
SMS Normalisation, Retrieval
and Out-of-Domain Detection Approaches

for SMS-Based FAQ Retrieval

Deirdre Hogan1, Johannes Leveling1, Hongyi Wang1,
Paul Ferguson2, and Cathal Gurrin2

1 Centre for Next Generation Localisation (CNGL)
School of Computing

Dublin City University (DCU)
Dublin 9, Ireland

2 CLARITY Research Centre
School of Computing

Dublin City University (DCU)
Dublin 9, Ireland

{dhogan,jleveling,pferguson,hwang,cgurrin}@computing.dcu.ie

Abstract. This paper gives an overview of DCU’s participation in the
SMS-based FAQ Retrieval task at FIRE 2011. DCU submitted three
runs for monolingual English experiments. The approach consisted of
first transforming the noisy SMS queries into a normalised, corrected
form. The normalised queries were then used to retrieve a ranked list
of FAQs by combining the results from three different retrieval meth-
ods. Finally, using information from the retrieval results, out-of-domain
(OOD) queries were identified and tagged. The results of our best run
on the final test set were the highest of all 13 participating teams. Our
FIRE submission retrieved 70.2% in-domain query answers correctly and
85.6% identified out-of-domain queries correctly.

1 Introduction

This paper describes the participation of Dublin City University (DCU) in the
FIRE 2011 evaluation for the SMS-based FAQ Retrieval Task. The task con-
sisted of retrieving the correct answer to an incoming SMS question from an
English FAQ consisting of questions and answers on a variety of different topics
from career advice to popular Indian recipes. The incoming queries were writ-
ten in noisy SMS “text speak” and contained many misspellings, abbreviations
and grammatical errors. Some SMS queries were out-of-domain and had no cor-
responding FAQ answer in the collection. Such queries needed to be identified
and flagged as an out-of-domain (OOD) result before returning “NONE” as an
answer string.

Figure 1 gives an overview of the DCU system, which can be broken down
into three distinct steps: SMS normalisation, retrieval of ranked results, and
identifying out of domain query results.

P. Majumder et al. (Eds.): FIRE 2010 and 2011, LNCS 7536, pp. 184–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



SMS Normalisation, Retrieval and Out-of-Domain Detection 185

The first step involves normalising words in the SMS text so that they more
closely resemble the text in the FAQ data set (e.g. with correct and standard-
ised spelling). This is achieved by generating a set of candidate corrections for
SMS tokens using rules extracted from a mixture of annotated and unannotated
corpora. The most likely token substitution, given the context, is then selected
from the set of candidates. This step is detailed in Section 2.

For the second step in the process we experimented with different retrieval
engines and approaches (i.e. Lucene, Solr and a simple word overlap metric) to
retrieve ranked lists of candidate answers from the FAQ, given the normalised
query. The retrieval results were combined to produce a single ranked list of
question answer pairs. This step is described in more detail in Section 3.

In a final step, outlined in Section 4, we identified likely out-of-domain (OOD)
questions using a filtering mechanism based on a combination of evidence from
the results of the retrieval engines. For in-domain (ID) questions, the top an-
swers from the combined list were returned; for OOD questions, “NONE” was
returned. We present test set results in Section 5, before concluding and giving
an outlook on planned future work in Section 6.

Fig. 1. Data flow diagram of DCU system

2 SMS Normalisation and Correction

The irregular spelling and abbreviations in SMS questions leads to poor retrieval
performance due to mismatches between terms in the SMS and terms in the FAQ



186 D. Hogan et al.

text. An SMS normalisation and correction step will thus increase the chance
of finding correct answers. Our initial idea to correct SMS messages was to
train a statistical MT system, similar to the approach described in [1]. However,
“text speak” or “textese” is productive and often generates new ill-formed or
non-standard words which increase the out-of-vocabulary problem of statistical
machine translation. Furthermore, training data in large enough quantities to
train an accurate machine translation system for SMS correction does not exist
and it is time-consuming to construct such data manually. Due to the lack of
training data we decided against this approach and implemented a heuristic
token substitution approach to correct SMS tokens.

The approach we took involved first carrying out some basic normalisation
steps on both SMS queries and FAQ documents (described in Section 2.1). The
SMS data then went through a correction step, where candidate corrections for
SMS tokens were generated and then the candidate correction with the highest
score was chosen. This process is outlined in detail in Section 2.2.

Table 1. Preprocessing steps

Token type Example Action Description

contraction “I’ll” →“I will” expand rules extracted from PoS-
tagged Brown Corpus and
annotated SMS corpus

interjection “Eeh” →“ ” remove rules extracted from manual
annotation and PoS-tagged
Brown Corpus

spelling variant “center” →“centre” normalise dictionary-based spelling nor-
malisation from AE to BE

acronyms “M.Sc.” →“MSc” normalise words of more than 50% upper-
case characters and full stops,
extracted from FIRE FAQ data
and EN-1M corpus

spelling error “Austrailia” →“Australia” correct most frequent spelling errors ex-
tracted from English Wikipedia

concatenation “12ft” →“12 ft” split monetary values and measure-
ments

2.1 Pre-processing for Documents and Queries

FAQ documents and SMS questions underwent the same preprocessing steps,
which consisted of text normalisation as shown in Table 1. As SMS text can
contain non-standard tokens, we adapted tokenisation to allow for digits in a
word (e.g. “2gether”), and split character sequences of words (typically mea-
surement units) and numbers (e.g. “12ft”).



SMS Normalisation, Retrieval and Out-of-Domain Detection 187

2.2 SMS Correction

We employed three different techniques to generate candidate corrections for
SMS tokens. These are described in Section 2.2. One of these techniques involved
using correction rules extracted from corpora of hand annotated microtext data.
The generation of these corpora is described in the next section.

Generating Training Data for SMS Correction and Normalisation. We created
training data to use for automatically correcting SMS queries by manually anno-
tating different microtext corpora (SMS and Tweets). The original text messages
and the annotation were aligned on the level of tokens, so that there is a one-
to-one correspondence between original token and corrected token. In order to
preserve this one-to-one alignment, if necessary one or more tokens were joined
together by underscore (e.g. “I’ll” →“I will”)

Table 2. Twenty most frequent corrections in FIRE preview and training questions

Rank Word Correction Frequency Rank Word Correction Frequency

1 “d” “the” 194 11 “n” “and” 37
2 “2” “to” 147 12 “gt” “get” 32
3 “hw” “how” 146 13 “whch” “which” 29
4 “r” “are” 108 14 “bst” “best” 24
5 “wht” “what” 101 15 “fr” “for” 22
6 “4” “for” 82 16 “frm” “from” 22
7 “f” “of” 71 17 “wt” “what” 22
8 “cn” “can” 63 18 “wrld” “world” 21
9 “wat” “what” 50 19 “s” “is” 20
10 “whr” “where” 38 20 “watz” “what is” 19

We manually annotated the following corpora with the corrected, normalised
forms:

1. FIRE SMS training questions (1071 questions)
2. FIRE SMS preview questions (456 questions)
3. All SMS messages containing a question mark extracted from the NUS SMS

Corpus [2] (3786 questions); the corpus was created at the National Univer-
sity of Singapore and consists of about 10000 SMS messages collected by
students1.

4. Tweets (549 messages) from CAW 2.0 - Content Analysis for the WEB 2.02

Table 2 shows the top twenty corrections in the FIRE SMS QA training data.

1 http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora/smsCorpus/
2 http://caw2.barcelonamedia.org/node/



188 D. Hogan et al.

Generation and Selection of Correct Tokens. Our SMS correction approach is
token-based. First all tokens are pre-processed as outlined in Table 1. Then each
token in the SMS query is examined in turn to decide if it remains unchanged.
Stopwords, punctuation, numerals, and acronyms are not modified. For each re-
maining token, a set of correction candidates is generated and the best candidate
in the context is selected as a correction. The candidate corrections are generated
by combining lists of candidates obtained from the following methods.

Correction rules: The manually corrected SMS questions were employed
to extract correction rules and their corresponding frequencies, which are
then used to generate the first list of candidate corrections. If applicable
correction rules are found for a token, the frequencies of the rules in the
annotated data are used to calculate normalised weights for each correction.
For example, the token “2” can be corrected into “two”, “too”, or “to”, with
“to” being the most frequent (see Table 2).
Consonant skeletons: An additional set of candidate corrections was cre-
ated using consonant skeletons. We used two background corpora, the En-
glish 1M sentence corpus3 from the Leipzig Corpora Collection (EN-1M),
and the FIRE FAQ corpus used in the SMS QA track (43,871 sentences).
Each token in the background corpora is processed to obtain its consonant
skeleton [3], a shorter form of the word with all vowels removed (for example,
“rsdnt” is the consonant skeleton for “resident”). The mapping between con-
sonant skeletons and words is used to obtain additional correction candidates
for question words that match a consonant skeleton.
Clippings: Finally, candidates are generated by looking up all words in
the background corpora that have the same prefix as the question word to
identify truncated or clipped words, e.g. “exam” →“examination” or “lab”
→“laboratory”.

These methods yield lists of replacement candidates, which are merged by adding
up their weights (derived from their term frequency in the background corpora).
For each of the top twenty candidates, a token score (similar to a probability)
is computed based on the so-called ‘stupid’ backoff [4] for 3-grams with α = 0.4
(see Equation 1). We used the background corpora to collect n-gram statistics.
The candidate with the maximum product of weight and n-gram score is selected
as the token correction. Equation 1 shows the n-gram score where wb

a is the n-
gram (n = b− a) of tokens between position a and b and f(wb

a) is the frequency
of the n-gram in the corpus.

S(wi|wi−1
i−k+1) =

{
f(wi

i−k+1)

f(wi−1
i−k+2)

if f(wi
i−k+1) > 0

αS(wi|wi−1
i−k+2) otherwise

(1)

3 http://corpora.uni-leipzig.de/



SMS Normalisation, Retrieval and Out-of-Domain Detection 189

2.3 Evaluation of SMS Correction

Table 3 shows results for our SMS correction approach applied to the FIRE SMS
QA training and preview questions. When testing on preview and training sets,
we excluded the correction rules generated from corresponding annotated SMS
data. Note that the results for the training data are actually much lower than
expected because many of the token correction rules were missing. In contrast,
the results for the preview data might be too high because there is an overlap in
training and preview data. Note also that correcting to a wrong word form, i.e.
an incorrect surface form with the same stem as the correct token, is counted as
an error (e.g. correcting to “resident” instead of “residents”).

Table 3. Performance of SMS normalisation on FIRE preview and training data

Count Correct Incorrect

Training sentences 1071 156 (15%) 915 (85%)
Training tokens 8432 6246 (74%) 2186 (26%)

Preview sentences 456 152 (33%) 304 (67%)
Preview tokens 5087 4546 (89%) 541 (21%)

In these tests, stopwords were among the most frequent errors in the SMS
normalisation. For example, “r” was often replaced with “are” instead of “or”.
However, these errors will not affect retrieval performance when stopwords are
removed from the IR query.

3 Retrieval Engines

Before conducting our retrieval experiments, both SMS queries and FAQ docu-
ments were preprocessed as described in Section 2.1. The SMS queries then went
through a further correction step (Section 2.2).

We experimented with three different retrieval methods, Lucene, Solr and
a simple similarity metric (Term overlap) based on the number of overlapping
words between query and document, and achieved the best performance by com-
bining the outputs from the different systems.

We report results for experiments based on indexing FAQ questions, FAQ
answers, and both questions and answers. The metric used is the in-domain
score, calculated as:

count(correct results in first ranked position)

count(queries with corresponding FAQ answers)
(2)



190 D. Hogan et al.

3.1 Experimental Details

Search Engines. We experimented with two full-text search engines, Lucene and
Solr, initially because we wanted a comparison of the ease of use of the two
engines for this new task. Although Solr uses Lucene as its underlying search
engine, we found it difficult to exactly replicate the results from both engines
and found that Lucene consistently gave us better results on the training set.

We adapted both Lucene and Solr to use the BM25 ranking function [5] (with
parameters b = 0.75, k1 = 1.2, and k3 = 7) and experimented with different
stopword lists but otherwise used the default settings.

In our submission to the FIRE challenge, the SMART stopwords4 were used
for the Lucene experiments. We have since found much better results on the
training set using Lucene’s (much smaller) default stopword list and, indeed, get
the best results on the training set by using no stopword list at all for Lucene.
However, these improvements did not carry over to the Test set.

Table 4 and Table 5 show the results achieved by Solr and Lucene respectively
on the in-domain queries of the training set. We display results for three different
indexes (questions only, answers only and questions and answers). The numbers
in the tables denote the accuracy (fraction of correct in all correct answers)
and the absolute number of correct results (in brackets). Indexing the questions
gives the best results. This is unsurprising given that the text of the corrected
SMS queries is often very similar to the matching FAQ question. In Table 5, for
point of comparison, an additional row displays the Lucene score on the question
index when the SMART stopword list was used. For all other rows in Table 5
no stopword list was used.

In both tables, results are given for the original, unaltered “textese” SMS
queries (raw), the automatically corrected queries (auto-correct) and the hand-
corrected version of the SMS queries (gold).

Table 4. Training set comparison of Solr-BM25 in-domain results when indexing
questions only, answers only and both questions and answers. Total number of in-
domain queries is 701.

SMS question type

Indexing raw auto-correct gold

Questions 38.37 (269) 72.04 (505) 72.46 (508)
Answers 39.08 (274) 66.48 (466) 66.76 (468)
Questions & Answers 39.66 (278) 71.89 (504) 72.03 (505)

Term Overlap (Overlap). In addition to Solr and Lucene, we used a simple
overlap metric as a baseline, The term overlap uses a text similarity score to
rank results based on the number of matching terms in the query and each FAQ
question.
4 ftp://ftp.cs.cornell.edu/pub/smart/



SMS Normalisation, Retrieval and Out-of-Domain Detection 191

Table 5. Training set comparison of Lucene-BM25 in-domain results when indexing
questions only, answers only and both questions and answers. Total number of in-
domain queries is 701.

SMS question type

Indexing raw auto-correct gold

Questions (SMART) 50.07 (351) 77.46 (543) 78.17 (548)
Questions 57.06 (400) 80.88 (567) 80.03 (561)
Answers 15.41 (108) 22.97 (161) 22.82 (160)
Questions & Answers 43.08 (302) 72.33 (507) 72.75 (510)

Table 6. Training set comparison of Term overlap in-domain results when indexing
questions only, answers only and both questions and answers. Total number of in-
domain queries is 701.

SMS question type

Indexing raw auto-correct gold

Questions 46.22 (324) 72.18 (506) 76.61 (509)
Answers 5.56 (39) 7.99 (56) 8.13 (57)
Questions & Answers 2.11 (148) 3.22 (226) 3.30 (231)

The similarity score between two texts is calculated as a normalised score
based on the number of words the two texts have in common. The (F1) score
(Equation 3) is between 0 and 1 and is scaled based on the length of the strings.

F1 = Sim(text1, text2) =
2 ∗ precision ∗ recall
precision+ recall

(3)

where

precision =
count(overlapping terms)

count(terms in text1)
(4)

and

recall =
count(overlapping terms)

count(terms in text2)
(5)

Software for finding the overlaps between two strings and calculating this text
similarity score can be downloaded from CPAN5. Table 6 displays in-domain
results for the overlap metric on the training set.

5 http://search.cpan.org/∼tpederse/Text-Similarity/



192 D. Hogan et al.

Combining Results. The best overall results on the training set (and subse-
quently on the test set) were achieved by combining the results from the three
different retrieval methods. The result sets were combined using a mechanism
whereby each search result x is associated with a score Scombined(x) which is a
weighted sum of the individual normalised scores from each retrieval engine (see
Equation 6).

Scombined(x) = ws ∗ SSolr(x) + wl ∗ SLucene(x) + wo ∗ SOverlap(x) (6)

The weights were determined by manual fine-tuning on the training set. The
final weight settings chosen were: wl = 0.6 (Lucene), wo = 0.3 (Overlap),
ws = 0.1 (Solr).

Training set in-domain scores for the combined results, indexing questions
only, are displayed in Table 7. For ease of comparison we repeat in Table 7 the
results achieved by the individual retrieval mechanisms. Combining results gives
a marginal increase in score for the automatically corrected queries, and leads to
a slight drop for raw and gold queries. Although we used the combined results in
our FIRE submission, we now conclude that the benefits of combining are small
and using Lucene as the sole retrieval mechanism would simplify the system
considerably while still delivering comparably good performance.

Table 7. Training set comparison of in-domain results for three different retrieval en-
gines, indexing questions only. Total number of in-domain queries is 701. The numbers
in brackets correspond to the number of correct results.

SMS question type

Retrieval method raw auto-correct gold

Lucene 57.06 (400) 80.88 (567) 80.03 (561)
Solr 38.37 (269) 72.04 (505) 72.46 (508)
Overlap 46.22 (324) 72.18 (506) 76.61 (509)
Combined 57.20 (401) 81.46 (571) 80.88 (567)

4 Filtering Out-of-Domain Queries

For each retrieval method we produced a list of SMS queries which were predicted
to be out-of-domain.

Solr. In order to generate the list of OOD queries from Solr, we used the same
approach that was used by [6] for determining the number of relevant documents
to use for query expansion. This approach produces a score based on the inverse
document frequency (idf ) component of BM25 for each query. This essentially
disregards the term frequency and document length components which, since
the queries are reasonably short, tend to be less important:



SMS Normalisation, Retrieval and Out-of-Domain Detection 193

score(q, d) =
∑

tεq

log

(
N − dft + 0.5

dft + 0.5

)
(7)

Using this approach we can calculate the maximum possible score for any doc-
ument as the sum of the idf scores for all of the query terms: any document
containing all the query terms will have this maximum score. We then use a
threshold to determine if a query should be considered as OOD. Here we choose
to add a query to the OOD list if its score is below 70% of the maximum score.

Lucene. TiMBL [7] implements a memory-based learning approach and supports
different machine learning algorithms. For the experiments described in this pa-
per, the IB1 approach (similar to k-nearest-neighbours approach) was employed
to train a classifier distinguishing between OOD queries and ID questions. The
features for the training instances include query performance estimates, result
set size, and document score. The query performance estimates used are: Average
Inverse Collection Term Frequency (AvICTF) [8], Simplified Query Clarity Score
(SCS) [9], and an estimate derived from the similarity score between collection
and query (SumSCQ, AvSCQ, MaxSCQ) [10]. In addition the (unnormalised)
BM25 document scores [5] for the top five documents were employed as features.

This classifier achieved 78% accuracy (835 out of 1071 correctly classified
instances) on the FAQ SMS training data. Table 8 shows true positives (TP),
false negatives (FN) etc. per class, using leave-one-out validation.

Table 8. Scores per question class

Class TP FP TN FN F-Score

ID 459 111 376 125 0.80
OOD 376 125 459 111 0.76

Term Overlap. In this approach, the list of OOD queries was predicted based
on the number of terms in each incoming query and the number of overlapping
terms between incoming query and the highest ranked question from the FAQ
(For example, if the incoming query consists of more than one term and has only
one term in common with the highest ranked FAQ question, then classify the
query as out-of-domain). The heuristic algorithm was fine-tuned on the training
set and optimised to maximise both out-of-domain and in-domain accuracy.

Combining OOD Results. Based on experiments on the training set data, we
found that combining the OOD lists through simple majority voting led to
the best results. Table 9 displays the best in-domain and out-of-domain results
achieved on the training set. The OOD score is calculated as:

count(OOD queries correctly identified)

count(all OOD queries)
(8)



194 D. Hogan et al.

Table 9. Training set - 3 final run configurations. ID and OOD results after applying
OOD filtering for auto-corrected queries.

SMS query type

raw auto gold

Retrieval Index ID OOD all ID OOD all ID OOD all

Combined Q 52.06 69.18 57.98 73.32 69.19 71.90 73.03 69.19 71.71
Lucene Q 52.07 61.62 55.37 72.61 69.19 71.43 71.90 69.19 70.96
Lucene Q+A+QA 52.07 62.43 55.65 72.61 69.19 71.43 71.89 69.19 70.96

The weights used for combining different retrieval results are as follows: Weights
for Combined (combining Lucene, Solr and Overlap results): wl = 0.5 (Lucene),
ws = 0.2 (Solr), wo = 0.3 (Overlap). Weights for Lucene Q/A/QA (combining
Lucene results on different indexes): Q: 0.7, A: 0.1, QA: 0.2.

5 Test Set Retrieval Experiments and Results

Table 10. Results on the test set for the normalised queries, as submitted to the FIRE
evaluation

Run Index Retrieval ID Correct OOD Correct all MRR

1 Q Combined 0.70 (494/704) 0.86 (2311/2701) 82.38 0.896
2 Q Lucene 0.67 (472/704) 0.86 (2310/2701) 81.70 0.865
3 Q+A+QA Lucene 0.68 (477/704) 0.86 (2311/2701) 81.88 0.873

Table 11. Latest results on the test set. ID and OOD Results after applying the OOD
filtering.

SMS query type

raw auto gold

Retrieval Index ID OOD all ID OOD all ID OOD all

Combined Q 63.35 84.93 80.47 70.57 84.80 81.94 70.31 84.86 81.85
Lucene Q 62.78 84.93 80.35 70.31 84.89 81.88 70.03 84.86 81.79
Lucene Q+A+QA 62.78 84.93 80.35 70.31 84.89 81.79 70.03 84.86 81.79

The DCU team submitted three runs for the English monolingual task. Ta-
ble 10 details the results for the three DCU runs. For the first run, only the
question text from the FAQ was indexed. The final ranked results list was pro-
duced by combining the individual ranked lists from the three different retrieval
approaches as described in Section 3. For the second and third run, only the



SMS Normalisation, Retrieval and Out-of-Domain Detection 195

Lucene search engine was used. In the second run, FAQ question text was in-
dexed whereas in the final run, both question and answer text from the FAQ
was indexed.

Table 11 gives our results when no stopword list was used with the Lucene
retrieval. Unlike on the training set, where results improved considerably, the
combined results for the test set are slightly lower than previously. However,
results for using only the Lucene search engine are much the same whether or
not stoplists are used.

6 Conclusion and Future Work

Our submission achieved the best performance in the official results of the FIRE
2011 SMS-based FAQ monolingual English retrieval task.

We found that the best retrieval results for an individual method are obtained
when using Lucene-BM25 scoring. While the combination of approaches for re-
trieval and OOD detection increases the number of correct results marginally,
we conclude that the benefits of combining are small and using Lucene as the
sole retrieval mechanism simplifies the system considerably while still delivering
comparably good performance.

As part of future work, we want to simplify the system further by using a
single OOD detection approach, rather than combining OOD lists generated
from different retrieval methods.

Acknowledgments. This research is supported in part by the Science Foun-
dation Ireland (Grant 07/CE/I1142) as part of the Centre for Next Generation
Localisation (CNGL) project.

References

1. Aw, A., Zhang, M., Xiao, J., Su, J.: A phrase-based statistical model for SMS text
normalization. In: COLING/ACL 2006, pp. 33–40 (2006)

2. How, Y., Kan, M.Y.: Optimizing predictive text entry for short message service
on mobile phones. In: Human Computer Interfaces International (HCII 2005).
Lawrence Erlbaum (2005)

3. Kothari, G., Negi, S., Faruquie, T.A., Chakaravarthy, V.T., Subramaniam, L.V.:
SMS based interface for FAQ retrieval. In: ACL/IJNLP 2009, pp. 852–860 (2009)

4. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: EMNLP-CoNLL, pp. 858–867. ACL (2007)

5. Robertson, S.E., Walker, S., Jones, S., Beaulieu, M.M.H., Gatford, M.: Okapi at
TREC-3. In: Harman, D.K. (ed.) TREC-3, pp. 109–126. NIST, Gaithersburg (1995)

6. Ferguson, P., O’Hare, N., Lanagan, J., Smeaton, A.F., Phelan, O., McCarthy, K.,
Smyth, B.: CLARITY at the TREC 2011 Microblog Track. In: Text Retrieval
Conference, TREC (2011)

7. Daelemans, W., Zavrel, J., van der Sloot, K., van den Bosch, A.: TiMBL: Tilburg
memory based learner, version 6.2, reference guide. Technical Report 09-01, ILK
(2004)



196 D. Hogan et al.

8. Kwok, K.L.: A new method of weighting query terms for ad-hoc retrieval. In: SIGIR
1996, pp. 187–195. ACM, New York (1996)

9. He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors. In:
Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 43–54.
Springer, Heidelberg (2004)

10. Zhao, Y., Scholer, F., Tsegay, Y.: Effective pre-retrieval query performance pre-
diction using similarity and variability evidence. In: Macdonald, C., Ounis, I.,
Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956,
pp. 52–64. Springer, Heidelberg (2008)


	Preface
	Table of Contents
	FIRE 2011
	Overview of FIRE 2011
	1 Introduction
	2 Adhoc Task Data
	2.1 Query Formulation
	2.2 Relevance Judgements
	2.3 Query Profile

	3 Runs Submitted
	4 Discussion
	References 


	Adhoc Track
	Query Expansion Based on Equi-Widthand Equi-Frequency Partition
	1 Introduction
	2 Motivation
	3 Related Works
	4 Methodology
	4.1 Selection of Lower and Upper Bound of Intersected Region

	5 Experiment and Discussion
	5.1 Results and Discussion

	6 Conclusion
	References

	Ad Hoc Retrieval with Marathi Language
	1 Introduction
	2 Marathi Language
	3 Overview of the Corpus
	4 Experiment Architecture
	4.1 IR Models
	4.2 Stopword List
	4.3 Stemming and Indexing Strategies
	4.4 Evaluation

	5 Results and Analysis
	5.1 Experiment Results
	5.2 IR Models Evaluation
	5.3 Query Formulation Evaluation
	5.4 Stemming Strategies Evaluation
	5.5 Indexing Strategies Evaluation
	5.6 Pseudo-Relevance Feedback

	6 Conclusion
	References

	Frequent Case Generation in Ad Hoc Retrieval of Three Indian Languages – Bengali, Gujarati and Marathi
	1 Introduction
	2 Morphological Properties
	3 The Task and Data Sets
	4 Implementation of the Methods
	5 Results
	5.1 Bengali Results
	5.2 Marathi Results
	5.3 Gujarati Results

	6 Discussions and Conclusions
	References

	ISM@FIRE-2011 Bengali Monolingual Task: A Frequency-Based Stemmer
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Indexing
	3.2 Retrieval

	4 Data
	4.1 Documents
	4.2 Topics
	4.3 Qrels

	5 Results
	6 Conclusion
	References


	CLiTR - Cross Lingual Text Reuse Track
	PAN@FIRE: Overview of the Cross-Language !ndian Text Re-Use Detection Competition
	1 Introduction
	2 Corpus
	3 Task
	4 Submissions Overview
	5 Evaluation
	6 Final Remarks
	References

	Cross Lingual Text Reuse Detection Based on Keyphrase Extraction and Similarity Measures
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Classification Based Approach with Stemming (Approach 1)
	3.2 Classification Based Approach without Stemming (Approach 2)
	3.3 Cross-Lingual Key-Phrase Mapping (Approach 3)

	4 Experimental Setup
	4.1 Collection
	4.2 Evaluation

	5 Experiments
	5.1 Approach 1
	5.2 Approach 2
	5.3 Approach 3

	6 Result Analysis
	7 Conclusion and Future Work
	References

	Mapping Hindi-English Text Re-use Document Pairs
	1 Introduction
	2 Approach
	2.1 Resources
	2.2 Similarity Score

	3 Results
	4 Analysis
	5 Conclusion and Future Work
	References


	SMS Based FAQ Retrieval Track
	Text Retrieval Using SMS Queries: Datasets and Overview of FIRE 2011 Track on SMS-Based FAQ Retrieval
	1 Introduction
	2 Tasks
	2.1 Mono-Lingual FAQ Retrieval
	2.2 Cross-Lingual FAQ Retrieval
	2.3 Multi-Lingual FAQ Retrieval
	2.4 Other Details

	3 Datasets
	4 Submissions Overview
	5 Results
	5.1 Evaluation Measure
	5.2 Mono-Lingual Retrieval Task
	5.3 Cross-Lingual Retrieval Task
	5.4 Multi-lingual Retrieval Task

	6 Summary
	References

	SMS Based FAQ Retrieval Using Latent Semantic Indexing
	1 Introduction
	2 Problem Definition: Defining the Task
	3 First Approach: Using Naïve LSI
	4 Second Approach: Using Refined LSI
	5 Experiments, Results and Conclusions
	References

	Data-Driven Methods for SMS-Based FAQ Retrieval
	1 Introduction
	2 Description of the Task
	2.1 Mono-Lingual FAQ Retrieval
	2.2 Cross-Lingual FAQ Retrieval
	2.3 Multi-lingual FAQ Retrieval

	3 Data and Preprocessing
	3.1 Dataset
	3.2 Indexing
	3.3 Translation Mechanism

	4 Mono-Lingual FAQ Retrieval
	4.1 English
	4.2 Hindi
	4.3 Malayalam
	4.4 Mono-Lingual FAQ Retrieval Results

	5 Cross-Lingual FAQ Retrieval
	5.1 Cross-Lingual FAQ Retrieval Results

	6 Multi-lingual FAQ Retrieval
	6.1 English
	6.2 Hindi
	6.3 Malayalam
	6.4 Multi-lingual FAQ Retrieval Results

	7 Comparison of Best MRR Results for Mono-, Cross- and Multi-lingual Tasks
	8 Conclusion
	References

	Language Modeling Approach to Retrieval for SMS and FAQ Matching
	1 Introduction
	2 Related Work
	3 Noise Removal from SMS Query
	3.1 Dictionary Creation
	3.2 Noise Removal

	4 Language Modeling Approach to Retrieval for FAQ and SMS Matching
	4.1 Monolingual
	4.2 Cross-Lingual

	5 Experimental Setup
	6 Experiments
	6.1 Monolingual Run 1
	6.2 Monolingual Run 2
	6.3 Monolingual Run 3
	6.4 Cross-Lingual Run 1
	6.5 Cross-Lingual Run 2
	6.6 Cross-Lingual Run 3

	7 Result Analysis
	8 Conclusion and Future Work
	References

	SMS Based FAQ Retrieval
	1 Introduction
	2 Problem Statement
	3 System Implementation
	Preprocessing
	Calculation of Weight of Each Word in W
	Longest Common Subsequence Ratio(LCSR).
	Similarity Ratio.
	Levenshtein Distance.
	Inverse Document Frequency (IDF)proceeding1.

	Creation of Variant Lists
	Creation of Candidate List Q-Poss
	Calculation of Similarity Score
	Keyword Matching
	Disemvowelingproceeding2.
	Removal of Stop Words.
	Calculation of the Keyword Score.

	Total Score

	4 Experiments and Results
	4.1 Performance of the Various Components of the System
	4.2 Comparision against Other Systems

	5 Conclusion and Future Work
	References

	Improving Accuracy of SMS Based FAQ Retrieval System
	1 Introduction
	2 Prior Work
	3 Our Contribution
	3.1 Proximity Score
	3.2 Length Score
	3.3 Matching with Answers

	4 Implementation and Experiments
	4.1 Implementation
	4.2 Experiments

	5 Conclusion and Future Work
	References

	Mapping SMSes to Plain Text FAQs
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Text Normalization
	3.2 FAQ Retrieval
	3.3 Experimental Results
	4 Conclusion and Scope of Future Work
	References

	SMS Normalization for FAQ Retrieval
	1 Introduction
	2 Data Set Details
	3 Proposed Approach
	4 Implementation Details
	4.1 Preprocessing
	4.2 Approximate String Matching (ASM)
	4.3 FAQ Retrieval and Identifying Out-of-Domain (OOD) Queries

	5 Experiments and Results
	5.1 Selection of ηthreshold and α
	5.2 Selection of OOD Queries
	5.3 Failure Analysis

	6 Conclusion and Future Work
	References

	Two Models for the SMS-Based FAQ Retrieval Task of FIRE 2011
	1 Introduction
	2 Previous Works
	3 Normalization of Short Texts
	4 Probabilistic Model
	5 Experimental Results
	5.1 Training Dataset
	5.2 Test Dataset
	5.3 Evaluation Results

	6 Conclusions and Further Work
	References

	SMS Normalisation, Retrieval and Out-of-Domain Detection Approaches for SMS-Based FAQ Retrieval
	1 Introduction
	2 SMS Normalisation and Correction
	2.1 Pre-processing for Documents and Queries
	2.2 SMS Correction
	2.3 Evaluation of SMS Correction

	3 Retrieval Engines
	3.1 Experimental Details

	4 Filtering Out-of-Domain Queries
	5 Test Set Retrieval Experiments and Results
	6 Conclusion and Future Work
	References


	RISOT - Retrieval from Indic Script OCR’d Text Track
	Overview of the FIRE 2011 RISOT Task
	1 Introduction
	2 Background
	3 Test Collections
	3.1 OCR Collection
	3.2 Topics
	3.3 Relevance Judgments
	3.4 Evaluation

	4 Results
	5 The Future
	References

	Maryland at FIRE 2011: Retrieval of OCR’d Bengali
	1 Introduction
	2 Modeling OCR Errors
	2.1 OCR Error Probabilities
	2.2 Query Expansion

	3 RISOT 2011 Experiments
	3.1 Test Collections
	3.2 Experiments
	3.3 Results

	4 Conclusions and Future Research
	References

	Retrieval from OCR Text: RISOT Track
	1 Introduction
	2 Related Work
	3 Character Classes
	3.1 Basic Characters
	3.2 Character Modifiers
	3.3 Compound Characters with/without Vowel/ConsonantModifiers

	4 Our Approach
	4.1 Error Modeling
	4.2 Candidate Symbol Selection
	4.3 Corpus Correction
	4.4 Query Expansion

	5 Results and Analysis
	6 Conclusion and Future Work
	References


	RISOT - Retrieval from Indic Script OCR’d Text Track
	Overview of the Personalized and Collaborative Information Retrieval (PIR) Track at FIRE-2011
	1 Introduction
	2 Related Work
	2.1 User Task Studies
	2.2 Personalized Search
	2.3 Evaluation Forums
	2.4 Outlook

	3 PIR Evaluation Framework
	3.1 Data Construction Methodology
	3.2 An Illustrative Example
	3.3 Data Details

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Log Processing
	4.3 Retrieval Methodology
	4.4 Results

	5 Conclusions and Outlook
	References


	Simple Transliteration for CLIR
	Simple Transliteration for CLIR
	1 Introduction
	2 Related Work
	3 Benchmark Collection
	4 Retrieval Runs
	4.1 Transliterating Graphemes

	5 Results and Analysis
	6 Conclusion and Future Work
	References


	FIRE 2010
	Overview of FIRE 2010
	1 Introduction
	2 Adhoc Task Data
	2.1 Query Formulation
	2.2 Relevance Judgements

	3 Results
	3.1 Submissions
	3.2 Monolingual and Cross-lingual Results

	References

	UTA Stemming and Lemmatization Experiments in the FIRE Bengali Ad Hoc Task
	1 Introduction
	2 Some Remarks on the Bengali Language
	3 The UTA Experimental Systems
	3.1 YASS
	3.2 GRALE
	3.3 StaLe

	4 The UTA Bengali Experiments
	4.1 The Test Collection and Search Engine
	4.2 The UTA Runs

	5 Findings
	5.1 Overall Performance
	5.2 Query-by-Query Performance

	6 Discussion
	7 Conclusion
	References

	Tamil English Cross Lingual Information Retrieval
	1 Introduction
	2 Issues in CLIR
	3 Our Approach
	3.1 Language Analyzer
	3.2 Query Translation/ Transliteration
	3.3 Query Expansion
	3.4 Ranking

	4 Experiment and Results
	5 Conclusion
	References

	Test Collections and Evaluation Metrics Based on Graded Relevance
	1 Introduction
	2 Graded Relevance
	3 Test Collections with Graded Relevance
	3.1 Construction – The TREC-UTA Experience
	3.2 Sample Collections Providing Graded Relevance

	4 Evaluation Metrics for Graded Relevance
	4.1 Binarization of Graded Relevance
	4.2 Mean Average Precision Based on Graded Relevance
	4.3 Cumulated Gain Based Metrics

	5 Doest it Matter? Evaluation Results Based on GradedRelevance
	5.1 Searchers’ Ability to Recognize Degrees of Relevance
	5.2 Ranking IR Systems by Graded Relevance
	5.3 Graded Assessments in Relevance Feedback
	5.4 Graded Assessments in Cross-Language IR Evaluation
	5.5 Negative Weighting of Non-relevant Documents

	6 Discussion and Conclusion
	References

	Term Conflation and Blind Relevance Feedback for Information Retrieval on Indian Languages
	1 Introduction
	2 Related Work
	3 Term Conflation
	3.1 N-prefixes
	3.2 Corpus-Based Stemming
	3.3 Rule-Based Stemming for Bengali

	4 Blind Relevance Feedback
	5 Experimental Settings
	5.1 Query Translation
	5.2 Processing and Indexing

	6 Retrieval Experiments and Results
	6.1 Results for Monolingual Experiments
	6.2 Results for Bilingual Experiments

	7 Conclusions and Outlook
	References

	Improving Cross-Language Information Retrieval by Transliteration Mining and Generation
	1 Introduction
	2 Related Work
	3 Retrieval System
	3.1 Monolingual Retrieval System
	3.2 Cross-Language Retrieval System
	3.3 Handling Out-of-Vocabulary terms
	3.4 Transliteration Mining
	3.5 Transliteration Generation

	4 Data for Experimental Setup
	4.1 FIRE Data
	4.2 Bilingual Dictionaries for CLIR
	4.3 Training Data for Transliteration Generation
	4.4 Training Data for Transliteration Mining

	5 Results and Analysis
	5.1 Metrics for Measuring Performance
	5.2 An Illustrative Analysis of the Impact of different Techniques
	5.3 Performance of Various Configurations of Integrated CLIR System
	5.4 Monolingual English Retrieval
	5.5 Hindi-English Cross-Language Retrieval
	5.6 Tamil-English Cross-Language Retrieval
	5.7 Mining OOV Terms and Its Effect on CLIR Performance
	5.8 Mining OOV Terms and Its Effect on Individual Topic Performance
	5.9 Hybrid Approach: Mining with Transliteration Generation
	5.10 Comparison of Transliteration Mining against Oracles

	6 Conclusion
	References

	Information Retrieval with Hindi, Bengali, and Marathi Languages: Evaluation and Analysis
	1 Introduction
	2 Overview of the Corpora
	3 IR Models and Stemming Strategies
	3.1 IR Models
	3.2 Stopword Lists and Stemmers

	4 Evaluation and Analysis
	4.1 Evaluation Methodology
	4.2 Evaluation of Different Query Formulations
	4.3 Evaluation of Various Stemming Strategies
	4.4 Evaluation of Various Indexing Strategies
	4.5 Some Query-by-Query Analysis
	4.6 Pseudo-relevance Feedback

	5 Official Results
	6 Conclusion
	References


	Author Index

