
Algorithmic Skeleton Framework

for the Orchestration of GPU Computations�

Ricardo Marques, Hervé Paulino, Fernando Alexandre, and Pedro D. Medeiros

CITI / Departamento de Informática
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

2829-516 Caparica, Portugal
herve.paulino@fct.unl.pt

Abstract. The Graphics Processing Unit (GPU) is gaining popular-
ity as a co-processor to the Central Processing Unit (CPU). However,
harnessing its capabilities is a non-trivial exercise that requires good
knowledge of parallel programming, more so when the complexity of
these applications is increasingly rising. Languages such as StreamIt [1]
and Lime [2] have addressed the offloading of composed computations to
GPUs. However, to the best of our knowledge, no support exists at library
level. To this extent, we propose Marrow, an algorithmic skeleton frame-
work for the orchestration of OpenCL computations. Marrow expands
the set of skeletons currently available for GPU computing, and enables
their combination, through nesting, into complex structures. Moreover,
it introduces optimizations that overlap communication and computa-
tion, thus conjoining programming simplicity with performance gains in
many application scenarios. We evaluated the framework from a perfor-
mance perspective, comparing it against hand-tuned OpenCL programs.
The results are favourable, indicating that Marrow’s skeletons are both
flexible and efficient in the context of GPU computing.

1 Introduction

The GPU has been maturing into a powerful general processing unit, surpass-
ing even the performance and throughput of multi-core CPUs in some par-
ticular classes of applications. The GPU architecture is specially tailored for
data-parallel algorithms, where throughput is more important than latency.
This makes them particularly interesting for high-performance computing on
a broad spectre of application fields [3]. However, the base parallel computing
frameworks for General Purpose Computing on GPUs (GPGPU), CUDA [4] and
OpenCL [5], require in-depth knowledge of the underlying architecture and of
its execution model, such as the disjointness of the host’s and the device’s ad-
dressing spaces, the GPU’s memory layout, and so on. Consequently, high-level

� This work was partially funded by FCT-MEC in the framework of the PEst-
OE/EEI/UI0527/2011 - Centro de Informática e Tecnologias da Informação
(CITI/FCT/UNL) - 2011-2012 and project PTDC/EIA-EIA/102579/2008 - Problem
Solving Environment for Materials Structural Characterization via Tomography.

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 874–885, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Algorithmic Skeleton Framework for the Orchestration 875

GPU programming is currently a hot research topic that has spawned several
interesting proposals, e.g. OpenACC [6], Lime [2], Chapel [7] and StreamIt [1].

Nonetheless, as software developers become increasingly familiarised with
GPU computing, and the overall hardware computational power is consistently
growing, the complexity of GPU-accelerated applications is tendentiously higher.
This status quo raises new challenges, namely how to efficiently offload this
new class of computations to the GPU without overburdening the programmer.
High-level programming frameworks will have to split their focus between the
generation of OpenCL or CUDA kernels from higher level constructs, and the
generation of the orchestration required on the host side. Languages such as
StreamIt and Lime expand the use of the GPU beyond the usual offloading of
a single kernel, offering more sophisticated constructs for streaming, pipelining
and iterative behaviours. However, the impact of these constructs is restrained
by the adoption of a new programming language.

To this extent, our proposal is to provide this expressive power at library level.
For that purpose, we build on the concept of algorithmic skeleton to propose
a framework for orchestrating the execution of OpenCL kernels that offers a
diverse set of compoundable data- and task-parallel skeletons. The generation
of OpenCL kernels from source code, namely C++, is orthogonal to this work
and can grow from existing tools, such as the Offload compiler [8].

To the best of our knowledge, SkePU [9], SkelCL [10] and Muesli [11] are the
sole Algorithmic Skeleton Frameworks (ASkFs) to address GPGPU. Nonetheless,
all of them focus on the high-level expression of simple GPU computations, hence
supporting only variants of the map skeleton that apply a user-defined function.

The contributions of this paper are therefore: 1 - the Marrow C++ ASkF for
the orchestration of OpenCL computations (Section 3). Marrow pushes the state
of the art by extending the set of GPU supported skeletons, introducing ones such
as pipeline, stream, and loop, and by allowing these to be nested, thus providing
a highly flexible programming model. Moreover, it is optimized for GPU com-
puting, introducing transparent performance optimizations, specifically through
a technique known as overlap between communication and computation. 2 - A
comparative performance evaluation against OpenCL, whose experimental re-
sults attest the quality of our prototype implementation (Section 4).

2 Related Work

Skeletons are a high level parallel programming model that hide the complexity
of parallel applications, by implicitly performing all the non-functional aspects
regarding parallelization (e.g., synchronization, communication). Additionally,
basic skeletons may be combined (nested) into more complex constructs, adding
structural flexibility to the application. Skeletons are usually made available as
algorithmic skeleton frameworks, analogous to common software libraries.

SkePU [9], SkelCL [10] and Muesli [11] are the only ASkFs to address GPU
computing, using C++. They have many common features, focused solely on
data-parallel skeletons. A Vector concept is used in all three to abstract data

876 R. Marques et al.

operations, and to introduce implicit optimizations, such as lazy copying. This
feature postpones data transfers until needed, and allows different skeletons to
access the same data without transferring it back to host memory. None of these
ASkFs support skeleton nesting, thus no compound behaviours can be offloaded
to the GPU. SkePU offers five skeletons: map, reduce, map-reduce, map-overlap,
and map-array. The programmer can decide which is the target execution plat-
form (CPU or GPU) at compilation time, as SkePU supports both CUDA and
OpenCL. Skeleton behavior is specified using a set of predefined macros, al-
though, macro compatibility is not universal among all skeletons. SkelCL sup-
ports four basic skeletons: map, reduce, zip, and scan. It generates OpenCL code
from the aggregation of user-defined functions (supplied as strings) and prede-
fined skeleton code. Muesli is a template library which supports both clusters,
multi-core CPUs (OpenMP) and GPUs (CUDA). Among the multiple skeletons
it supports, only fold, map, scan and zip are allowed on the GPU. More recently,
AMD has announced Bolt [12], a C++ template library that provides OpenCL-
accelerated sort, transform (similar to map) and reduce patterns. Data is defined
through a Vector concept akin to the previous ASkFs, whist user-defined func-
tions are defined through macros encasing a structure with C++ code.

The Lime [2] and StreamIt [13] programming languages provide primitives
close to the ones we are proposing in this work, such as the pipeline. StreamIt
is a stream processing language that enables the creation of disciplined graphs
by combining three kinds of constructs: pipeline, split-join and feedback-loop.
Recently it has been equipped with the CUDA back-end [1]. All the GPU exe-
cution is generated by the compiler, and optimized using a profiling stage. Lime
is a language that supports kernel offloading and streaming constructs (akin to
StreamIt) using a pipeline operator, while maintaining compatibility with the
Java language. Data serialization is required to interface Java with C, presenting
a considerable drawback, as data transfers become expensive.

When compared to our proposal, these languages have a narrower scope, as
complex GPU applications are limited to the algorithms effectively compatible
with the streaming programming model. As Marrow supports the offloading of
complex skeletons compositions and streaming constructs, it breaks away from
the current ASkF’s data-parallel skeletons. This enables the usage of any GPU
computation regardless of the applications’ remaining purposes.

3 The Marrow Algorithmic Skeleton Framework

Marrow is a dynamic, efficient, and flexible C++ ASkF for GPGPU. We suggest
constructs that orchestrate most of the details resulting from the underlying
programming model, leaving the developer to focus on the parallel computations
(kernels). The latter are common OpenCL kernels orchestrated by the skeletons
to achieve a particular parallel application schema.

We are primary interested in skeletons whose execution behaviour is not ham-
pered by the logical, and physical, division between the host and device address
spaces. Skeletons whose execution is based on persistent data schemes are par-
ticularly attractive, since they do not require data transfers when combining

Algorithmic Skeleton Framework for the Orchestration 877

Application
thread

Skeleton

Execution request (1)

Return future reference (3)
OpenCL
device

Prompt executions (5)

Read results (6)

Future

Create
(2)

Wait (4)

Wake up (8) Notify (7)

Fig. 1. Marrow’s execution model

distinct execution instances. In this way, they avoid the overheads associated to
transfers between disjoint memory spaces. Consider, for example, a pipeline; in
a GPU execution the data produced by a stage i does not have to be transferred
back to main memory in order to be available to the subsequent stage (i+1). On
the other hand, we target skeletons that provide functionalities that are useful in
the usual GPGPU utilization domains. For instance, a loop skeleton for iterative
computations is of particular interest to the scientific computing field.

We deem as fundamental the nesting of skeletons, as it enables the construc-
tion of complex executional structures, possibly containing distinct behaviours,
in a simple and efficient manner. This technique is also beneficial performance-
wise, in the sense that it is compatible with a disjoint memory layout. An applica-
tion may apply a successive collection of computations, in the form of skeletons,
to an input dataset, and only carry out memory transfers when: writing the
input to device memory, and reading the results to main memory. Furthermore,
the nesting mechanism embeds the construction of complex structures, allowing
the skeletons to focus simply on particular functional behaviours.

Lastly, we seek to introduce transparent performance optimizations by taking
advantage of the possibility to overlap communication with computation. By
doing so, the skeletons can make better use of the features of modern GPUs,
and increase overall efficiency. The transparent application of such optimization
enables the development of efficient GPU accelerated applications without a large
degree of knowledge of both parallel programming and OpenCL orchestration.

3.1 Execution Model and API

Marrow’s execution model, depicted in Figure 1, promotes the decoupling of the
skeleton computations from application execution. Given that GPU executions
stretch through a somewhat extended period of time, it makes sense to free
up the application to perform additional computations while the device carries
out its task. This execution model can be regarded as master/slave pattern,
on which the application offloads asynchronous executions requests. The sub-
mission of such a request to a skeleton (step 1 in the figure) is not immediately
relayed to the device . Instead, it is queued, an associated future object is created
(step 2) and its reference returned to the application (step 3). The future allows
the application to, not only, query the state of the execution, but also wait until
the results are ready (step 4). As soon as the skeleton becomes available to fulfil
the execution request, it performs the necessary orchestration to properly carry

878 R. Marques et al.

out the desired computation on the device (step 5). Subsequently, once the re-
sults are read to the host memory (step 6) the respective future is notified (7),
which, in turn, may wake up the submitting application thread (step 8).

This execution model motivates a rather simple API. Issuing a skeleton exe-
cution is accomplished through an asynchronous write operation that requests
an OpenCL execution, and renders a future object.

3.2 Nesting

A nested skeleton application can be regarded as a composed acyclic graph
(composition tree), on which every node shares a general computational domain.
Each of these nodes can be categorized according to the interactions with its
ancestor/children, the resources it manages, and the types of operations it issues
to the device. The categories are: root node, inner node, and leaf node.

The root node is the primary element of the composition tree. It is responsi-
ble for processing the application’s execution requests, which naturally implies
submitting one or more OpenCL executions. Therefore, it must manage most
of the resources necessary to accomplish such executions, as well as performing
data transfers between host and device memory. Additionally, it prompts execu-
tions on its children, parametrizing them with a specific set of resources, e.g. the
objects on which they must issue executions, or the memory objects that must
use as input and output.

Inner nodes are skeletons whose purpose is to introduce a specific execution
pattern/behaviour to their sub-tree. These nodes might not need to allocate
resources, since they are encased in a computational context created by the root,
but resort to that same context to issue execution requests on their children.

Leaf nodes should not be referred to as skeletons because they export an execu-
tional entity, rather than introducing a specific execution pattern. Consequently,
they are represented by KernelWrapper objects that encapsulate OpenCL ker-
nels, and are used to finalize the construction of the composition tree.

To be compatible with the nesting mechanism, i.e. become an inner-node, a
skeleton must be able to perform its execution on pre-initialized device mem-
ory, issued by its ancestor. Furthermore, it should be able to share an execution
environment with other nodes, even if it adds state (e.g., memory objects, execu-
tional resources) to that environment. By contrast, a skeleton whose executional
pattern requires the manipulation of input/output data on host memory is in-
compatible with the nesting mechanism, and thus can only be used as a root
node. In any case, a skeleton that supports nesting is also eligible to become the
root of a composition tree.

Implementation: One of the main challenges imposed by skeleton nesting is the
standardization of distinct computational entities, in a manner that provides
a cross-platform execution support. The solution must abstract a single entity
from the particularities of others, and yet, provide a simple and well defined
invocation mechanism. Furthermore, there are issues intrinsic to GPU comput-
ing. For instance, the efficient management of the platform’s resources craves

Algorithmic Skeleton Framework for the Orchestration 879

the sharing of OpenCL structures - command-queues, memory objects, and the
context (upon which skeletons may allocate resources) - between the skeletons
that build up a composition tree.

To tackle these issues, skeleton nesting in Marrow is ruled by the IExecutable
interface that must be implemented by every nestable skeleton, as well as
KernelWrapper. The interface specifies a set of functionalities that together en-
able a multi-level nestable execution schema. These include some core requisites,
such as the sharing of execution contexts, the convey of inner-skeleton execu-
tions, or even the provisioning of executional information to a node’s ancestor.

Another challenge is the management of node communication and synchro-
nization. Even though Marrow’s execution flow runs downward, from the root
to the leafs, nodes at different heights must be synchronized so that their appli-
cation correctly follows the defined execution pattern. For instance, a node with
two children has to ensure that these are prompted in the right order, and that
each has its data dependencies solved before being scheduled to execute. Inter-
node communication must also be taken into account, since it is vital that the
nodes read from, and write to, the appropriate locations. Ergo, both synchro-
nization and communication are seamlessly supported by the nesting mechanism,
allowing skeletons to perform these complex tasks in the simplest way possible.

3.3 Overlap between Communication and Computation

Overlap between communication and computation is a technique that takes ad-
vantage of the GPU’s ability to perform simultaneous bi-directional data trans-
fers between memories (host and device), while executing computations related
to one or more kernels. It reduces the GPU’s idle time by optimizing the schedul-
ing/issuing of operations associated to distinct kernel executions. However, intro-
ducing this optimization in the host’s orchestration adds a considerable amount
of design complexity, as well as requiring a good knowledge of OpenCL program-
ming. For these reasons, it proves ideal to hide this complexity inside a skeleton,
yet letting the developer tweak its parametrization if need be.

Applying concurrency between distinct OpenCL executions is, in itself, a com-
plex exercise. More so, when the mechanism must be general enough to be en-
capsulated in a skeleton. The scheduling mechanism must optimize the device
operation flow. Thus, as the number of skeleton execution requests rises, the
framework must be aware, among others: the state of each request (what com-
putation is being done); the resources allocated to the execution, and; how to
further advance each execution. However, this by itself does not ensure par-
allelism. The fine-grain operations (e.g., reads, writes, executions) have to be
issued to the OpenCL runtime in a manner that allows their parallel execu-
tion. It is not enough simply to launch the operations and expect OpenCL to
schedule them in the best way possible. These previous issues gain complexity
when the skeleton design includes nesting. Not only must the skeletons support
combination between distinct entities, but also, these entities must work together

880 R. Marques et al.

to introduce concurrency to the execution requests. Consequently, every single
skeleton must, at least, be supportive of concurrent executions, even if it does
not, by itself, provide the overlap optimization.

Finally, the effectiveness of the overlap is directly proportional to where it is
applied on the composition tree. The higher it is, the more sub-trees it affects.
Hence, in order to maximize performance, it is always applied by the root node.

Implementation: Supporting multiple concurrent device executions implies the
coexistence of multiple datasets in device memory. Therefore, a skeleton must
allocate a number of memory objects that enables it to issue operations as-
sociated to distinct datasets, in an concurrent and independent manner. This
strategy is designated as multiple buffering. Consider a skeleton s, as well as a
kernel k that is parametrized with one buffer as input and another as output.
The configuration of s that uses k to concurrently process three datasets at any
given moment, requires the allocation of three sets of memory objects, totalling
six memory objects.

The issuing of OpenCL operations to the device is performed via command-
queues that offer two execution modes: in-order and out-of-order. The latter
schedules the operations according to the device’s availability, enabling their
parallel execution, as our runtime requires. However, we have ascertained that
not every OpenCL implementation supports such queues. Therefore, we opt to
build our solution on top of in-order queues, one per set of memory objects.
The scheduling responsibility is thus transferred to the Marrow runtime, which
must enqueue the operations in such a way that they can be overlapped. This
scheme can be scaled out as many times as needed, provided that the platform
can supply the resources.

3.4 Supported Skeletons

Marrow currently supports the following set of task and data-parallel skeletons:
Pipeline efficiently combines a series of data-dependant serializable tasks,

where parallelism is achieved by computing different stages simultaneously on
different inputs in an assembly-line like manner. Considering the significant over-
head introduced by memory transfers between host and device memories, this
skeleton is ideal for GPU execution since the intermediate data does not need to
be transferred back to the host in order to become available to next stage. This
execution pattern is suitable for an execution that starts with pre-initialized
device memory objects, and is fully able to compute in a shared execution envi-
ronment. Accordingly, Pipeline supports nesting.

Loop applies an iterative computation to a given dataset. The result of each
iteration is passed as input to the following (without unnecessary data transfers
to host memory), until the final iteration is completed and its results provided
as output. This construct supports two computational strategies: one where the
loop’s condition is affected by data external to the execution domain (a for loop),
and another where the condition is affected by partial results of every iteration
(a while loop). Analogously to the Pipeline, Loop fully supports nesting.

Algorithmic Skeleton Framework for the Orchestration 881

Stream defines a computational structure that confers the impression of per-
sistence of the GPU computation. It achieves this by introducing parallelism
between device executions associated to distinct datasets by applying the over-
lap technique (Subsection 3.3). To simplify the overall framework design only
Stream provides such functionality. If this behaviour is desirable elsewhere, it
is obtainable via nesting on a Stream, or its direct usage. Given that applying
overlap requires direct control over the input data Stream is only qualified as a
root node, and thus, is not nestable.

Map (andMapReduce) apply a computation to every independent partition
of a given dataset, followed by an optional reduction of the results. Considering
that this construct is designed for GPU computing, its behaviour differs from
the general definition of a map-reduce skeleton. Firstly, a GPU should be used
to process a large amount of data-elements, so as to compensate for its utiliza-
tion overheads. Therefore, the input dataset is split into partitions, instead of
singular data-elements, being the nested composition tree applied dependently
to each of them. Secondly, GPUs are not particularly efficient when reducing a
full dataset into a single scalar value. Instead, it is preferable to reduce part of
the data in the GPU and return N elements to be finally reduced on the CPU,
where N is a power of two larger than a certain threshold (that differs between
devices). Thereupon, by default, this construct performs a host-side reduction.
Nonetheless, it supports the provision of a reduction kernel, which is applied un-
til the previously cited threshold is reached. Overlap may be efficiently applied
between the multiple partition executions, yet, since these skeletons requires
direct control over both input and output data, they do not support nesting.
Therefore, they offer this feature by resorting to Stream internally.

3.5 Programming Example

Marrow’s programming model comprises three major stages: skeleton initial-
ization, prompting of skeleton executions, and skeleton deallocation. The first
stage holds the KernelWrapper’s instantiation and appropriate parametrization,
for their subsequent utilization as input parameters to the skeleton instantia-
tion process. This may include nesting if desired by the programmer. In turn,
the second stage defines how the application issues execution requests. Given
the asynchronism of Marrow’s execution model the application may adapt its
behaviour to accommodate computations that are executed in parallel to the
skeleton requests. Finally, the final stage is trivial. It simply requires the deal-
location of the root node, since the latter manages all other skeleton related
resources (e.g., inner skeletons, KernelWrappers).

Listing 1 illustrates an example that builds a three-staged image filter pipeline
fed by a stream. Due to space restrictions we confine the presentation the dec-
laration of a single kernelwrapper (line 2), to the nesting application (lines 3 to
7) and the prompting of the execution requests (lines 8 to 13). A KernelWrapper
receives as input, the source file, the name of the kernel function, info about the
input and output parameters, and the work size. Pipeline p1 is instantiated with
the first two KernelWrappers - representing the first two stages. Then, Pipeline

882 R. Marques et al.

p2 is created and parametrized with p1 along with the last KernelWrapper. Ulti-
mately, the Stream s is instantiated with p2. This scheme creates a composition
tree represented by s(p2(p1)), in which the kernels associated with the innermost
skeleton are computed first. As shown, Marrow’s skeletons do not distinguish
kernels from nestable skeletons, thus standardizing the nesting mechanism. The
prompting of a execution request (line 12) requires the specification of the input
and output parameters, and returns a future object. In this particular applica-
tion, the image is divided into segments and discretely feed to the Stream.

1 // ... instantiate kernel wrappers
2 unique_ptr < IExecutable > gaussKernel (new KernelWrapper(gaussNoiseSourceFile ,

gaussNoiseKernelFunction , inputDataInfo , outputDataInfo , workSize));
3 // instantiate inner skeletons
4 unique_ptr < IExecutable > p1 (new Pipe l i ne(gaussKernel , solariseKernel));
5 unique_ptr < IExecutable > p2 (new Pipe l i ne(p1 , mirrorKernel));
6 // instantiate root skeleton
7 Stream *s = new Stream(p2, 3); // Overlap with 3 concurrent executions
8 // request skeleton executions
9 for(int i = 0; i < numberOfSegments ; i++){

10 inputValues [0] = ... ; // offset in the input image
11 outputValues [0] = ... ; // offset in the output image
12 futures [i] = s->wr i te (inputValues ,outputValues);
13 }
14 // wait for results ; delete s and resources (e.g. the futures)

Listing 1. Stream upon an image filter pipeline

4 Evaluation

The purpose of this study is to measure the overhead imposed by the Marrow
framework relatively to straight OpenCL orchestrations, and the impact of the
overlap optimization on overall performance. For that purpose we implemented
four case-studies in OpenCL (without introducing overlap) and Marrow. All
measurements were performed on a computer equipped with a Intel Xeon E5506
quad-core processor at 2.13GHz, 12GB of RAM, and a NVIDIA Tesla C2050
with 3 GB VRAM. The operating system is Linux (kernel 2.6.32-41) linked with
the NVIDIA CUDA Developer Driver (295.41).

The first case-study applies a Gaussian Noise filter to an image that is split
into non-superimposing segments. The OpenCL implementation processes these
segments sequentially, whist the Marrow version submits then asynchronously for
concurrent processing. Logically, the latter version adopts the Stream skeleton.

The second case-study is a pipelined application of image filters, namely Gaus-
sian Noise, Solarise, and Mirror. Once again, we selected filters that are appli-
cable to non-overlapping segments of an image so as to support an overlapped
execution. Consequently, the application performs equivalently to the preceding
case-study, differing only by applying multiple filters in succession to each slice.
Naturally, the Marrow application uses Pipelines nested in a Stream.

The third case-study applies a tomographic image processing method, denom-
inated as Hysteresis, that iteratively eliminates gray voxels from a tomographic
image, by determining if they should be altered into white or black ones. The

Algorithmic Skeleton Framework for the Orchestration 883

Table 1. OpenCL case-studies execution times in milliseconds

Gaussian Noise Filter Pipeline Hysteresis N-Body
(pixels) (pixels) (MBytes) (particles)

Input parameter size 10242 20482 40962 10242 20482 40962 1 8 60 1024 2048 4096

Execution Time (ms) 3.18 11.82 46.36 3.34 12.46 48.95 402.98 2952.98 19742.80 37.77 78.23 174.61

������� ������� ��	
��� ������� ������� ��	
��� ����� ����
����� ����� ����� ��	
�
������������������ ������������������������� ������������ ������!��� "#�$ ������%&�����

����$'� �(� �(� �(��� �(�� �(��� �(��� �(�� �(� �(� �(��� �(��� �(���
����$'�#�)*��+��� �(��� �(�� �(�,� �(�-� �(�	� �(�
� -(�
� -(-� -(���

�(���

�(,��

�(���

�(,��

�(���

�(,��

-(���

-(,��

��
��
��
��

�

Fig. 2. Speed-up versus OpenCL

algorithm comprises three data-dependent stages, each building upon the results
of its predecessor to refine the elimination process. Once more the source images
are split into segments, to which the processing performed by each stage is ap-
plied independently. However, the size and number of these segments are stage
related, and may differ between stages. In any case, at every given stage the
computations are iteratively applied to a single segment until the results stabi-
lize. In the OpenCL version, segment processing within each stage is performed
sequentially, whist the Marrow version nests a Loop into a Stream to perform the
computation concurrently. Note that the mismatch between corresponding stage
related segments prevented us to assemble the Loops in a pipelined execution.

The final case-study is an implementation of the particle-particle N-Body
simulation algorithm (O(n2)). In contrast with the previous case-studies the
algorithm is not compatible with the partitioning of the input dataset. For that
reason, the Marrow version resorts to a single for variant of the Loop skeleton,
that makes no use of the overlap facility.

Performance Results: Table 1 presents the execution times of the OpenCL ver-
sions. These measurements isolate the time actually spent on the orchestration
and execution of the GPU computation, on an input data of a certain grain,
excluding, thus, the initialization and deallocation stages. The depicted values
reflect the best results obtained by varying the global and local work size config-
uration parameters. In turn, Figure 2 displays the speed-up obtained by Marrow
relatively to the OpenCL baseline, once more for the best work size configura-
tion. The first version, Marrow, does not introduce overlap, and hence assesses

884 R. Marques et al.

Table 2. Productivity comparison between distinct versions

Gaussian Noise Filter Pipeline Hysteresis N-Body

OpenCL basic/with overlap 61/261 81/281 165/365 98/298
Marrow 50 59 222 79

the framework’s overhead, while the second, Marrow - Overlap, presents the best
result when tweaking the overlap parameter.

The overhead introduced by the framework is minimum, peeking at 2%. Re-
garding the performance gains brought by the overlap optimization, the first two
case-studies show a very similar behaviour. The balance between computation
and communication is optimal for the application of our optimization at the
medium grain. The Hysteresis’ execution pattern differs from the remainder. Its
execution flow dictates that after each loop iteration, which processes a single
segment, the Loop reads the results to host memory, and subsequently evaluates
them to access its continuity, a process of complexity O(N) where N is the size
of a segment. These two processes are computationally heavy and leave the GPU
available to execute upon other datasets. Consequently, we assert the existence
of a considerable amount of unexplored parallelism between segment executions.
On top of that, the speed-up is incremental given that all three stages intro-
duce it. Hence, it is directly propositional to the amount of overlap, consistently
increasing with the latter, up to the maximum number of segments per stage.

Programming Model Evaluation: It comes as no surprise that our programming
model is simpler, and of higher-level than OpenCL’s, since it orchestrates the
whole execution. To somehow quantify this judgement, Table 2 presents the
number of lines of code for OpenCL, with and without introducing overlap,
and Marrow. To introduce overlap in an OpenCL application we estimated a
minimum increase of two-hundred lines of code, adding to the design complexity
which would surely grow substantially.

Marrow’s programming model productivity trumps the with overlap OpenCL
versions and consistently requires less code per application than the basic ones.
The Hysteresis case-study is an exception, requiring roughly more 40% of code
than the OpenCL version. This increase in program size comes as a result of: a)
the initializion of three Loops nested into three Streams is somewhat verbose,
and b) the use of the Loop skeleton requires the derivation of a base class. Joining
these two factors adds a considerable amount of lines of code to the application,
justifying the discrepancy between OpenCL and Marrow versions.

5 Conclusions

This paper presented Marrow, a ASkF for the orchestration of OpenCL compu-
tations. Marrow distinguishes itself from the existing proposals by: (i) enriching
the set of skeletons currently available on the GPGPU field; (ii) supporting
skeleton nesting, and (iii) empowering the programmer to easily and efficiently

Algorithmic Skeleton Framework for the Orchestration 885

exploit the ability of modern GPUs to overlap, in time, the execution of one or
more kernels with data transfers between host and device memory.

Compared to the state of the art in ASkFs for GPU computing, Marrow
takes a different approach. It focuses on the orchestration of complex OpenCL
applications rather than the high level expressiveness of simple data-parallel
kernels. This allows for a more flexible and powerful framework, whose kernels
are bound only by OpenCL’s restrictions, and whose skeleton set is richer and
more modular. Naturally, as the programmer must express the parallel (kernels)
in OpenCL, Marrow’s abstraction of the underlying computing model is less
effective than the one offered by the remainder.

The accomplished evaluation attested the effectiveness of these proposals.
Compared to hand-tuned OpenCL applications that do not introduce overlap,
the Stream skeleton consistently boosted performance without compromising
the simplicity of the Marrow programming model. In addition, the remainder
skeletons supply a set of high-level constructs to develop complex OpenCL based
applications with negligible performance penalties.

References

1. Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software pipelined execution
of stream programs on GPUs. In: CGO 2009, pp. 200–209. IEEE Computer Society
(2009)

2. Dubach, C., Cheng, P., Rabbah, R.M., Bacon, D.F., Fink, S.J.: Compiling a high-
level language for GPUs: (via language support for architectures and compilers).
In: PLDI 2012, pp. 1–12. ACM (2012)

3. hgpu.org: High performance computing on graphics processing units - Applications,
http://hgpu.org/?cat=11 (last visited in May 2013)

4. NVIDIA Corporation: NVIDIA CUDA,
http://www.nvidia.com/object/cuda_home_new.html (last visited in May 2013)

5. Munshi, A., et al.: The OpenCL Specification. Khronos OpenCL Working Group
(2009)

6. OpenACC: The OpenACC application programming interface (version 1.0) (2011),
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

7. Sidelnik, A., Maleki, S., Chamberlain, B.L., Garzarán, M.J., Padua, D.A.: Perfor-
mance portability with the Chapel language. In: IPDPS 2012, pp. 582–594. IEEE
Computer Society (2012)

8. Codeplay Software: Offload compiler, http://www.codeplay.com/compilers/ (last
visited in May 2013)

9. Enmyren, J., Kessler, C.W.: SkePU: a multi-backend skeleton programming library
for multi-GPU systems. In: HLPP 2010, pp. 5–14. ACM (2010)

10. Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL - a portable skeleton library for high-
level GPU programming. In: IPDPS 2011 - Workshops, pp. 1176–1182. IEEE (2011)

11. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems
and clusters. IJHPCN 7(2), 129–138 (2012)

12. AMD Corporation: Bolt C++ Template Library, http://developer.amd.com/
tools/heterogeneous-computing/ (last visited in May 2013)

13. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming
applications. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

http://hgpu.org/?cat=11
http://www.nvidia.com/object/cuda_home_new.html
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.codeplay.com/compilers/
http://developer.amd.com/tools/heterogeneous-computing/
http://developer.amd.com/tools/heterogeneous-computing/

	Algorithmic Skeleton Framework for the Orchestration of GPU Computations
	1 Introduction
	2 Related Work
	3 The Marrow Algorithmic Skeleton Framework
	3.1 Execution Model and API
	3.2 Nesting
	3.3 Overlap between Communication and Computation
	3.4 Supported Skeletons
	3.5 Programming Example

	4 Evaluation
	5 Conclusions
	References

