
Heterogeneous Combinatorial Candidate

Generation

Fahad Khalid1, Zoran Nikoloski2, Peter Tröger1, and Andreas Polze1

1 Hasso Plattner Institute for Software Systems Engineering
{fahad.khalid,peter.troeger,andreas.polze}@hpi.uni-potsdam.de

2 Max Planck Insitute of Molecular Plant Physiology
nikoloski@mpimp-golm.mpg.de

Abstract. Elementary Flux Modes (EFMs) can be used to character-
ize functional cellular networks and have gained importance in systems
biology. Enumeration of EFMs is a compute-intensive problem due to
the combinatorial explosion in candidate generation. While there exist
parallel implementations for shared-memory SMP and distributed mem-
ory architectures, tools supporting heterogeneous platforms have not yet
been developed. Here we propose and evaluate a heterogeneous imple-
mentation of combinatorial candidate generation that employs GPUs as
accelerators. It uses a 3-stage pipeline based method to manage arith-
metic intensity. Our implementation results in a 6x speedup over the
serial implementation, and a 1.8x speedup over a multithreaded imple-
mentation for CPU-only SMP architectures.

1 Introduction

Metabolism is the collection of chemical compounds, called metabolites, trans-
formed via enzymatic reactions to sustain the functions of biochemical systems.
The network structure of metabolism can be characterized by a directed weighted
hypergraph [1] in which directed hyperedges represent reactions and nodes stand
for metabolites. The number of molecules with which a metabolite participates as
a substrate and/or product in a reaction specifies the reaction-specific stoichiom-
etry of the metabolite, rendering the hypergraph node-weighted. The concept of
a steady state, i.e., equilibrium, whereby there is no change in concentrations
of the considered metabolites, is often employed in analyzing the functional be-
havior of (large-scale) metabolic networks [2].

Interestingly, the steady-state behavior of metabolic networks, described only
by the directed weighted hypergraph, can be fully characterized by the mini-
mal subnetworks which operate at equilibrium, referred to as elementary flux
modes [3, 4] (EFMs). Due to the minimality condition, an EFM cannot oper-
ate in a steady state upon removal of any of its components (i.e., reactions or
metabolites). Further, EFMs provide a mathematical definition for the concept of
a biochemical pathway. Since EFMs can capture emergent functions of biochem-
ical systems, they have been used to analyze key systemic properties, including
robustness and flexibility [5]. However, characterization of a system’s behavior

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 751–762, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



752 F. Khalid et al.

by means of EFMs requires their enumeration, which involves systematic evalu-
ation of all possible subnetworks with respect to several constraints/conditions
they must satisfy. This process is combinatorial in nature and expensive in terms
of both computational and memory requirements, thus, limiting application to
systems of small size. Therefore, parallelization of the existing approaches for
EFM enumeration is necessary for large-scale networks.

Both shared-memory and distributed-memory parallel approaches have been
developed. A parallel out-of-core implementation [6] was one of the first attempts
at parallelization. Another implementation, the efmtool 1 is targeted towards
shared memory SMP architectures. It is based on the state-of-the-art in algo-
rithmic approach for EFM enumeration [7–9], and has been used by scientists
other than the developers to report important results [10].

The ElMo-Comp tool [11] was designed specifically for distributed memory
architectures. Since the first public release, the tool has been extended to handle
larger networks. The first extension [12] employs the Divide and Conquer strat-
egy, where the complete set of EFMs is partitioned into disjoint subsets that can
be processed independently. In the second extension [13], the concept of Par-
titioned Global Address Space (PGAS) is utilized to enable sharing of memory
resources across the cluster.

Our study builds on ElMo-Comp [11] and extends it to support heterogeneous
architectures with GPUs as accelerators. Our efforts are focused on the compu-
tational bottleneck, which is the memory-bound part of the algorithm we term
combinatorial candidate generation.

The paper is organized as follows: Section 1.1, presents the mathematical
model and algorithm used for EFM enumeration, including the computational
bottleneck. Our approach is presented in Section 2, followed by evaluation in
Section 3. Related work is discussed in Section 4, followed by conclusion and
future work.

1.1 Enumeration of Elementary Modes

Mathematical Model. Consider the hypergraph representation of a paradig-
matic metabolic network presented in Figure 1A (adapted from [14]). Metabolites
in the network are represented by nodes and reactions by hyperedges. Metabo-
lites are divided into two groups internal to the system and external, i.e., in the
systems environment, delineated by the dotted line box in Figure 1A. The reac-
tions that involve both external and internal metabolites are termed exchange
reactions. Moreover, with respect to directionality, reactions are divided into
reversible and irreversible, belonging to the sets Rev and Irr, respectively. In
Figure 1A, reaction r8 is reversible. The information encoded in the directed
weighted hypergraph can be captured by the corresponding stoichiometric ma-
trix. For a metabolic network with m metabolites and q reactions, the stoichio-
metric matrix, S, consists of m rows and q columns. The entry Si,j quantifies
the number of molecules with which metabolite i participates in reaction j, and

1 efmtool - Elementary Flux Mode Tool: http://www.csb.ethz.ch/tools/efmtool



Heterogeneous Combinatorial Candidate Generation 753

S=

⎛
⎜⎜⎜⎜⎝

r1 r2 r3 r4 r5 r6 r7 r8 r9

A 1 −1 0 0 −1 0 0 0 0
B 0 0 0 0 1 −1 −1 −1 0
C 0 1 −1 0 0 1 0 0 0
D 0 0 1 0 0 0 0 0 −1
P 0 0 1 −1 0 0 2 0 0

⎞
⎟⎟⎟⎟⎠

Fig. 1. (A) Metabolic network (B) corresponding stoichiometric matrix

the sign indicates if the metabolite participates as a substrate (negative) or a
product (positive), illustrated in Figure 1B.

Reaction rates, called fluxes, quantify the behavior of reactions transforming
the metabolites in the network. The steady state of a metabolic network spec-
ified by its stoichiometric matrix can be characterized in terms of a q-vector
termed flux vector (or distribution), denoted by v. Reaction rates can be used
to characterize the change in the concentration of metabolites, since dX

dt = Sv,
where X is an m-vector gathering the concentrations of metabolites. In a steady
state, there is no change in concentrations, and the steady-state flux distribution
can be determined by solving the system of linear equations:

Sv = 0, (1)

whereby v belongs to the nullspace of the stoichiometric matrix S. Since the num-
ber of metabolites is usually smaller than the number of reactions, the system in
Eq. (1) is underdetermined and usually results in an infinite number of solutions.
Note that the system of linear equations is homogeneous if all metabolites are
internal; otherwise, the system is inhomogeneous. Moreover, a steady-state flux
distribution is further constrained by the reaction directionalities, so that fluxes
of irreversible reactions must be non-negative, i.e.,

vi ≥ 0, ∀i ∈ Irr (2)

By combining the steady-state and directionality constraints imposed by Eq.(1)
and Eq.(2), respectively, the solution space forms a convex polyhedral cone, P ,
defined as [15]:

P = {v ∈ R
q | Sv = 0, vi ≥ 0, ∀i ∈ Irr}, (3)

where R
q is the q-dimensional vector space in real numbers. Clearly, every vec-

tor that lies in the cone represents a feasible flux distribution in the metabolic
network. With this notation, we need the elementarity constraint to define an
EFM. Let supp(v) = {i | vi �= 0} and let E denote the set of all EFMs, then,
the following holds:

∀v ∈ E, �x ∈ E | v �= x, supp(v) ⊆ supp(x). (4)

If the system consists only of irreversible reactions, the solution space forms a
pointed polyhedral cone [5]. In this case, the set of elementary modes comprises
a unique minimal set of generating vectors for the entire flux space.



754 F. Khalid et al.

The Nullspace Algorithm. All algorithms for elementary mode enumeration
are based on the Double Description Method [16] for extreme ray enumeration
of a polyhedral cone, well-studied in computational geometry. These algorithms
vary primarily in the order in which the steady-state and reaction reversibility
constraints are processed. Our study is based on the Nullspace algorithm [17]
(see [18] for detailed description). Here, we present a brief sketch, highlighting
only the most relevant steps. The Nullspace algorithm is summarized as follows:

1. The stoichiometric matrix S is compressed using methods specified in [5].
Let the compressed matrix be S′

m×q. Then the nullspace obtained by solving
S′v = 0 is denoted by K ′. Each row in K ′ corresponds to a reaction, and
each column represents a potential EFM. Let I denote the identity matrix.
The compressed nullspace is permuted to obtain the following form:

K ′ =
(
R(1)

R(2)

)
=

(
I

R(2)

)
(5)

where the directionality constraints are already solved for rows in I. Direc-
tionality constraints must now be applied to all rows in R(2).

2. For each row in R(2):
(a) Generate bitwise combinations of selected columns in R(1) to produce

candidate bit vectors. Given a threshold τ , a candidate vector, v,
supp(v) > τ is discarded,

(b) Remove duplicate candidate vectors,
(c) Verify each candidate for elementarity,
(d) Generate algebraic combinations on the current row in R(2),
(e) Convert the current row in R(2) to the corresponding binary representa-

tion and move it to R(1),
(f) Append the generated EFMs as column vectors to the nullspace.

We note that once a row in R(2) is processed, it can be converted to a binary rep-
resentation and moved to R(1) [5]. Moreover, in ElMo-Comp, R(1) is compressed
by a factor equal to the machine word length, i.e., 32 or 64 times. Finally, once
all reactions have been processed, columns of the kernel matrix represent all
EFMs for the given network.

Combinatorial Candidate Generation. The most compute intensive step in
the Nullspace algorithm is the generation of combinations in R(1) (see Algorithm
1). We refer to this step as combinatorial candidate generation. This step being
the computational bottleneck is the primary focus of our work.

Algorithm 1 consists of two core computational operations: a bitwise OR
between two columns that results in a candidate vector (Line 3) and a popcount
on the candidate vector (Line 4). To process a single candidate, we need two
arithmetic and four memory access operations (assuming popcount() is available
as a hardware instruction). Moreover, two read operations are required to fetch
the input columns, and two write operations are required to store the indices
corresponding to the input columns. The data type used for both input and



Heterogeneous Combinatorial Candidate Generation 755

output values is 64-bit unsigned integer. As compared to the 32-bit data types,
this increases the size of the input and output values, halves the throughput
of the two operations, and, thus, results in a very low compute-to-memory-
access ratio. Therefore, combinatorial candidate generation can be classified as
a memory-bound algorithm with low arithmetic intensity.

Algorithm 1: Serial combinatorial candidate generation. Index vectors
contain column indices of the corresponding matrices; OR is the binary
bitwise OR operation; τ is a threshold (as described in Section 1.1)

Input : Bit matrices: MatrixA, MatrixB
Index vectors: IndicesA, IndicesB
Integer: τ

Output: Candidate column index pairs of the form
{(a, b) | a ∈ IndicesA and b ∈ IndicesB}

1 foreach colA: column in MatrixA do
2 foreach colB: column in MatrixB do
3 candidate = MatrixA[colA] OR MatrixB[colA];
4 nonZeros = popcount(candidate);
5 if nonZeros ≤ τ then
6 store index pair (IndicesA[colA], IndicesB[colB ]);
7 end

8 end

9 end

In massively parallel accelerator architectures, like GPUs, most of the chip
area is dedicated to arithmetic and logic units, which results in very small sizes
for fast on-chip memory. Therefore, these architectures are ill-suited for algo-
rithms with low arithmetic intensity. Here, we present an approach that renders
it possible to exploit the massive parallelism of GPUs, leading to significant
speedup despite the memory-bound nature of the combinatorial candidate gen-
eration algorithm.

2 Our Approach

In the rest of the document, we assume all index values to be of type 64-bit
unsigned integer. We refer to the CPU as Host, and the GPU as Device.

Algorithm 1 can be decomposed into two parts: (1) generation of a candidate
vector followed by popcount (Lines 3,4), which results in a Boolean; and (2)
storage of input column indices (Line 6). These two parts can be implemented
as distinct phases — Generate and Map.

Generate Phase. This phase is implemented as the Device kernel (see Algo-
rithm 2). As in the serial version, the two input values are fetched to perform the
bitwise OR (Line 3) and popcount (Line 4) operations. Since the max-non-zero
condition is the final step in this phase, instead of storing two 64-bit integers,



756 F. Khalid et al.

the kernel stores a single Boolean value (Line 5). This significantly increases the
arithmetic intensity, and hence the kernel performance. Nevertheless, storing a
Boolean value against each possible combination has a disadvantage. For two
matrices A and B of sizes m and n, respectively, the size of the output Boolean
array is m× n. As the number of reactions in the network increases, the size of
the output array becomes too large for the Device memory. This results in large
and frequent Device-to-Host memory transfers that become a serious bottleneck.

Algorithm 2: GPU kernel for combinatorial candidate generation

Input : Matrix A, Matrix B, τ
Output: Result - bit array

1 for 1 to compressionFactor do
2 compute indexMatA, indexMatB, indexResult ; // index algebra

3 candidate = MatrixA[indexMatA] OR MatrixB[indexMatB ];
4 nonZeros = popcount(candidate);
5 result[indexResult ] = (nonZeros ≤ τ);

6 end

We address this problem by introducing a compression factor, which defines
the number of result values generated by each Device thread. Instead of storing
the output in a Boolean variable, we use a single bit. Therefore, a single thread
can generate and store 64 values in a single 64-bit unsigned integer. This reduces
the size of the output array by compression factor, and Device-to-Host transfers
no longer constitute the bottleneck. The data type of the output array is inde-
pendent of the other data types used, and its size merely indicates the maximum
number of results generated by a single thread.

Map Phase. Once kernel execution is complete, the index of each bit in the
result array corresponds to a candidate, and the bit value indicates whether the
candidate should be considered for further processing. The index of each set
bit must then be mapped to the corresponding index pair used to generate the
corresponding value (a candidate is identified by the corresponding pair of input
columns). The Map phase traverses the output bit array, looks for set bits, and
maps their indices to the corresponding input index pairs. This phase is highly
memory-bound, and thus performs better on the Host.

2.1 Concurrent Host–Device Processing

The Generate-Map strategy with compression factor, results in a significant
speedup over both the serial version, and a näıve kernel without compression
factor. In the subsections to follow, we show how pipeline parallelism [19] can be
employed to implement concurrent Device-Host processing for larger speedup.

Two-Stage Pipeline: Device only Due to the combinatorial nature of the
algorithm, a very large number of Device threads are required to compute all



Heterogeneous Combinatorial Candidate Generation 757

possible combinations. For NVIDIA GPUs with compute capability up to 2.0,
the maximum number of thread blocks is limited to 65535. Therefore, for larger
input sizes, multiple grid (batches of threads) executions are required. Between
two subsequent grid executions, the result array has to be transferred fromDevice
to Host, so that enough space is left on the Device to hold the result array for the
next grid in line for execution. Moreover, the Map phase can only begin once
the final Device-to-Host memory transfer is complete. This results in a serial
processing of stages as depicted in Figure 2a.

The NVIDIA CUDA programming model provides API that makes it possible
to overlap kernel execution and memory transfer. Using this feature, one kernel
can be launched after the other without waiting for a Device-to-Host memory
transfer operation to finish. This results in a 2-stage pipeline as depicted in
Figure 2b. To ensure that a memory transfer only begins after the corresponding
kernel computation is finished, an event notification system is employed. Each
kernel executes in its own stream [20], and once the kernel execution is complete,
an event notification is sent from the kernel stream to the corresponding memory
transfer stream. The memory transfer stream begins operation only after the
event notification has been received.

Three-Stage Pipeline: Device and Host The CUDA stream based event
notification system has traditionally been limited to event exchange among De-
vice operations only. With the release of CUDA 5.0 however, it is now possible
to register Host callback functions with Device streams. These callbacks make it
possible for the Device to send stream event notifications to the Host. We utilize
the callback feature to extend the 2-stage pipeline. The Map phase is included
as an additional stage, resulting in a 3-stage pipeline that spans both Host and
Device functions. The concept is illustrated in Figure 2c.

The process starts by calculating the total size of the result array, and splitting
it into multiple segments. For each segment, one or more kernels are launched in
different streams, which we refer to here as grid streams. Events are recorded for
each grid stream, on which the asynchronous memory transfer operation waits.
Once all grids for the current segment have finished execution, the Device-to-
Host memory transfer begins. At the same time, grids are launched for the next
segment. Once the Device-to-Host memory transfer operation is complete, it

(a)

(b) (c)

Fig. 2. Illustration of (a) serial, (b) 2-stage, (c) 3-stage processing of phases. D2H is
Device-to-Host memory transfer



758 F. Khalid et al.

calls a Host function registered as callback with the memory transfer stream.
The callback function sets a flag, indicating that the memory transfer operation
for a specific segment is complete. The flag serves as a notification for the Map
phase, and triggers the map operation on the segments result. To ensure that the
Generate and Map phases execute not just concurrently but in parallel, these
operations are executed by two separate Host threads that share data structures
for the exchange of event notifications.

The memory size on the Device is generally smaller than that of the Host.
Therefore, it is the programmers responsibility to ensure that all datasets that
fit into the Host memory can also run on the Device. For this purpose, we use
the concept of partition. Maximum partition size depends on the total amount
of global memory available on the Device and the sizes of the input and result
data structures. Large datasets are split into multiple partitions, where each
partition consists of multiple segments. The Device utilizes the 3-stage pipeline
to process one partition at a time. The next partition can start execution only
if the required memory resources have been released by the previous partition.

2.2 Overall Architecture

In order to utilize all available processing resources, the candidate generation
algorithm is processed using two implementations that execute in parallel (as
shown in Figure 3). One is a multithreaded OpenMP based (Host -only) im-
plementation that executes solely on the CPU cores. The other is the 3-stage
Device-Host pipeline as describer in Section 2.1.

A Host thread decomposes the input data structures into two parts for distri-
bution amongst the Host -only implementation and the 3-stage pipeline. These
are passed on to a parallel harness that invokes two threads. The first thread in-
vokes the OpenMP based Host -only multithreaded implementation. The second
invokes the device harness. The device harness defines the data structures to be
shared amongst the Generate and Map phases, and instantiates these phases as
two OpenMP threads. The Generate thread further manages the massively par-
allel execution on the Device. TheMap thread listens to memory transfer comple-
tion events and invokes the bit-to-input-index mapping routine. This routine is
also implemented as multithreaded OpenMP code, which helps speedup the map-
ping process. Once both the Host -only code and device harness threads have com-
pleted execution, a reduction operation is performed to consolidate the results.

Fig. 3. Thread hierarchy. Parallel harness spawns device harness and Host-only code.
Device harness spawns the Generate and Map phases.



Heterogeneous Combinatorial Candidate Generation 759

3 Evaluation

We present comparative results from three different implementations: the serial
Nullspace program available in ElMo-Comp [11]; our OpenMP based shared-
memory parallel implementation for SMP architectures; and our 3-stage pipeline
implementation for heterogeneous architectures. Both our implementations are
based on the ElMo-Comp code base.

3.1 Test Environment

The machine used for running the reported experiments has 24GB of main mem-
ory, and consists of an Intel Xeon E5620 CPU and an NVIDIA Tesla 2050 GPU.
The Xeon E5620 processor is based on the Nehalem EX architecture, supporting
a 64-bit instruction set with SSE 4.2. It has 4 cores, each supporting 2 hardware
threads. The Tesla 2050 GPU is based on the Fermi architecture, with compute
capability rating of 2.0. The operating system used is Ubuntu SMP 12.04. The
code was compiled using GCC 4.4.3 and NVCC with CUDA 5.0.

3.2 Results

Table 1 summarizes results of three implementations against five real networks
of varying sizes, all capturing E.Coli central metabolism. The candidate gener-
ation step is performed on compressed networks [5]. Accordingly, network sizes
mentioned in the table correspond to compressed networks.

The results show that the utility of the heterogeneous implementation in-
creases with the number of candidate vectors generated during execution. Poor
performance of the heterogeneous implementation against small networks is at-
tributed to the overhead incurred by the transfer of data between Host and
Device memory, as well as coordination between the Generate and Map phases.
For larger networks, the incurred overhead is overshadowed by the performance
gain. The Host -only multithreaded implementation utilizes all 8 threads avail-
able on the processor. The heterogeneous implementation dedicates 2 threads to
the Host -only implementation, and 2 threads to the Map phase. Input data is
distributed amongst the device harness and the Host -only implementation such
that only 1

8 th of the input size is processed by the Host -only code, while the rest
is processed by the device harness.

It is important to properly tune compression factor and maximum segment
size for optimal performance. A higher value of compression factor translates to
more work per Device thread, and lower Device output size. Maximum segment
size defines the maximum result array size for which a memory transfer to the
Host must be initiated. Together these two parameters balance the speed and
coordination between the pipeline stages. For the results presented in Table 1,
compression factor is 64 and the maximum segment size is 60 MB.



760 F. Khalid et al.

Table 1. Comparative results of three different implementations against five networks.
Execution times (in seconds) are presented against each implementation and network;
m is the number of metabolites, q is the number of reactions.

Network Size #candidates Time (s)
Serial OpenMP Pipelined

26m × 38q 219743731 1.2 0.38 0.39
26m × 40q 130992739 0.77 0.35 0.35
26m × 41q 752482917 4.1 1.6 1.0
27m × 43q 2616975505 14 5.5 2.5
29m × 45q 122559991284 690 150 110

4 Discussion

Related Work. Recently, major vendors from the hardware and software in-
dustries have pointed out the significance of considering arithmetic intensity for
decisions concerning suitable hardware. Empirical results [21] were presented to
show how Floating Point Operations Per Second (FLOPS) is not an adequate
measure for memory-bound algorithms. In addition, the case of Sparse Matrix-
vector Multiplication (SpMV) was used to study accelerator (GPU) performance
for algorithms with low arithmetic intensity [22]. The authors conclude that with
the coming generations of processors, in comparison to GPUs, CPUs are becom-
ing more and more suitable for such problems.

A multitude of scientific applications have been recently designed take advan-
tage of heterogeneous architectures with GPUs as accelerators. These include
linear solvers [23], solvers for path problems in graphs [24], as well as appli-
cations for simulation science [25], to name a few. Moreover, there have been
efforts to increase the arithmetic intensity of certain algorithms [26], so that the
processing resources can be utilized effectively.

Conclusions and Future Work. We presented a novel method to utilize
GPUs for combinatorial candidate generation, a specific memory-bound algo-
rithm, required for EFM enumeration. Our approach focuses on the concurrent,
coordinated, Device-Host pipelined execution model. This approach is feasible
due to the possibility to split the algorithm into two phases, where the phase of
a high arithmetic intensity is executed on a GPU, while the other is executed
concurrently on the Host. The 2-phase computation points to the Map-Reduce
Pattern for Parallel Computation [27]. We conjecture that memory-bound algo-
rithms amenable to this pattern may also benefit from the approach presented
in this paper.

A large number of important combinatorial algorithms (such as those em-
ployed in network analysis on big data [28]) are memory-bound. In order to
effectively utilize accelerators for such algorithms, novel methods for managing
arithmetic intensity must be developed. The approach presented in this paper is
a first step in this direction.



Heterogeneous Combinatorial Candidate Generation 761

However, despite its effectiveness, the presented approach has certain draw-
backs. Only limited functionality is available in the CUDA programming model
to facilitate Device-Host pipelining; for instance, Host memory must be page-
locked [20] (which is scarce), and merely a restricted set of operations is permis-
sible within a callback. This complicates Device-Host coordination, and requires
a greater number of parameters to be tuned for optimal performance.

In the future, we intend to tailor the application for execution on heteroge-
neous clusters. This requires support for multi-GPU execution. Also, we have
only presented acceleration of one of the steps in the Nullspace algorithm. Work
is underway to assess the feasibility of heterogeneous implementations for other
steps. In addition to acceleration, efficient memory management is a vital factor
for processing of large networks. The number of EFMs grows almost exponen-
tially with the input size [29], which puts very high demands on memory. We
are currently in the process of devising better compression techniques, as well
as strategies for efficient data distribution on distributed memory architectures.

References

1. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS Com-
put. Biol. 5(5), e1000385 (2009)

2. Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Springer (1996)
3. Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathways

useful for systematic organization and analysis of complex metabolic networks.
Nat. Biotech. 18(3), 326–332

4. Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic path-
ways in the post-genome era. Trends Biochem. Sci. 28(5), 250–258 (2003)

5. Gagneur, J., Klamt, S.: Computation of elementary modes: a unifying framework
and the new binary approach. BMC Bioinformatics 5(1), 175 (2004)

6. Samatova, N.F., Geist, A., Ostrouchov, G., Melechko, A.V.: Parallel out-of-core
algorithm for genome-scale enumeration of metabolic systemic pathways. In: Pro-
ceedings of the 16th International Parallel and Distributed Processing Symposium,
IPDPS 2002, p. 249. IEEE Computer Society, Washington, DC (2002)

7. Terzer, M., Stelling, J.: Accelerating the computation of elementary modes using
pattern trees. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI),
vol. 4175, pp. 333–343. Springer, Heidelberg (2006)

8. Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit
pattern trees. Bioinformatics 24(19), 2229–2235 (2008)

9. Terzer, M., Stelling, J.: Parallel extreme ray and pathway computation. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009,
Part II. LNCS, vol. 6068, pp. 300–309. Springer, Heidelberg (2010)

10. Jungreuthmayer, C., Ruckerbauer, D.E., Zanghellini, J.: Utilizing gene regulatory
information to speed up the calculation of elementary flux modes. arXiv:1208.1853
[q-bio.MN]

11. Jevremović, D., Trinh, C.T., Srienc, F., Sosa, C.P., Boley, D.: Parallelization of
nullspace algorithm for the computation of metabolic pathways. Parallel Comput-
ing 37(6-7), 261–278 (2011)



762 F. Khalid et al.

12. Jevremović, D., Boley, D., Sosa, C.: Divide-and-conquer approach to the parallel
computation of elementary flux modes in metabolic networks. In: 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), pp. 502–511 (May 2011)

13. Jevremović, D., Boley, D.: Parallel computation of elementary flux modes in
metabolic networks using global arrays. In: The 6th Conference on Partitioned
Global Address Space Programming Models (2012)

14. Trinh, C.T., Wlaschin, A., Srienc, F.: Elementary mode analysis: a useful metabolic
pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol.
Biotechnol. 81(5), 813–826 (2009)

15. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1998)
16. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Eu-

ler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

17. Wagner, C.: Nullspace approach to determine the elementary modes of chemical
reaction systems. J. Phys. Chem. B 108(7), 2425–2431 (2004)

18. Jevremović, D., Trinh, C.T., Srienc, F., Boley, D.: On algebraic properties of ex-
treme pathways in metabolic networks. J. Comput. Biol. 17(2), 107–119 (2010)

19. Dongarra, J., Foster, I., Fox, G.C., Gropp, W., Kennedy, K., Torczon, L., White,
A. (eds.): The Sourcebook of Parallel Computing. Morgan Kaufmann (2002)

20. NVIDIA: CUDAC programming guide. Design Guide PG-02829-001 v5.0 (October
2012)

21. Mora, J.: Do theoretical flops matter for real application performance? In: HPC
Advisory Council Spain Workshop (2012)

22. Davis, J.D., Chung, E.S.: Spmv: A memory-bound application on the gpu stuck
between a rock and a hard place. Technical report, Microsoft Research Silicon
Valley (September 2012)

23. Kurzak, J., Luszczek, P., Faverge, M., Dongarra, J.: LU factorization with partial
pivoting for a multicore system with accelerators. IEEE Transactions on Parallel
and Distributed Systems PP(99), 1 (2012)

24. Buluç, A., Gilbert, J.R., Budak, C.: Solving path problems on the GPU. Parallel
Computing 36(5-6), 241–253 (2010)

25. Domanski, L., Bednarz, T., Gureyev, T., Murray, L., Huang, E., Taylor, J.: Ap-
plications of heterogeneous computing in computational and simulation science.
In: 2011 Fourth IEEE International Conference on Utility and Cloud Computing
(UCC), pp. 382–389 (December 2011)

26. White, B.S., McKee, S.A., de Supinski, B.R., Miller, B., Quinlan, D., Schulz, M.:
Improving the computational intensity of unstructured mesh applications. In: Pro-
ceedings of the 19th Annual International Conference on Supercomputing, ICS
2005, pp. 341–350. ACM, New York (2005)

27. Keutzer, K., Massingill, B.L., Mattson, T.G., Sanders, B.A.: A design pattern
language for engineering (parallel) software: merging the PLPP and OPL projects
(2010)

28. Batagelj, V., Mrvar, A.: Pajek-program for large network analysis. Connections 21,
47–57 (1998)

29. Klamt, S., Stelling, J.: Combinatorial complexity of pathway analysis in metabolic
networks. Molecular Biology Reports 29(1), 233–236 (2002)


	Heterogeneous Combinatorial Candidate 
Generation
	1 Introduction
	1.1 Enumeration of Elementary Modes

	2 Our Approach
	2.1 Concurrent
	2.2 Overall Architecture

	3 Evaluation
	3.1 Test Environment
	3.2 Results

	4 Discussion
	References




