
Adaptive Multi-agent System for a Washing Machine
Production Line

Nelson Rodrigues1,2, Arnaldo Pereira1, Paulo Leitao1,2

1 Polytechnic Institute of Bragança, Campus Sta Apolonia, Apartado 1134,

5301-857 Bragança, Portugal, {nrodrigues, arnaldo, pleitao}@ipb.pt
2 Artificial Intelligence and Computer Science Laboratory, R. Campo Alegre 102,

4169-007 Porto, Portugal

Abstract. This paper describes the implementation of a multi-agent system in a
real industrial washing machine production line aiming to integrate process and
quality control, allowing the establishment of feedback control loops to support
adaptation facing condition changes. For this purpose, the agent-based solution
was implemented using the JADE framework, being the shared knowledge
structured using a proper ontology, edited and validated in Protégé and
posteriorly integrated in the multi-agent system. The solution was intensively
tested using historical real production data and it is now being installed in the
real production line. The preliminary results confirm the initial expectations in
terms of improvement of process performance and product quality.

Keywords: Multi-agent systems, Manufacturing control, Self-adaptation.

1 Introduction

A current trend in manufacturing domain is the development of adaptive production
systems, facing the emergent requirements imposed by global markets demanding
high quality customized products at reduced prices, to overcome existing process
limitations and enable new manufacturing and processing methods. This challenge,
part of the vision for the factory of the future, is also referred in the strategic research
agenda made by the Manufuture European Technology Platform [1], which points out
the need for enabling technologies, oriented to flexible and intelligent processes that
contribute for the achievement of more modular, flexible, re-configurable and
responsiveness manufacturing systems.

Multi-Agent Systems (MAS) [2] are a suitable approach to solve these challenges
by providing an alternative way to engineer manufacturing control systems, based on
the decentralization of the control functions over a set of distributed, autonomous and
cooperative entities, the agents. They differ from the conventional centralized, rigid
approaches due to their inherent capabilities to adapt to emergence without external
intervention [3]. In spite of the promising perspective of using MAS solutions to
address the challenge of achieving adaptive production systems, only few industrial
applications were reported in the literature, e.g. the application in a factory plant of
Daimler Chrysler [4] and some experiences from Rockwell Automation [5] and
Schneider Electric [6] (see [7] and [8] for a deeply analysis). Several reasons were

identified for this weak adoption by industry, being probably the most important one
the convincement of the benefits of using agents running in industry, showing the
maturity, flexibility and robustness of the technology.

Under the scope of the GRACE (InteGration of pRocess and quAlity Control using
multi-agEnt technology) project (www.grace-project.org), a collaborative MAS
solution was developed to operate in an industrial production line, integrating process
and quality control, at local and global levels. This approach is aligned with the
described trend to build modular, intelligent and distributed control systems, to
introduce adaptation facing unexpected deviations and failures, namely in terms of
production conditions, product fluctuations and production/process deviations. An
important aspect in this work is the achievement of product quality and production
performance benefiting from MAS principles, even in a rigid production structure. In
fact, MAS are usually useful when the production structure allows alternative ways to
re-route the production but in this work the benefits are in terms of product quality
and production performance by adapting the process and quality control parameters.

The objective of this paper is to describe the implementation of the GRACE multi-
agent system for a production line producing washing machines, and the posterior
deployment into real operation. An important contribution of this work is to
demonstrate the effective applicability of multi-agent systems in real industrial
scenarios, contributing for a wider adoption of this technology by industry.

This paper is organized as follows. Section 2 presents the industrial problem to be
addressed and the basic principles of the GRACE multi-agent system architecture.
Section 3 describes the implementation of the multi-agent system solution and Section
4 describes how the ontology, supporting the shared knowledge representation, was
designed and integrated in the multi-agent system. Section 5 overviews the
deployment of the control system into real operation and discusses some preliminary
results. Finally, Section 6 rounds up the paper with the conclusions.

2 GRACE Multi-agent System

The GRACE efforts focus the development of an agent-based system that integrates
process and quality control for a production line producing washing machines.

2.1 Description of the Problem

The problem addressed in this work considers a washing machine production line,
owned by Whirlpool and located in Naples, Italy (Fig. 1 shows a simplified vision of
the line). The production line is composed of several machines arranged in a
sequential order, which are linked together by conveyors. Each station performs a
single operation in the product being produced, which can be of different types:
processing (e.g. bearing insertion or pulley screwing), quality control (e.g. visual
inspection or vibration analysis) or manual (e.g. cable and electronics assembly).
Along the line, the quality control stations run proper inspection programs, which
results are compiled for posterior analysis. The product instances enter the line with a
specific process plan that takes into consideration the materials variables (e.g. type of

the rear tub) and the operation parameters (e.g. thickness of welding process)
according to the type of washing machine to be manufactured.

Fig. 1. Layout of the production line case study.

The objective to be achieved in this work is the integration of the process and
quality control levels, creating feedback control loops that will allow the adaptation of
production parameters. Note that the objective is not centred in the re-configurability
of the production line (that is fixed and rigid), but instead to introduce adaptation to
improve the product quality and the process performance, e.g. reducing the
production time, correcting earlier the deviations or quality problems, skipping
unnecessary tests along the line and customizing the final product.

An important assumption in this work is to maintain the low-level control, which
already uses state-of-the-art industrial control based on Programmable Logic
Controllers (PLCs) running IEC 61131-3 control programs, and introduce the multi-
agent system solution at a higher control level to provide intelligence and adaptation.

2.2 GRACE Multi-agent System Architecture

The proposed multi-agent architecture involves a society of distributed, autonomous
and cooperative agents representing the components of the production line, to operate
at the factory-level. The agents act autonomously on behalf of these components,
namely resources or products, introducing intelligence and adaptation, and
cooperating to achieve the global production objectives. Several types of agents were
identified according to the process to control and to their specialization [9]:

• Product Type Agents (PTA), representing the catalogue of products that can be
produced in the production line (i.e., different washing machines models). They
contain the product and process models.

• Product Agents (PA), managing the production of product instances launched in
the production line (e.g., washing machines and drums).

• Resource Agents (RA), representing the physical equipment disposed along the
production line and responsible to manage the execution of their process/quality
control operations.

• Interdependent Meta Agents (IMA), representing supervision entities that
implement global supervisory control and optimized planning.

In the
Machine
stations, a
these com

• A lo
leve

• A h
cont

The
autonomo
the produ

Fig. 2. Mu

This
intelligen

• Dyn
unp

• Sup
of p
cont

For th
their indi
global sel

3 Imp

The deve
agent de

e definition o
Agents (MA)
and Quality C

mponents, two
ow-level laye
el may compri
high-level lay
trol and adapt
resulting sy

ous agents, co
uct dependenc

ulti-agent Syste

interaction a
nt agents provi
namic and ru
lanned fluctua

pervision and c
production and
tinuous flow o
his purpose, in
ividual roles, e
lf-adaptation (

lementatio

elopment of m
evelopment pl

of the RAs, s
), associated to
Control Agent
o layers were c
er, representin
ise PLCs runn
yer, i.e. the a
tation function
ystem emerge
oordinating th
ies and the pr

m Architecture

among agents
iding a sound

un-time adapta
ations of proce
control schem
d product qua
of information
ndividual age
enhanced by p
(see [10] for m

n of the GR

multi-agent sy
latform is us

several specia
o processing m
ts (QCA), asso
considered:
ng the physic
ning IEC 6113
agent itself, t
ns.
es from the

heir actions alo
roduction plan

e for the Produc

s is designed
perspective to

tation to resp
ess/product pa

mes at factory
ality, through
n among agen
ents exhibit a
proper adapta
more details).

RACE Mul

ystem solution
sed, taking a

alizations we
machines, suc
ociated to qua

cal machine o
31-3 control pr
to perform in

e cooperation
ong the produ

n, as illustrated

ction Line.

d to enhance
o achieve:

pond to condi
arameters, at l
level which m
feed-back co

ts.
structure of b

ation mechanis

lti-agent Sy

ns is strongly
advantage of

ere considered
ch as robots or
ality control st

or testing stat
rograms.
ntelligent man

n among d
uction line acc
d in Fig. 2.

e collaboratio

ition changes
local and glob
maximize the
ontrol loops b

behaviours acc
sms, focusing

ystem

y simplified if
the useful s

d, namely
r screwing
stations. In

ation. This

nagement,

distributed,
cording to

on among

s, such as
bal level.
efficiency

based on a

cording to
g local and

f a proper
services it

provides, such as registry and management services. In this work, the Java Agent
Development Framework (JADE) [11] was used, since it better responds to several
requirements, namely being an open source platform and compliant with Foundation
for Intelligent Physical Agents (FIPA) specifications, providing low programming
effort and features to support the management of agent-based solutions and delivering
an easy integration with other tools, namely the Java Expert System Shell (JESS).

Briefly, JADE is a Java based architecture that uses the Remote Method Invocation
(RMI) to support the creation of distributed Java based applications. JADE provides a
framework containing several agents that support the management of agent-based
applications, namely the Agent Management System (AMS) and Remote
Management Agent (RMA).

3.1 Implementation of Individual GRACE Agents

The GRACE multi-agent system comprises four types of agents, the PTA, PA, RA
and IMA. Each one of these GRACE agent types is a simple Java class that extends
the Agent class provided by the JADE framework, inheriting basic functionalities,
such as registration services and capabilities to send/receive agent communication
language (ACL) messages [11]. These functionalities were extended with features that
represent the specific behaviour of the agent, as detailed in [9].

Each GRACE agent is developed using multi-threaded programming constructs,
over the concept of the JADE’s behaviour, allowing the execution of several actions
in parallel. The execution cycle of a GRACE agent is briefly illustrated in Fig. 3.

Fig. 3. Execution life-cycle of a GRACE’s agent.

When the agent is created, the first method to be executed is the setup() method
that should be fulfilled with the actions to be performed during the agent’s start-up. In
the GRACE’s agents, the initialization procedure is responsible to register the agents’
skills in the Directory Facilitator (DF), connect to the local database and create the
GUI component. At the end of the setup() method, some behaviours are triggered,
passing the control to the action() method that implements the code related to the

Done()?

No

START_OP

PROVIDES_INFO

setArguments()

register@DF();

createGui();

addBehaviour(
waitingMessages, ...);

setup()

ACLMessage msg =
myAgent.receive();

...

addBehaviour(provi
deInfo);

addBehaviour(man
ageOpExecution);

addBehaviour(…);

killGui();

takeDown()

deRegister@DF();

killAgent();

Yes

action()

waitingMessages Behaviour

manageOpExecution Behaviour

...

desired behaviours. The behaviours launched in the setup() method and those
posteriorly invoked within these behaviours are provided in a software package in the
form of Java classes.

The communication between distributed agents is asynchronous and done over
Ethernet network using the TCP/IP protocol. The messages exchanged by the agents
are encoded using the FIPA-ACL communication language, being their content
formatted according to the FIPA-SL0 language. The meaning of the message content
is standardized according to the GRACE ontology.

Since the behaviour of the agent is mainly driven by the messages received from
other agents, a cyclic behaviour called WaitingMessages is launched in the setup()
method. This behaviour is a Java class that is waiting for the arrival of messages,
using the block() method to block the behaviour until a certain time elapses or a
message arrives, and the receive() method to extract the incoming message. The
arrival of a message triggers a set of actions related to decode the message and select
the proper behaviours to be performed. As an example, if the received message has a
PROVIDES_INFO identifier, a new behaviour called ProvidesInfo() is triggered.
Note that after triggering the action related to the received message, the
WaitingMessages behaviour remains continuously waiting for incoming messages.

At the end of the GRACE agent life-cycle, two methods are invoked: i) done() that
tests if the behaviours included in the action method are finished, and ii) takeDown()
that performs the last actions of the agent life-cycle, e.g. deregister from the DF.

3.2 Integration of Adaptation Functions

The functions providing the adaptation capabilities were embedded in the agents
according to their roles. For this purpose, these functions were aggregated in software
packages according to the agents where they will be hosted, being the functions that
are shared by more than one agent type grouped in one separate package.

At the PA level, the configuresOperationParameters() functions adjust the
operation parameters to be executed by the station, considering the data related to
previous executed operations. In the case of testing operations, it can involve the
selection of inspection algorithms and parameters; in case of processing operations,
the selection of components, programs and parameters. Two examples are the
customization of the testing plan to be performed by the functional tests station and
the adjustment of the parameters to be written in the machine’s controller board.

At the RA level, the adjustParameters() set of functions adjusts the processing or
testing parameters, just before to trigger the execution of the operation, according to
the local knowledge of the agent and the information gathered from previous quality
control operations. As an example, QCA may use the feedback deriving by the past
visual inspections to optimize its parameters and adapt itself to the environmental
conditions (e.g. adapting the exposure time of the camera for image acquisition).

At the IMA level, global optimization procedures were deployed to elaborate
optimization over identified meaningful correlations, supporting the adaptation of
global policies for the system. As an example, the trendAnalysis() function performs a
short analysis of the collected data to detect deviations or patterns in the data (e.g. a
degradation process towards the defect) and generate warnings for other agents.

3.3 Integration with Legacy Systems

An important issue is the integration of the multi-agent system in a computational
ecosystem, which is already running in the production line at different control levels.
In this work, the integration of legacy systems will be exemplified with the
integration of the quality control applications. As referred, in the GRACE multi-agent
architecture each quality control station, which can be a physical equipment or an
operator, has associated a QCA agent that is responsible to introduce intelligence and
adaptation in the execution of the inspection operations.

In this work, several quality control stations are developed in LabView™ [12],
imposing specific constraints to be integrated with the Java applications, i.e. the
agents. In order to enable the communication, it was necessary to choose among
different technological approaches. The best approach is to use a kind of service-
oriented approach, where the services encapsulate the application’s functionalities.
These services can be provided (and announced in a service registry) by the Java
application (i.e. the agent) or the LabView™ application (i.e. the quality control
station). Since the integration is focused in two pre-defined applications (which
doesn’t require the need to discover the available services in the distributed system),
only a basic layer is implemented, using TCP/IP sockets to interconnect the two
applications. This approach allows the easy interconnection of the two applications
running in different machines, achieving a very portable solution.

3.4 User Interfaces

Graphical User Interfaces (GUIs) are one way to provide a user interface supporting
the management and monitoring of the system. Each type of agent provides a
different GUI, since each one handles a particular set of information and allows
different types of interactions with the users. In spite of providing different
information, the GUIs follow a common template of menus, customized according to
the agent’s particularities.

The use of a Java based framework to develop the multi-agent system, offers the
possibility of using Swing, a well-established toolkit to implement GUIs for desktop
applications. Each type of agent in the GRACE system has its GUI implemented as an
extension of the javax.swing.JFrame component. The GUI displays the local
information stored in the agent’s database, which feed the appropriate graphical
components that are relevant to the users. As example, the IMA’s GUI provides a
global perspective of the entire production system, illustrating what is being produced
(actual status) and what was produced (historical data).

4 Ontology for the Shared Knowledge Representation

Ontologies plays a crucial role in the GRACE multi-agent system to enable a common
understanding among the agents when they are communicating, namely to understand
the messages at the syntactic level (to extract the content correctly) and at the
semantic level (to acquire the exchanged knowledge). For this purpose, a proper

ontology
washing
between t
term. The
the Proté
knowledg

The in
requires t
of a set o
a manual
a long, v
automatic

In this
automatic
specificat
ontologic
group of
ontologic
class, e.g

At the
due to s
process.
ontology,

Fig. 4. Ag

was designe
machine prod
the concepts),
e ontology sch
égé framewor
ge-based fram
ntegration of
the derivation

of Java classes
or an automa

very difficult a
cally translate
s work, the
cally generate
tions. The m
cal objects (i.e
f generated
cal object def
. the getters an

e end, some ha
syntax errors
However, the
, being a good

gents using onto

ed to represe
duction lines,
, the terms (att
hema (see [13
rk (protege.st

mework.
f the GRACE
n of the ontolo
s. For this pur
atic one. In the
and time cons
e the ontologic
OntologyBean

e the Java cla
main generate
e. concepts an
Java classes

fined in the on
nd setters, allo
and-made cor
introduced b

e use of this p
d approach to

ologies to excha

ent the know
formalizing t

ttributes of eac
3] for more de
tanford.edu/),

E ontology i
ogical terms fr
rpose, two diff
e first, the con
suming task. T
cal concepts in
nGenerator p
asses from th
ed class rep

nd predicates)
specify the

ntology. The
ow to handle t
rrections in th
by the plug-i
plug-in accele
manipulate, in

ange knowledge

wledge associa
the concepts,
ch concept), a
etails) was edi
 which is an

n the GRAC
rom the interf
fferent approac
ncepts are deri
The second a
nto the Java cl
plug-in was u
he Protégé too
presents the

defined in th
structure an

methods defi
the data relate

he exported Ja
in during the
erates the inte
ntegrate and r

e.

ated to the d
the predicates

and the meanin
ited and valida
n ontology e

CE multi-agen
faces and the g
ches can be co
ived manually
pproach uses
lasses.
used, which
ol, following
vocabulary a
e ontology. T
nd semantics
ined in each i
ed to the objec
ava classes are
e automatic g
egration proce
euse ontologie

domain of
s (relation
ng of each
ated using
editor and

nt system
generation
onsidered:
y, which is

tools that

allows to
the FIPA

and main
The second
s of each
individual

ct.
e required
generation
ess of the
es.

At this stage, all classes needed for the ontological model are created, and ready to
be used by the GRACE agents (after registering the ontology). As illustrated in Fig. 4,
the agents use the same ontology (but different fragments of the ontology) to express
the shared knowledge that is exchanged through the message exchange according to
proper interaction patterns following the FIPA protocols.

A local database is used by each agent to store the data handled by the agent,
according to the ontology used to represent the GRACE knowledge. To potentiate the
solution portability, a SQLite database (http://www.sqlite.org/) was implemented
using the SQLite JDBC Driver (https://bitbucket.org/xerial/sqlite-jdbc).

5 Deployment in the Production Line

The developed GRACE multi-agent system was initially debugged by using the unit
test approach through the JUnit framework [14] to test each agent’s function
individually. After this testing phase, the system is ready to be deployed in the
production line. This section discusses the agentification of the production line and
the analysis of the results from the multi-agent system operation.

5.1 Agentification of the Production Line

The launching into operation of the multi-agent system requires two important
actions: launching the JADE platform and launching instantiations of the agent
classes developed for the specific agent-based solution, in this case for the
Whirlpool’s production line producing washing machines.

For this purpose, the structure of the GRACE agent classes described in the
previous sections (i.e. PTA, PA, RA and IMA) is instantiated according to the
production line needs. The set of agents launched to handle the washing machine
production line are distributed by several computers, running in Windows 7 (64-bit)
operating system with an Intel(R) Xeon (R) CPU W3565 processor @ 3.20 GHz. In
terms of resources, 17 RA agents are launched, being the QCAs installed in the
computers where the LabView™ applications for the associated quality control
station are running. In another side, 9 PTA agents are launched corresponding to 9
different washing machine models, and 1 IMA is deployed to supervise the
production line activities. The number of PAs running in the system is variable,
depending on the number of products that are being produced in the production line,
but in a stable production flow more than 200 PAs are simultaneously running.

The instances of the agent classes need the customization of their behaviours. For
example, each one of the stations disposed along the line will be associated to
instances of the RA agent, but each one has its particularities and it is necessary to
reflect them in the generic structure of the RA agent. For this purpose, each agent has
associated a XML file, describing the particularities and skills of the station. The
following example illustrates the XML for the bearing insertion station.

<machine>
<name> Bearing_insertion </name>
<type> processing </type>

<
<
<
<
…

</mach

These
setup() m

5.2 Ana

The GRA
phase, th
productio
plant). Th
to the dep
virtual re
the produ
by a Mic
(Applicat
agents an

The in
during slo
system, n
agent sys
illustrates
IMA agen
be respon

Fig. 5. GR

<id> 5100 </
<line> WU_li
<port> n.a.
<sqlserver>
…
hine>

XML files a
method, loadin

alysis of Preli

ACE multi-age
he operation
on data (avoid
his stage was
ployment into
sources were

uction data sto
rosoft SQL S
tion Programm
nd the SQL-ba
ntensive oper
ots of 1 week

namely its stab
stem is soun
s the multi-ag
nt had execute
nsible for the d

RACE multi-age

/id>
ine_A </line
</port>
159.154.64.

are read whe
g the agent pr

minary Resu

ent system wa
of the mult

ding the need
crucial to ide

o the on-line
created to em

ored in the pro
erver applicat

ming Interface
ased database.
ration of the
), showed, in
bility and robu
d and ready
ent system ru
ed a trend ana
detected devia

ent system work

e>

.164 </sqlse

en the agents
rofile with the

ults

as deployed in
ti-agent syste
to connect to

entify and corr
production of

mulate the func
oduction data
tion, the Java
e) is used to e

GRACE mu

a first instanc
ustness, which
to be used

unning in prac
alysis and gen
ation.

king in practice

erver>

initiate their
e customized p

n the real prod
em was teste
o the physical
rect possible b
f the factory p
ctioning of the
abase. Since th
a Database Co
establish the c

ulti-agent syst
ce, the correct
h allowed to c
in the real p

ctice, being po
erate a warnin

e.

r life-cycle, w
parameters.

duction line. I
ed using rea
l devices in th
bugs before p
plant. For this
e physical dev
he database is
onnectivity (JD
connection be

tem (running
tness of the ag
conclude that
production lin
ossible to verif
ng to the agen

within the

In the first
al historic
he factory

proceeding
s purpose,

vices using
s managed
DBC) API
etween the

g non-stop
gent-based
the multi-

ne. Fig. 5
fy that the

nt that may

In terms of quantitative results, besides the improvement of the product quality, it
was noticed a reduction of the production time. Particularly, the implementation of
adaptation mechanisms in the selection of the functional tests, by removing
unnecessary tests, adjusting others or customizing the messages to the operators,
allows an increase of:

• Productivity, since the inspection time is reduced (the average reduction of 1
minute over the default 6 minutes corresponds to an increase of approximately
20% in the production line productivity [15]).

• Product quality, since most effective quality control procedures are performed.
The proposed multi-agent system is now being installed in the real production line

and the very preliminary results confirm the initial expectations in terms of
improvement of process performance and product quality. In fact, after running the
GRACE multi-agent system in practice, the average time to execute the functional
tests was reduced, but more important was the customization of the messages
displayed to the operator that allowed performing the inspection with better accuracy
for particular situations. Additionally, the adaptation of operations parameters
according to the production history and current environmental conditions, e.g. the
customization of the on-board controller, allows a significant improvement of the
product quality, since using the proposed multi-agent system, each washing machine
is customized according to its production process historic.

The success of the multi-agent system deployment in a real industrial application is
a crucial step to prove the applicability and merits of GRACE multi-agent system for
production lines, and also the benefits of agent-based control approaches in industry.

6 Conclusions and Future Work

This paper describes the implementation of a multi-agent system in a production line
producing washing machines, aiming to integrate the process and quality control and
to provide adaptation capabilities to the system operation.

This agent-based system was implemented using the JADE framework, which
provides an integrated environment for the development of such systems. The
skeleton of the several GRACE agents were implemented, namely the behaviours’
structure of each agent, the ontology schema for the knowledge representation, the
interaction patterns supported by FIPA protocols, and the integration with legacy
systems, particularly the LabView™ applications running in quality control stations.
Several GUIs were also implemented to support an easy interaction with the users.
Local and global adaptation functions were embedded in the several developed
agents, aiming to provide adaptation and optimization based on the integration of the
quality and process control.

The multi-agent system was intensively tested using historical real production data,
aiming to test and correct the detected mistakes and bugs during the development
process. The intensive tests showed the correctness of the system, namely in terms of
adaptation, robustness and scalability. At the moment, the GRACE multi-agent
system is being deployed in the factory plant and future work is devoted to the

complete commissioning of the agent-based solution in the factory plant and the
continuously monitoring of the system operation to extract the achieved benefits.

Acknowledgments. This work has been financed (or partly financed) by the EU
Commission, within the research contract GRACE coordinated by Univ. Politecnica
delle Marche and having partners SINTEF, AEA srl, Instituto Politecnico de
Bragança, Whirlpool Europe srl, Siemens AG.

References

1. European Commission: MANUFUTURE, Strategic Research Agenda: Assuring the Future
of Manufacturing in Europe, Report of the High-level Group, Brussels (2006).

2. Ferber, J.: Multi-Agent Systems, An Introduction to Distributed Artificial Intelligence.
Addison-Wesley (1999).

3. Wooldridge, M.: An Introduction to Multi-Agent Systems, John Wiley & Sons (2002).
4. Schild, K., Bussmann, S.: Self-Organization in Manufacturing Operations,

Communications of the ACM, 50(12), 74--79 (2007).
5. Vrba, P., Tichý, P., Mařík, V., Hall, K., Staron, R., Maturana, F., Kadera, P.: Rockwell

Automation’s Holonic and Multi-agent Control Systems Compendium, IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(1), 14--30
(2011).

6. Schoop, R., Neubert, R., Colombo, A W: A Multiagent-based Distributed Control Platform
for Industrial Flexible Production Systems, Proceedings of the IEEE Int. Annual
Conference on Industrial Electronics (IECON´2001), vol. 1, 279--284 (2001).

7. Pechoucek, M., Marik, V.: Industrial Deployment of Multi-agent Technologies: Review
and Selected Case Studies, Autonomous Agents and Multi-agent Systems, 17(13), 397--431
(2008).

8. Leitão, P.: Agent-based Distributed Manufacturing Control: A State-of-the-art Survey,
Engineering Applications of Artificial Intelligence, 22(7), 979--991 (2009).

9. Leitão, P., Rodrigues, N.: Multi-agent system for on-demand production integrating
production and quality control, Holonic and Multi-Agent Systems for Manufacturing, V.
Marik, P. Vrba, and P. Leitao (eds.), Lecture Notes in Computer Science, vol. 6867, 84--93,
Springer Berlin / Heidelberg (2011).

10. Leitão, P., Rodrigues, N.: Modelling and Validating the Multi-agent System Behaviour for
a Washing Machine Production Line, Proceedings of the IEEE International Symposium on
Industrial Electronics (ISIE´12), Hangzhou, China, 28-31 May, 1203--1208 (2012).

11. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE,
Wiley (2007).

12. Johnson, G.W.: LabVIEW Graphical Programming: Practical Applications in
Instrumentation and Control, McGraw-Hill School Education Group, 2nd ed. (1997).

13. Leitão, P. Rodrigues, N. Turrin, C., Pagani, A., Petrali, P.: GRACE Ontology Integrating
Process and Quality Control, Proceedings of the 38th Annual Conference of the IEEE
Industrial Electronics Society (IECON'12), Montreal, Canada, 4328--4333, (2012).

14. Beck, K. and Gamma, E.: Test Infected: Programmers Love Writing Tests, Java Report,
3(7), 37--50 (1998).

15. Fernandes, A.: Simulação de Linha de Produção usando a Plataforma ARENA, MSc Thesis
in Informatics Engineering, Polytechnic Institute of Bragança, Portugal (2012).

