Making the Network Scalable:
Inter-subnet Routing in InfiniBand

Bartosz Bogdanski!, Bjgrn Dag Johnsen®,
Sven-Arne Reinemo?, and José Flich?

1 Oracle Corporation, Oslo, Norway
{bartosz.bogdanski,bjorn-dag. johnsen}@oracle.com
2 Simula Research Laboratory, Lysaker, Norway
svenar@simula.no
3 Universidad Politécnica de Valencia, Valencia, Spain
jflich@disca.upv.es

Abstract. As InfiniBand clusters grow in size and complexity, the need
arises to segment the network into manageable sections. Up until now,
InfiniBand routers have not been used extensively and little research has
been done to accommodate them. However, the limits imposed on local
addressing space, inability to logically segment fabrics, long reconfigu-
ration times for large fabrics in case of faults, and, finally, performance
issues when interconnecting large clusters, have rekindled the industry’s
interest into IB-IB routers. In this paper, we examine the routing prob-
lems that exist in the current implementation of OpenSM and we intro-
duce two new routing algorithms for inter-subnet IB routing. We evaluate
the performance of our routing algorithms against the current solution
and we show an improvement of up to 100 times that of OpenSM.

1 Introduction

Until recently, the need for routers in InfiniBand (IB) networks was not evident
and all the essential routing and forwarding functions were performed by layer-
2 switches. However, with the increased complexity of the clusters, the need for
routers becomes more obvious, and leads to more discussion about native IB rout-
ing [1I2I3]. Obsidian Research was the first company to see the need for routing
between multiple subnets, and provided the first hardware to do that in 2006 [4].

There are several reasons for using routing between IB subnets with the two
main being address space scalability and fabric management containment. Ad-
dress space scalability is an issue for large installations whose size is limited by
the number of available local identifiers (LIDs). Hosts and switches within a
subnet are addressed using LIDs and a single subnet is limited to 49151 unicast
LIDs. If more end-ports are required, then the only option is to combine multi-
ple subnets by using one or more IB routers. Because LID addresses have local
visibility, they can be reused in the subnets connected by routers, which theo-
retically yields an unlimited addressing space. It is worth observing that there
are multiple suggestions to expand the address space of IB without introducing

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 685-FJ8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

686 B. Bogdanski et al.

routers. One of the more mature proposals aims at extending the LID addressing
space to 32 bits [5], however, it would not be backward compatible with older
hardware, which limits its usability.

Fabric management containment has three major benefits: 1) fault isolation,
2) increased security, and 3) intra-subnet routing flexibility. First, by dividing a
large subnet into several smaller ones, faults or topology changes are contained
to a single subnet and the subnet reconfiguration will not pass through a router
to other subnets. This shortens the reconfiguration time and limits the impact of
a fault. Second, from a security point of view, segmenting a large fabric into sub-
nets using routers means that the scope of most attacks is limited to the attacked
subnet [6]. Third, from a routing point of view, fabric management containment
leads to more flexible routing schemes. This is particularly advantageous in case
of a hybrid fabric that consists of two or more regular topologies. For example,
a network may consist of a fat-tree part interconnected with a mesh or a torus
part (or any other regular topology). The problem with managing this in a single
subnet is that it is not straightforward to route each part of the subnet sepa-
rately because intra-subnet routing algorithms have a subnet scope. Moreover,
there are no general purpose agnostic routing algorithms for IB that will pro-
vide optimal performance for a hybrid topology. However, if a hybrid topology is
divided into smaller regular subnets then each subnet can be routed using a dif-
ferent routing algorithm that is optimized for a particular subnet. For example, a
fat-tree routing algorithm could route the fat-tree part and the dimension-order
routing could route the mesh part of the topology. This is because each subnet
can run its own subnet manager (SM) that configures only the ports on the local
subnet and routers are non-transparent to the subnet manager.

In this paper, we present two inter-subnet routing algorithms for IB. The first
one, inter-subnet source routing (ISSR), is an agnostic algorithm for intercon-
necting any type of topology. The second one is fat-tree specific and only inter-
connects two or more fat-trees. With these algorithms we solve two problems:
how to optimally choose a local router port for a remote destination and how to
best route from the router to the destination. We compare the algorithms against
the solution that is implemented in OpenSM. Inter-subnet routing in OpenSM
is at the time of writing very limited, the configuration is tedious and the per-
formance is only usable for achieving connectivity - not for high performance
communication between multiple sources and destinations [2]. It is, however, the
only available inter-subnet routing method for IB.

The rest of this paper is organized as follows: we discuss related work in
Sect. @l and we introduce the IB Architecture in Sect. Bl We follow with a
description of our proposed layer-3 routing for IB in Sect. 4l Next, we continue
with a presentation and discussion of our results in Sect. Bl Finally, we conclude
in Sect. G

2 Related Work

Obsidian Strategics was the first company to demonstrate a device marketed as
an IB-IB router (the Longbow XR) in 2006 [4]. That system highlighted the need

Making the Network Scalable: Inter-subnet Routing in InfiniBand 687

for subnet isolation through native IB-IB routing. The Longbow XR featured a
content-addressable memory for fast address resolution and supported up to 64k
routes. The drawbacks of the router included a single 4x SDR link, and its pri-
mary application was disaster recovery - it was aimed at interconnecting IB sub-
nets spanning large distances as a range extender. Furthermore, the Longbow XR
appears to the subnet manager as a transparent switch, so the interconnected sub-
nets are merged together into one large subnet. When releasing the router, Ob-
sidian argued that while the IB specification 1.0.a defines the router hardware
well, the details of subnet management interaction (like routing) are not fully ad-
dressed. This argument is still valid for the current release of the specification [7].
In 2007, Prescott and Taylor verified how range extension in IB works for campus
area and wide area networks [8]. They demonstrated that it is possible to achieve
high performance when using routers to build IB wide area networks. However,
they did not mention the deadlock issues that can occur when merging subnets,
and they only focused on remote traffic even though local traffic can be negatively
affected by suboptimal routing in such a hybrid fabric. In 2008, Southwell pre-
sented how native IB-IB routers could be used in System Area Networks [1]. He
argued that IB could evolve from being an HPC-oriented technology into a strong
candidate for future distributed data center applications or campus area grids.
While the need for native IB-IB routing was well-demonstrated, Southwell did not
address the routing, addressing and deadlock issues. In 2011, Richling et al. [9] ad-
dressed the operational and management issues when interconnecting two clusters
over a distance of 28 kilometers. They described the setup of hardware and net-
working components, and the encountered integration problems. However, they
focus on IB-IB routing in the context of range extension and not on inter-subnet
routing between local subnets.

When reviewing the literature, we noticed that the studies of native IB-IB rout-
ing is focused on disaster recovery and interconnection of wide area IB networks.
Our work explores the foundations of native IB-IB routing in the context of perfor-
mance and features in inter-subnet routing between local subnets. Furthermore,
we assume full compliance with the IB specification and we deal with issues pre-
viously not mentioned including the deadlock problem and path distribution.

3 The InfiniBand Architecture

InfiniBand is a serial point-to-point full-duplex interconnection network tech-
nology, and was first standardized in October 2000 [7]. The current trend is
that IB is replacing proprietary or low-performance solutions in the high perfor-
mance computing domain [I0], where high bandwidth and low latency are the
key requirements. The de facto system software for IB is OFED developed by
dedicated professionals and maintained by the OpenFabrics Alliance [5].

Every IB subnet requires at least one subnet manager (SM), which is respon-
sible for initializing and bringing up the network, including the configuration of
all the IB ports residing on switches, routers, and host channel adapters (HCAs)
in the subnet. At the time of initialization the SM starts in the discovering state

688 B. Bogdanski et al.

where it does a sweep of the network in order to discover all switches and hosts.
During this phase it will also discover any other SMs present and negotiate who
should be the master SM. When this phase is completed the SM enters the mas-
ter state. In this state, it proceeds with LID assignment, switch configuration,
routing table calculations and deployment, and port configuration. At this point
the subnet is up and ready for use. After the subnet has been configured, the
SM is responsible for monitoring the network for changes.

A major part of the SM’s responsibility is routing table calculations. Routing
of the network aims at obtaining full connectivity, deadlock freedom, and proper
load balancing between all source and destination pairs in the local subnet.
Routing tables must be calculated at network initialization time and this process
must be repeated whenever the topology changes in order to update the routing
tables and ensure optimal performance. Despite being specific about intra-subnet
routing, the IB specification does not say much about inter-subnet routing and
leaves the details of the implementation to the vendors.

IB is a lossless networking technology, and under certain conditions it may be
prone to deadlocks [I1I12]. Deadlocks occur because network resources such as
buffers or channels are shared and because packet drops are usually not allowed in
lossless networks. The IB specification explicitly forbids IB-IB routers to cause
a deadlock in the fabric irrespective of the congestion policy associated with
the inter-subnet routing function. Designing a generalized deadlock-free inter-
subnet routing algorithm where the local subnets are arbitrary topologies is
challenging. In this paper we limit our scope to fat-tree topologies and by making
sure our routing functions use only the standard up/down routing mechanism,
we eliminate the deadlock problem.

3.1 Native InfiniBand Routers

The InfiniBand Architecture (IBA) supports a two-layer topological division. At
the lower layer, IB networks are referred to as subnets, where a subnet consists
of a set of hosts interconnected using switches and point-to-point links. At the
higher level, an IB fabric constitutes one or more subnets, which are intercon-
nected using routers. Hosts and switches within a subnet are addressed using
LIDs and a single subnet is limited to 49151 LIDs. LIDs are local addresses valid
only within a subnet, but each IB device also has a 64-bit global unique identifier
(GUID) burned into its non-volatile memory. A GUID is used to form a GID
- an IB layer-3 address. A GID is created by concatenating a 64-bit subnet ID
with the 64-bit GUID to form an IPv6-like 128-bit address. In this paper, we
when using the term GUID we mean a port GUIDs, i.e. the GUIDs assigned to
every port in the IB fabric.

IB-IB routers operate at the layer-3 of IB addressing hierarchy and their
function is to interconnect layer-2 subnets as shown in Fig. A thorough de-
scription of the inter-subnet routing scheme is currently out of scope of the IBA
specification and much freedom is given to the router vendors when implement-
ing inter-subnet routing. The inter-subnet routing process defined in the IBA
specification is similar to the routing in TCP/IP networks. First, if an end-node

Making the Network Scalable: Inter-subnet Routing in InfiniBand 689

want to send a packet to another subnet, the address resolution makes the local
router visible to that end-node. The end-node puts the local router’s LID address
in the local routing header (LRH) and the final destination address (GID) in the
global routing header fields. When the packet reaches a router, the packet fields
are replaced (the source LID is replaced with the LID of the router’s egress port,
the destination LID is replaced with the LID of the next-hop port, and CRCs are
recomputed) and the packet is forwarded to the next hop. The pseudo code for
the rest of the packet relay model is described in [7] on page 1082. In this paper,
we will only consider topologies similar to that presented in Fig. i.e. cases
where one or more subnets are directly connected using routers. Furthermore,
each subnet must be a fat-tree topology and it must be directly attached to the
other subnets without any transit subnets in between.

4 Layer-3 Routing in InfiniBand

Up until now, IB-IB routers were considered to be superfluous. Even the concept
of routing, which in TP networks strictly refers to layer-3 routers, in IB was infor-
mally applied to forwarding done by layer-2 switches that process packets based
only on their LID addresses. With the increasing size and complexity of subnets
the need for routers has become more evident. There are two major problems
with inter-subnet routing: which router should be chosen for a particular des-
tination (first routing phase) and which path should be chosen by the router
to reach the destination (second routing phase). Solving these problems in an
optimal manner is not possible if adhering to the current IB specification: the
routers are non-transparent subnet boundaries (local SM cannot see beyond),
so full topology visibility condition is not met. However, in this paper, by using
regularity features provided by the fat-tree topology, we propose a solution for
these problems. Nevertheless, for more irregular networks where the final des-
tination is located behind another subnet (at least two router hops required)
there may be a need for a super subnet manager that coordinates between the
local subnet managers and establishes the path through the transit subnet. We
consider such scenarios to be future work. In this section we present two new
routing algorithms: Inter-Subnet Source Routing (ISSR) and Inter-Subnet Fat-
Tree Routing (ISFR). ISFR is an algorithm designed to work best on fat-trees
while ISSR is a more generic algorithm that works well on other topologies also.
However, in this paper we only focus on fat-trees and fat-tree subnets as the
deadlock problem becomes more complex when dealing with irregular networks.
Nevertheless, we plan to address deadlock free inter-subnet IB routing in a more
general manner in subsequent publications.

4.1 Inter-subnet Source Routing

We designed ISSR to be a general purpose routing algorithm for routing hybrid
subnets. It needs to be implemented both in the SM and the router firmware.
It is a deterministic oblivious routing algorithm that always uses the same path

690 B. Bogdanski et al.

for the same pair of nodes. In general, it offers routing performance comparable
to ISFR algorithm provided a few conditions explained in Sect. [l are met.

The routing itself consists of two phases. First, for the local phase (choosing an
ingress router port for a particular destination) this algorithm uses a mapping
file. Whereas the find router() function which chooses the local router looks
almost exactly the same (it just matches the whole GID) for ISSR algorithm as
for the OpenSM routing algorithm, the main difference lies in the setup of the
mapping file. In our case, we provide full granularity meaning that instead of only
a subnet prefix as for the OpenSM inter-subnet routing, the file now contains a
fully qualified port GID. This means that we can map every destination end-port
to a different router port while OpenSM routing can only match a whole subnet
to a single router port. In the case of ISSR, an equal number of destinations is
mapped to a number of ports in a round robin manner. In our example, dst gid1
and dst gid3 are routed through port 1 and port 2 on router A, and dst gid2
and dst gid4 are routed through the same ports on router B. Backup and default
routes can also be specified.

Code 1. A high-level example of a mapping file for ISSR and ISFR algorithms

1: dst gidl router A port 1 guid
2: dst gid2 router B port 1 guid
3: dst gid3 router A port 2 guid
4: dst gid4 router B port 2 guid
5: F£default route

6: * router A port 1 guid
7 * router B port 1 guid

Second difference is the implementation of the additional code in the router
firmware. A router receiving a packet destined to another subnet will source
route that packet. The routing decision is based both on the source LID (of the
original source or the egress port of the previous-hop router in a transit subnet
scenario) and the destination LID (final destination LID or the LID of the next-
hop ingress router port). The router knows both these values because it sees the
subnets attached to it. To obtain the destination LID, a function mapping the
destination GID to a destination LID or returning the next-hop LID based on
the subnet prefix located in the GID is required. In our case, this function is
named get next LID (line 2 of the pseudo code in Algorithm [T).

The algorithm calculates a random number based on the source and destina-
tion LIDs. This is done in a deterministic manner so that a given src-dst pair
always generates the same number, which prevents out of order delivery when
routing between subnets and, unlike round-robin, makes sure that each src-dst
always uses the same path through the network. This number is used to select
a single egress port from a set of possible ports. There is a set of possible ports
because a router may be attached to more than two subnets and therefore a two-
step port verification is necessary: first choose the ports attached to the subnet

Making the Network Scalable: Inter-subnet Routing in InfiniBand 691

Algorithm 1. choose egress port() function in ISSR
Require: Receive an inter-subnet packet
Ensure: Forward the packet in a deterministic oblivious manner

1: if received intersubnet packet() then

2: dstLID = get next LID(dGID)

3 srand(srcLID + dstLID)
4: port set = choose possible out ports()

5: e port = port set[(rand()%port set.size)]

6: end if

(or in the direction of the subnet) in which the destination is located, and then,
by using a simple hash based on a modulo function, choose the egress port.

4.2 Inter-subnet Fat-Tree Routing

As mentioned previously, a problem that needs to be solved is the communi-
cation between SMs that are in different subnets and are connected through
non-transparent routers. Our solution is based on the fact that the IBA speci-
fication does not give the exact implementation for inter-subnet routing, so our
proposal provides an interface in the routers through which the SMs will com-
municate. In other words, we implement handshaking between two SMs located
in neighboring subnets. The algorithm uses the previously defined file format
containing the GID-to-router port mappings in Code [[l The ISFR algorithm is
presented in Algorithm 2 Like the ISSR algorithm, it is also implemented in the
router device. ISFR works only on fat-trees and with fat-tree routing running
locally in every subnet. It will fall back to ISSR if those conditions are not met.

Algorithm 2. query down for egress port() function in ISFR
Require: Local fat-tree routing is finished
Require: Received the mapping file
Ensure: Fat-tree like routing tables throughout the fabric

1: if received mapping files then

2 for all port in down ports do

3 down switch = get node(port)

4 lid = get LID by GID(GID)

5: if down switch.routing table[lid] == primary path then
6: e port = port

7 end if

8 end for

9: end if

Every single router in a subnet receives the port mappings from its local SM
and is thereby able to learn which of its ports are used for which GIDs. Next, for
each attached subnet, the router queries the switches in the destination subnets

692 B. Bogdanski et al.

to learn which of the switches has the primary path to that subnet’s HCAs. If
we assume a proper fat-tree (full bisection bandwidth) with routers on the top
of the tree, then after such a query is performed, each router will have one path
per port in the downward direction for each destination located in a particular
subnet. In other words, if we substituted the top routers with switches, the
routing tables for the pure fat-tree and the fat-tree with routers on top would
be the same.

5 Simulations

To perform large-scale evaluations and verify the scalability of our proposal,
we use an InfiniBand model for the OMNEST/OMNeT++ simulator [I3]. The
IB model consists of a set of simple and compound modules to simulate an IB
network with support for the IB flow control scheme, arbitration over multiple
virtual lanes, congestion control, and routing using linear routing tables. In each
of the simulations, we used a link speed of 20 Gbit/s (4x DDR) and Maximum
Transfer Unit (MTU) equal to 2048 bytes. Furthermore, we use uniform, non-
uniform and HPCC traffic patterns. We used synthetic traffic patterns to show
baseline performance as these patterns have a predictable and easily understand-
able behavior, and are general rather than specific to a given application. We do
not provide the baseline results for the same topologies implemented as a single
subnet because ISFR routing provides exactly the same performance.

The simulations were performed on three different topologies shown in Fig. [
Each of the topologies can be classified as a 3-stage (i.e. having three rout-
ing/switching stages and one node stage) fat-tree with routers placed on top of
the tree (instead of normally placing root switches there). Even though there is a
dedicated fat-tree routing algorithm delivering high performance on almost any
fat-tree, we still decided to subnet a fat-tree fabric. The reason for that is that
we consider the fat-tree topology to be a very good proof-of-concept topology
for inter-subnet routing testing.

The fat-tree topology is scalable and by changing the number of ports we are
able to vary the size of the topologies and show how our algorithms scale with
regards to the number of nodes and subnets that are interconnected. All our sub-
nets are 2-stage fat-trees that are branches in a larger 3-stage fat-tree so we can
use routers and our routing algorithms to demonstrate how to seamlessly inter-
connect smaller fat-tree installations without using oversubscription. We chose a
3-stage 648-port fat-tree as the base fabric because it is a common configuration
used by switch vendors in their own 648-port systems [14J15/16]. Additionally,
such switches are often connected together to form larger installations like the
JuRoPA supercomputer [17].

5.1 Routing Algorithm Comparison

We perform three sets of simulations: with uniform traffic, with non-uniform
traffic and we run the HPCC benchmark. For non-uniform traffic we vary packet

Making the Network Scalable: Inter-subnet Routing in InfiniBand 693

ubn (subnet3)
<)

(c) 6-subnet fabric

Fig. 1. Topologies used for the experiments

length from 84 bytes to 2 kB, keep the message length constant at 2 kB. We also
introduce some randomly preselected hot spots (different for every random seed,
not varying in time): one hot spot per subnet, with a probability of ISP x 0.05
for remote traffic and the same hot spot with a probability of (1 — ISP) * 0.05
for local traffic. The ISP (Inter-Subnet Percentage) value is the probability that
a message will be sent to the local or the remote subnet. It varies from 0%
(where all messages remain local) to 100% (where all messages are sent to remote
subnets). The non-hot spot destined part of the traffic selects their destination
randomly from all other available nodes. This means that there could be some
other random hot spots that vary in time, and some nodes could also contribute
unknowingly to the preselected hot spots. We express the measured throughput
as the percentage of the available bandwidth for all the scenarios. The parameters
for that traffic pattern were chosen to best illustrate the impact of congestion
on the routing performance, which is a good baseline for algorithm comparison.

Uniform Traffic. The results for this scenario are shown in Fig. 2l When it
comes to uniform traffic, we can establish that the performance of the OpenSM
inter-subnet routing deteriorates in the presence of even a very small amount of
inter-subnet traffic. At ISP equal to 20%, throughput is reduced to 17.5% for
the 2-subnet scenario in Fig. 23.46% for the 3-subnet scenario in Fig.
and 37.5% for the 6-subnet scenario in Fig. The increase in performance for
a larger number of subnets is explained by the fact that traffic is spread across
more routers, i.e. each subnet in the topology uses a different ingress port locally.
ISFR algorithm provides almost constant high performance under uniform traffic
conditions whereas the performance of ISSR algorithm deteriorates slightly for
very high ISP values as shown in Fig. and Fig. This is caused by the
fact that egress ports from the routers may not be unique as they are chosen
randomly. However, the deterioration is smaller when the number of subnets
increases (12% decrease for the 3-subnet scenario compared to 5% decrease for
the 6-subnet scenario at ISP=100%) as shown in Fig. This occurs because
the more subnets we have in the fabric and the higher is the ISP value, the
more inter-subnet traffic pairs are created, so the hash function has a higher
probability to utilize more links from the defined subnet-port-set as there are
more random numbers generated.

694 B. Bogdanski et al.

70 80 90 100

60

70 80 90 100

60

50

40

—— OpenSM intersubnet routing|
—o—ISFR algorithm
—=—ISSR algorithm

50

40

20 30

10

Average per end-node throughput (% of capacity)
0

ge per end-node throughput (% of capacity)
10 20 30

0

—— OpenSM intersubnet routing|
—o—ISFR algorithm
—=—ISSR algorithm

S S

VOO G BB

0 10 20 30 80 90 100

0 50 60
ISP(%)
(a) 2-subnet scenario uniform traffic

~—~ Avera

0 50 60 70 80 9 100
ISP(%)

b) 2-subnet scenario non-uniform traffic

100

70 80 90
'}

60

70 80 90 100

60

50

—— OpenSM intersubnet routing|
—o—ISFR algorithm
—=—ISSR algorithm

40

50

40

20 30

10

20 30

ge per end-node throughput (% of capacity)
10

0

0

—— OpenSM intersubnet routing|
—o—ISFR algorithm
—=—ISSR algorithm

e N S ..,

~~ L
O - —a—4
R SN IDNIDN PR o=, == -y

Average per end-node throughput (% of capacity)

0 10 20 30 80 90 100

0 50 60
ISP(%)
(c) 3-subnet scenario uniform traffic

~—~ Avera

0 50 60 70 80 9% 100
ISP(%)

d) 3-subnet scenario non-uniform traffic

100

e ﬁ?ﬁ:ﬁ:tyfg

70 80 90

60

—— OpenSM intersubnet routing|
—o—ISFR algorithm
—=—ISSR algorithm

\M

40

20 30

10

20 30 40 50 60 70 80 90 100

10

0

0

—— OpenSM intersubnet routing|
—o—ISFR algorithm
—=—ISSR algorithm

Average per end-node throughput (% of capacity)
50

[] 10 20 30 80 90 100

0 30 60
ISP (%)

(e) 6-subnet scenario uniform traffic

—~ Average per end-node throughput (% of capacity)

0 30 60 g 90 100
ISP (%)

f) 6-subnet scenario non-uniform traffic

Fig. 2. Throughput as a function of ISP with uniform and non-uniform traffic

Non-uniform Traffic. Whereas under uniform traffic our algorithms gave al-
most optimal performance, the situation worsens if some non-uniformity is added

as seen in Fig.

What is first noticeable is the fact that ISFR algorithm is clearly outperformed
by the ISSR algorithm for the middle range of the ISP values (20% to 70%), as

Making the Network Scalable: Inter-subnet Routing in InfiniBand 695

best seen in Fig. Second, we observe that ISSR algorithm deteriorates for
ISP values greater than 40%, which is best seen in Fig. ISFR, on the other
hand, becomes stable at ISP values close to 40%. This behavior is explained
by the addition of the hot spots to our traffic pattern, the occurrence of head-
of-line (HOL) blocking, and the migration of the root and the branches of the
congestion trees. For lower ISP values (<50%) local traffic is dominant and in
every subnet 5% of such traffic is destined to the local hot spot. In such a case
the branches of the congestion tree will mostly influence the local traffic, but
they will also grow through the single dedicated downward link (a thick branch)
to influence the victim nodes in other subnets if the ISFR algorithm is used.
For ISSR, the same will happen, but there is no dedicated downward link and
the branches growing through multiple downward links will be much thinner,
therefore, influencing the local traffic in other subnets to a lesser extent. This
happens because ISSR spreads the traffic destined towards the hot spot across
multiple downward links. This is the reason why ISFR algorithm is outperformed
by ISSR in such a hot spot scenario for almost all ISP values.

For ISFR algorithm, for higher ISP values (>50%), the root of the congestion
tree will move from the last link towards the destination to the first downward ded-
icated link towards the destination (i.e. a router port), and the congestion tree will
influence mostly the inter-subnet traffic as there will be little or no local traffic,
which is why ISFR algorithm reaches stability at around 50% ISP. For ISSR, for
higher ISP values, the root of the congestion tree will not move and the branches
will grow much thicker (as there is more incoming remote traffic). This will not
only slightly influence the local traffic (that is low for high ISP values) in the con-
tributor’s subnets, but also it will cause HOL blocking for the downward traffic
that uses the same links that the hot spot traffic uses to reach other destinations.
It happens because ISSR does not use dedicated paths for downward destinations.
Such a deterioration can be best observed in Fig. or Fig.

Another vital observation is the fact that by increasing the number of subnets,
we increase the performance of all the routing algorithms. This is best visible
when comparing Fig. and Fig. The explanation for that is the seg-
mentation of the hot spot contributors. In other words, the more hot spots there
are, the weaker is the influence of the head-of-line blocking (the congestion tree
branches are thinner).

We also see that OpenSM routing still yields undesirable performance for
every scenario. However, an important observation here is that the congestion
does not originate from the hot spots, but from the utilization of a single ingress
link to transmit the traffic to the other subnet.

HPC Challenge Benchmark. We implemented a ping-pong traffic pattern
that was used to run the HPC Challenge Benchmark [I8] tests in the simulator.
We used a message size of 1954KB and kept the load constant at 100%. The tests
were performed on 500 ring patterns: one natural-ordered ring (NOR) and 499
random-ordered rings (ROR) from which the minimum, maximum and average
results were taken. In this test each node sends a message to its left neighbor in
the ring and receives a message from its right neighbor. Next, it sends a message

696 B. Bogdanski et al.

Table 1. The HPC Challenge Benchmark results (in MB/s)

Measurement OpenSM ISSR ISFR

NOR BW 1572.49 1572.49 1572.49
ROR BW min/max/avg

2 subnets 528/878/703 847/1166/1001 1064/1314/1187

3 subnets 345/611/482 753/993/867 946,/1165/1069

6 subnets 202/343/270 709/875/775 841/1018/933

back to its right neighbor and receives a return message from its left neighbor.
We treated the whole fabric as a continuous ring and we disregarded the subnet
boundaries.

Table [l presents the HPCC Benchmark results. For any fat-tree the NOR
bandwidth results give the maximum throughput as there is no contention in
the upward or the downward direction. However, when we compare the results
for the ROR, we observe differences between the routing algorithms. For the 2-
subnet scenario, we observe an increase in throughput of 536 MB/s (102%) when
comparing the minimum throughput for the OpenSM and the ISFR algorithms.
Furthermore, we observe that the average throughput for the ISFR algorithm is
higher than the maximum throughput for the ISSR algorithm in all cases. For
the average throughput we observe an increase of 484 MB/s (69%) compared
to OpenSM routing. For the 3-subnet scenario the trend is the same as for the
previous scenario, but we observe that the throughput is lower than for the 2-
subnet scenario. This happens because the larger the topology, the higher the
probability that the destination is chosen from a set of non-directly connected
nodes. For a 144-node fabric, each source can address 143 end-nodes and 23 out
of those end-nodes (15.7%) are reachable through a non-blocking path (11 at the
local switch, 12 at the neighbor switch). For a 216-node fabric, the same number
of nodes is reachable through a non-blocking path, but the overall number of
nodes is larger, which gives only 10.6% of nodes reachable through a non-blocking
path. This means that a ROR pattern in a larger fabric has a lower probability
for reaching a randomly chosen node in a non-blocking manner. Furthermore,
in larger topologies more nodes are non-local, which means that the routing
algorithm uses the longest hop path to reach them (traversing all stages in a
fat-tree), which further decreases the performance. For the 6-subnet scenario,
we observe a similar situation as for the 3-subnet scenario: that there is an
overall decrease in performance. The explanation is the same as for the 3-subnet
scenario: more nodes are used to construct a ROR, but the number of nodes
accessible in a non-blocking manner stays the same, so the generated ROR pairs
have an even lower probability to use a non-blocking path.

The general observation is that for the HPCC benchmark, the ISFR algorithm
delivers the best performance. It is because this traffic pattern does not create
any destination hot spots and the congestion occurs only on the upward links
towards the routers, while the dedicated downward paths are congestion-free.
Despite using the same upward path as the ISFR algorithm, ISSR algorithm may

Making the Network Scalable: Inter-subnet Routing in InfiniBand 697

not provide a dedicated downward path, which is why there is a performance
difference between these two algorithms.

6 Conclusions and Future Work

Native IB-IB routers will make the network scalable, and designing efficient
routing algorithms is the first step towards that goal. In this paper, we laid
the groundwork for layer-3 routing in IB and we presented two new routing
algorithms for inter-subnet routing: the inter-subnet source routing and the inter-
subnet fat-tree routing. We showed that they dramatically improve the network
performance compared to the current OpenSM inter-subnet routing.

In future, we plan to generalize our solution to be able to support many dif-
ferent regular fabrics in a deadlock-free manner. Another candidate for research
will be evaluating the hardware design alternatives. Looking further ahead, we
will also propose a deadlock-free all-to-all switch-to-switch routing algorithm.

References

1. Obsidian Strategics: Native InfiniBand Routing (2008),
http://www.nsc.liu.se/nsc08/pres/southwell.pdf

2. Southwell, D.: Next Generation Subnet Manager - BGFC. In: Proceedings of HPC
Advisory Council Switzerland Conference 2012 (2012)

3. InfiniBand Trade Association: Introduction to InfiniBand for End Users (2010)

4. Obsidian Strategics: Native InfiniBand Routing (2006),
http://www.obsidianresearch.com/archives/2006/Mellanox Obsidian SCO06
handout 0.2.pdf

5. The OpenFabrics Alliance: Issues for Exascale, Scalability, and Resilience (2010)

6. Yousif, M.: Security Enhancement in InfiniBand Architecture. In: 19th IEEE In-
ternational Parallel and Distributed Processing Symposium, pp. 105a. IEEE (April
2005)

7. InfiniBand Trade Association: Infiniband Architecture Specification, 1.2.1 edn.
(November 2007)

8. Prescott, C., Taylor, C.: Comparative Performance Analysis of Obsidian Longbow
InfiniBand Range-Extension Technology (2007)

9. Richling, S., Kredel, H., Hau, S., Kruse, H.G.: A long-distance InfiniBand intercon-
nection between two clusters in production use. In: State of the Practice Reports
on - SC 2011. ACM Press, New York (2011)

10. Top 500 Supercomputer Sites (November 2012), http://top500.o0rg/

11. Dally, W.J., Towles, B.: Principles and practices of interconnection networks. Mor-
gan Kaufmann (2004)

12. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks an Engineering Ap-
proach. Morgan Kaufmann (2003)

13. Gran, E.G., Reinemo, S.A.: Infiniband congestion control, modelling and valida-
tion. In: 4th International ICST Conference on Simulation Tools and Techniques
(SIMUTools 2011, OMNeT++ 2011 Workshop) (2011)

14. Oracle Corporation: Sun Datacenter InfiniBand Switch 648, http://www.oracle.
com/us/products/servers-storage/networking/infiniband/046267 .pdf

http://www.nsc.liu.se/nsc08/pres/southwell.pdf
http://www.obsidianresearch.com/archives/2006/Mellanox_Obsidian_SC06_handout_0.2.pdf
http://www.obsidianresearch.com/archives/2006/Mellanox_Obsidian_SC06_handout_0.2.pdf
http://top500.org/
http://www.oracle.com/us/products/servers-storage/networking/infiniband/046267.pdf
http://www.oracle.com/us/products/servers-storage/networking/infiniband/046267.pdf

698

15.

16.

17.
18.

B. Bogdanski et al.

Mellanox Technologies: Voltaire Grid Director 4700, http://www.voltaire.com/
assets/files/Datasheets3/Grid-Director-4700-DS-WEB-020711.pdf

Mellanox Technologies: IS5600 - 648-port InfiniBand Chassis Switch,
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5600.pdf
Forschungszentrum Jiilich: JuRoPA - Jiilich Research on Petaflop Architectures
Luszczek, P., Dongarra, J.J., Koester, D., Rabenseifner, R., Lucas, B., Kepner,
J., McCalpin, J., Bailey, D., Takahashi, D.: Introduction to the HPC Challenge
Benchmark Suite (April 2005)

http://www.voltaire.com/assets/files/Datasheets3/Grid-Director-4700-DS-WEB-020711.pdf
http://www.voltaire.com/assets/files/Datasheets3/Grid-Director-4700-DS-WEB-020711.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/IS5600.pdf

	Making the Network Scalable:
Inter-subnet Routing in InfiniBand
	1 Introduction
	2 Related Work
	3 The InfiniBand Architecture
	3.1 Native InfiniBand Routers

	4 Layer-3 Routing in InfiniBand
	4.1 Inter-subnet Source Routing
	4.2 Inter-subnet Fat-Tree Routing

	5 Simulations
	5.1 Routing Algorithm Comparison

	6 Conclusions and Future Work
	References

