beyond that, we have
almost perfect scaling until the problem instance becomes too small. We have
similar behavior for other graphs with good locality. For graphs with poor lo-
cality, efficiency is not very good. However the ratios stay above one for a very
long time, i.e., it pays to use parallelism when it is available anyway. This is the
situation we have when partitioning large graphs for use on massively parallel
machines. Considering that the matching step in graph partitioning is often the
least work intensive one in multi-level graph partitioning algorithms we conclude
that local max might be a way to remove a sequential bottleneck from massively
parallel graph partitioning. See Figure (] (left) for the absolute timing and refer
to [2] for additional data.

3.3 GPU Implementation

Our GPU algorithm is a fairly direct implementation of the CRCW algorithm.
We reduce the algorithm to the basic primitives such as segmented prefix sum,
prefix sum and random gather/scatter from/to GPU memory. As a basis for our
implementation we use back40computing library by Merrill [21].

Figure[(right) compares the running time of our implementation with GPA,
sequential local max, the RBM algorithm parallelized for 4 cores, and its GPU
parallelization from [8]. While the CPU implementation has troubles recovering
from its sequential inefficiency and is only slightly faster than even sequential
local max, the GPU implementation is impressively fast in particular for small
graphs. For large graphs, the GPU implementation of local max is faster. Since
local max has better solution quality, we consider this a good result. Our GPU
code is up to 35 times faster than sequential local max. We may also be able
to learn from the implementation techniques of RBM GPU for small inputs in
future work.

Efficient Parallel and External Matching 669

For random geometric graphs and random graphs, we get similar behavior
(see [3] for details). The results for rgg are slightly worse for GPU local max —
speedup is up to 24 over sequential local max and a speed advantage over GPU
RBM only for the very largest inputs. As for random graphs, the denser the graph
the larger is our speedup over the sequential and GPU RBM implementations.
Thus, for @« = 64 our implementation is faster than GPU RBM already for
n = 215, For n = 218 it is 65% faster than GPU RBM and 30 times faster than
the sequential local max.

4 Conclusions and Future Work

The local max algorithm is a good choice for parallel or external computation
of maximal and approximate maximum weight matchings. On the theoretical
side it is provably efficient for computing maximal matchings and guarantees a
1/2-approximation. On the practical side it yields better quality at faster speed
than several competitors including the greedy algorithm and RBM. Somewhat
surprisingly it is even attractive as a sequential algorithm, outperforming HEM
with respect to solution quality and other algorithms with respect to speed.

We have learned about the linear work algorithm by Blelloch et al. [4] from an
anonymous reviewer during the review process. While our algorithm guarantees
better expected asymptotic runtime, the practical results in [4] seem to be quite
promising. However, lack of optimized shared memory implementation of our
algorithm for multicores, use of different compilers and operating systems, and
different set of test cases makes a thorough and fair comparison of the two
algorithms unfeasible in the short period of time and is left for future work.

Many interesting questions remain. Can we omit re-randomization of edge
weights when computing maximal matchings? The result of Blelloch et al. [4]
partially answers this question by performing randomization only once at the
expense of the performance guaratee. Is there a linear work parallel algorithm
with polylogarithmic execution time that computes 1/2-approximations (or any
other constant factor approximation). Can we even do 2/3-approximations with
linear work in parallel [7J23]?

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116-1127 (1988)

2. Birn, M.: Engineering fast parallel matching algorithms. Diploma Thesis, Karlsruhe
Institute of Technology (2012)

3. Birn, M., Osipov, V., Sanders, P., Schulz, C., Sitchinava, N.: Efficient parallel and
external matching. CoRR, abs/1302.4587 (2013)

4. Blelloch, G.E., Fineman, J.T., Shun, J.: Greedy sequential maximal independent
set and matching are parallel on average. In: SPAA, pp. 308-317 (2012)

5. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: SODA, pp. 139-149 (1995)

670

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Birn et al.

Davis, T.. The University of Florida Sparse Matrix Collection (2008),
http://www.cise.ufl.edu/research/sparse/matrices

Drake, D.E., Hougardy, S.: Improved linear time approximation algorithms for
weighted matchings. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
APPROX 2003+RANDOM 2003. LNCS, vol. 2764, pp. 14-23. Springer, Heidelberg
2003

%‘aggizlger Auer, B.O., Bisseling, R.H.: A GPU algorithm for greedy graph match-
ing. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing Multicore-Challenge II
2011. LNCS, vol. 7174, pp. 108-119. Springer, Heidelberg (2012)

Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: FOCS, pp. 285-298 (1999)

Kumar, V., Karypis, G.: A fast and high quality multilevel scheme for partitioning
irregular graphs. STAM Journal on Scientific Computing 20(1), 359-392 (1998)
Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching and simulation in
the mapreduce framework. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe,
O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 374-383. Springer, Heidelberg (2011)
Hoepman, J.-H.: Simple distributed weighted matchings. CoRR, ¢s.DC/0410047
2004

%—Ioltglewe, M., Sanders, P., Schulz, C.: Engineering a Scalable High Quality Graph
Partitioner, pp. 1-12 (2010)

Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters 22(2), 77-80 (1986)

Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In:
SODA, pp. 938-948 (2010)

Karpinski, M., Rytter, W.: Fast parallel algorithms for graph matching problems,
vol. 98. Clarendon Press (1998)

Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15(4), 1036-1053 (1986)

Manne, F., Bisseling, R.H.: A parallel approximation algorithm for the weighted
maximum matching problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 708-717. Springer, Hei-
delberg (2008)

Maue, J., Sanders, P.: Engineering algorithms for approximate weighted matching.
In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 242-255. Springer,
Heidelberg (2007)

Mehlhorn, K., Sanders, P.: Algorithms and Data Structures — The Basic Toolbox.
Springer (2008)

Merrill, D.: Back40computing: Fast and efficient software primitives for GPU com-
puting, http://code.google.com/p/back40Ocomputing/

Yves, M., Robson, J.M., Nasser, S.-D., Zemmari, A.: An optimal bit complex-
ity randomized distributed MIS algorithm (Extended abstract). In: Kutten, S.,
Zerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 323-337. Springer, Hei-
delberg (2010)

Pettie, S., Sanders, P.: A simpler linear time 2/3 — ¢ approximation for maximum
weight matching. Technical Report MPI-1-2004-1-002, MPII (2004)

Preis, R.: Linear time ;—approximation algorithm for maximum weighted matching
in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563,
pp. 259-269. Springer, Heidelberg (1999)

Sanders, P., Schulz, C.: High Quality Graph Partitioning. In: Proceedings of the
10th DIMACS Implementation Challenge — Graph Partitioning and Graph Clus-
tering, pp. 1-17. AMS (2013)

http://www.cise.ufl.edu/research/sparse/matrices
http://code.google.com/p/back40computing/

	Efficient Parallel and External Matching
	1 Introduction
	2 Parallel Local Max
	2.1 O(log2_n) Work-Optimal CREW
Solution

	3 Implementations and Experiments
	3.1 Sequential Speed and Quality
	3.2 Distributed Memory Implementation
	3.3 GPU Implementation

	4 Conclusions and Future Work
	References

