On the stretch factor of the Theta-4 graph

Luis Barba* ${ }^{* \dagger} \quad$ Prosenjit Bose* \quad Jean-Lou De Carufel*
André van Renssen* Sander Verdonschot*

Abstract

In this paper we show that the θ-graph with 4 cones has constant stretch factor, i.e., there is a path between any pair of vertices in this graph whose length is at most a constant times the Euclidean distance between that pair of vertices. This is the last θ-graph for which it was not known whether its stretch factor was bounded.

1 Introduction

A t-spanner of a weighted graph G is a connected sub-graph H with the property that for all pairs of vertices u and v, the weight of the shortest path between u and v in H is at most t times the weight of the shortest path between u and v in G, for some fixed constant $t \geq 1$. The smallest constant t for which H is a t-spanner of G is referred to as the stretch factor or spanning ratio of the graph. The graph G is referred to as the underlying graph. In our setting, the underlying graph is the complete graph on a set of n points in the plane and the weight of an edge is the Euclidean distance between its endpoints. A spanner of such a graph is called a geometric spanner. For a comprehensive overview of geometric spanners, see the book by Narasimhan and Smid [8].

In this paper, we focus on θ-graphs. Introduced independently by Clarkson [5 and Keil [7, the $\theta_{m^{-}}$ graph is constructed as follows. Given a set P of points in the plane, we consider each point $p \in P$ and partition the plane into m cones (regions in the plane between two rays originating from the same point) with apex p, each defined by two rays at consecutive multiples of $\theta=2 \pi / m$ radians from the negative y-axis. We label the cones $C_{0}(p)$ through $C_{m-1}(p)$, in counter-clockwise order around p, starting from the negative y-axis; see Fig. 1. In each cone $C_{i}(p)$, we add an edge between p and p_{i}, the point in $C_{i}(p)$ nearest to p. However, instead of using the Euclidean

Figure 1: The neighbors of p in the θ_{4}-graph of P. Each edge supports an empty isosceles triangle. distance, we measure distance in $C_{i}(p)$ by projecting each vertex onto the angle bisector of this cone. Formally, p_{i} is the point in $C_{i}(p)$ such that for every other point $w \in C_{i}(p)$, the projection of p_{i} onto the angle bisector of $C_{i}(p)$ lies closer to p than that of w. For simplicity, we assume that no two points of P lie on a line parallel to either the boundary or the angle bisector of a cone.

[^0]Ruppert and Seidel [9] showed that θ_{m}-graphs are geometric spanners for $m \geq 7$, and their stretch factor approaches 1 as m goes to infinity. Their proof crucially relies on the fact that, given two vertices p and q such that $q \in C_{i}(p)$, the distance between p_{i} and q is always less than the distance between p and q. This property does not hold for $m \leq 6$ and indeed, the path obtained by starting at p and repeatedly following the edge in the cone that contains q, is not necessarily a spanning path. The main motivation for using spanners is usually to reduce the number of edges in the graph without increasing the length of shortest paths too much. Thus, θ-graphs with fewer cones are more interesting in practice, as they have fewer edges. This raises the following question: "What is the smallest m for which the θ_{m}-graph is a geometric spanner?" Bonichon et al. [1] showed that the θ_{6}-graph is also a geometric spanner. Recently, Bose et al. 4 proved the same for the θ_{5}-graph. Coming from the other side, El Molla [6] showed that there is no constant t for which the $\theta_{2^{-}}$and θ_{3}-graphs are geometric spanners. This leaves the θ_{4}-graph as the only open question. Moreover, its resemblance to graphs like the YaO_{4}-graph [3 and the L_{∞}-Delaunay triangulation [2], both of which are spanners, make this question more tantalizing. In this paper we establish an upper bound of approximately 237 on the stretch factor of the θ_{4}-graph, thereby showing that it is a geometric spanner. In Section 5 , we present a lower bound of 7 that we believe is closer to the true stretch factor of the θ_{4}-graph.

2 Existence of a spanning path

Let P be a set of points in the plane. In this section, we prove that the θ_{4}-graph of P is a spanner. We do this by showing that the θ_{4}-graph approximates the L_{∞}-Delaunay triangulation. The L_{∞}-Delaunay triangulation of P is a geometric graph with vertex set P, and an edge between two points of P whenever there exists an empty axis-aligned square having these two points on its boundary.

Bonichon et al. [2] showed that the L_{∞}-Delaunay triangulation has a stretch factor of $c^{*}=\sqrt{4+2 \sqrt{2}}$, i.e., there is a path between any two vertices whose length is at most c^{*} times their Euclidean distance. We approximate this path in the L_{∞}-Delaunay triangulation by showing the existence of a spanning path in the θ_{4}-graph of P joining the endpoints of every edge in the L_{∞}-Delaunay triangulation. The main ingredient to obtain this approximation is Lemma 1 whose proof is deferred to Section 4. Before we can state this lemma, we need a few more definitions. Given two points s and t, their L_{1} distance $d_{L_{1}}(s, t)$ is the sum of the absolute differences of their x - and y-coordinates.

Let $S_{t}(s)$ be the smallest axis-aligned square centered on t that contains s. Let ℓ_{t}^{-}and ℓ_{t}^{+}be the lines with slope -1 and +1 passing through t, respectively.

Throughout this paper, we repeatedly use t to denote a target point of P that we want to reach via a path in the θ_{4}-graph. Therefore, we typically omit the reference to t and write ℓ^{-}, ℓ^{+}and $S(s)$ when referring to $\ell_{t}^{-}, \ell_{t}^{+}$and $S_{t}(s)$, respectively.

We say that an object is empty if its interior contains no point of P. An s-t-path is a path with endpoints s and t.

Lemma 1. Let s and t be two points of P such that t lies in $C_{0}(s)$. If the top-right quadrant of $S(s)$ is empty and $C_{1}(s)$ contains no point of P below ℓ^{-}, then there is an s-t-path in the θ_{4}-graph of P of length at most $18 \cdot d_{L_{1}}(s, t)$.

Given a path φ, let $|\varphi|$ denote the sum of the lengths of the edges in φ. Using Lemma 1 . we obtain the following.

Figure 2: a) Configuration used in the proof of Lemma 2, grey areas represent empty regions. b) If a and b lie on consecutive sides of a square S, there is a square $S_{a b}$ such that $a b \subset S_{a b} \subseteq S$ and either a or b lies on a corner of $S_{a b}$.

Lemma 2. Let s and t be two points of P. If the smallest axis-aligned square enclosing s and t, that has t as a corner, is empty, then there is an s - t-path in the θ_{4}-graph of P of length at most $(\sqrt{2}+36) \cdot|s t|$.

Proof. Assume without loss of generality that s lies in $C_{1}(t)$. Then, the top-right quadrant of $S(s)$ is empty as it coincides with the smallest axis-aligned square enclosing s and t that has t as a corner; see Fig. 2(a). Recall that s_{3} is the neighbor of s in the θ_{4}-graph inside the cone $C_{3}(s)$. Assume that $s_{3} \neq t$ as otherwise the result follows trivially. Consequently, s_{3} must lie either in $C_{0}(t)$ or in $C_{2}(t)$. Assume without loss of generality that s_{3} lies in the top-left quadrant of $S(s)$. As s_{3} lies in the interior of $S(s), S\left(s_{3}\right) \subset S(s)$ and hence, the top-right quadrant of $S\left(s_{3}\right)$ is empty. Moreover, s_{3} lies above ℓ^{-}and hence $C_{1}\left(s_{3}\right)$ contains no point of P below ℓ^{-}. Therefore, by Lemma 1 there is an $s_{3}-t$-path φ of length at most $18 \cdot d_{L_{1}}\left(s_{3}, t\right)$. Since s_{3} lies inside $S(s),\left|s_{3} t\right| \leq \sqrt{2} \cdot|s t|$ and hence $|\varphi| \leq 18 \cdot d_{L_{1}}\left(s_{3}, t\right) \leq 18 \sqrt{2} \cdot\left|s_{3} t\right| \leq 18 \sqrt{2} \sqrt{2} \cdot|s t|=36 \cdot|s t|$. Moreover, the length of edge $s s_{3}$ is at most $d_{L_{1}}(s, t) \leq \sqrt{2} \cdot|s t|$ since s_{3} must lie above ℓ^{-}. Thus, $s s_{3} \cup \varphi$ is an s - t-path of length $\left|s s_{3}\right|+|\varphi| \leq(\sqrt{2}+36) \cdot|s t|$.

The following observation is depicted in Fig. 2(b).
Observation 3. Let S be an axis-aligned square. If two points a and b lie on consecutive sides along the boundary of S, then there is a square $S_{a b}$ containing the segment ab such that $S_{a b} \subseteq S$ and either a or b lies on a corner of $S_{a b}$.

Lemma 4. Let ab be an edge of the L_{∞}-Delaunay triangulation of P. There is an $a-b-p a t h$ $\varphi_{a b}$ in the θ_{4}-graph of P such that $\left|\varphi_{a b}\right| \leq(1+\sqrt{2}) \cdot(\sqrt{2}+36) \cdot|a b|$.

Proof. Let $T=(a, b, c)$ be a triangle in the L_{∞}-Delaunay triangulation of P. By definition of this triangulation, there is an empty square S such that every vertex of T lies on the boundary of S. By the general position assumption, a, b and c must lie on different sides of S. If a and b lie on consecutive sides of the boundary of S, then by Observation 3 and Lemma 2 there is a path $\varphi_{a b}$ contained in the θ_{4}-graph of P such that $\left|\varphi_{a b}\right| \leq(\sqrt{2}+36) \cdot|a b|$.

If a and b lie on opposite sides of S, then both $a c$ and $c b$ have their endpoints on consecutive sides along the boundary of S. Let $S_{a c}$ be the square contained in S existing as a consequence of Observation 3 when applied on the edge $a c$. Thus, either a or c lies on a corner of $S_{a c}$. Furthermore, as $S_{a c}$ is contained in S, it is also empty. Consequently, by Lemma 2, there is a a-c-path $\varphi_{a c}$ such that $\left|\varphi_{a c}\right| \leq(\sqrt{2}+36) \cdot|a c|$. Analogously, there is a path $\varphi_{c b}$ such that $\left|\varphi_{c b}\right| \leq(\sqrt{2}+36) \cdot|c b|$. Using elementary geometry, it can be shown
that since a and b lie on opposite sides of $S,|a c|+|c b| \leq(1+\sqrt{2}) \cdot|a b|$. Therefore, the path $\varphi_{a b}=\varphi_{a c} \cup \varphi_{c b}$ is an a-b-path such that $\left|\varphi_{a b}\right| \leq(1+\sqrt{2}) \cdot(\sqrt{2}+36) \cdot|a b|$.

Theorem 5. The θ_{4}-graph of P is a spanner whose stretch factor is at most

$$
(1+\sqrt{2}) \cdot(\sqrt{2}+36) \cdot \sqrt{4+2 \sqrt{2}} \approx 237
$$

Proof. Let ν be the shortest path joining s with t in the L_{∞}-Delaunay triangulation of P. Bonichon et al. [2] proved that the length of ν is at most $\sqrt{4+2 \sqrt{2}} \cdot|s t|$. By replacing every edge in ν with the path in the θ_{4}-graph of P that exists by Lemma 4, we obtain an s - t-path of length at most

$$
(1+\sqrt{2}) \cdot(\sqrt{2}+36) \cdot|\nu| \leq(1+\sqrt{2}) \cdot(\sqrt{2}+36) \cdot \sqrt{4+2 \sqrt{2}} \cdot|s t|
$$

3 Light paths

We introduce some tools that will help us proving Lemma 11 in Section 4.
Given a point p of P, we call edge $p p_{i}$ an i-edge. Let φ be a path that follows only 0 and 1 -edges. A 0 -edge $p p_{0}$ of φ is light if no edge of φ crosses the horizontal ray shooting to the right from p. We say that φ is a light path if all its 0 -edges are light. In this section we show how to bound the length of a light path with respect to the Euclidean distance between its endpoints.

Notice that every i-edge is associated with an empty isosceles right triangle. For a point p, the empty triangle generated by its i-edge is denoted by $\Delta_{i}(p)$.

Lemma 6. Given a light path φ, every pair of 0 -edges of φ has disjoint orthogonal projection on the line defined by the equation $y=-x$.

Proof. Let s and t be the endpoints of φ. Let $p p_{0}$ be any 0 -edge of φ and let $\nu_{p_{0}}$ be the diagonal line extending the hypotenuse of $\Delta_{0}(p)$, i.e., $\nu_{p_{0}}$ is a line with slope +1 passing through p_{0}. Let γ be the path contained in φ that joins p_{0} with t. We claim that every point in γ lies below $\nu_{p_{0}}$. If this claim is true, the diagonal lines constructed from the empty triangles of every 0 -edge in φ split the plane into disjoint slabs, each containing a different 0 -edge of φ. Thus, their projection on the line defined by the equation $y=-x$ must be disjoint.

To prove that every point in γ lies below $\nu_{p_{0}}$, notice that every point in γ must lie to the right of p since φ is x-monotone, and below p since $p p_{0}$ is light, i.e., γ is contained in $C_{0}(p)$. Since $\Delta_{0}(p)$ is empty, no point of γ lies above $\nu_{p_{0}}$ and inside $C_{0}(p)$ yielding our claim.

Given a point w of P, we say that a point p of P is w-protected if $C_{1}(p)$ contains no point of P below or on ℓ_{w}^{-}, recall that ℓ_{w}^{-}is the line with slope -1 passing through w. In other words, a point p is w-protected if either $C_{1}(p)$ is empty or p_{1} lies above ℓ_{w}^{-}. Moreover, every point lying above ℓ_{w}^{-}is w-protected and no point in $C_{3}(w)$ is w-protected.

Given two point s and t such that s lies to the left of t, we aim to construct a path joining s with t in the θ_{4}-graph of P. The role of t-protected points will be central in this construction. However, as a first step, we relax our goal and prove instead the existence of a light path $\sigma_{s \rightarrow t}$ going from s towards t that does not necessarily end at t.

To construct $\sigma_{s \rightarrow t}$, start at a point $z=s$ and repeat the following steps until reaching either t or a t-protected point w lying to the right of t.

- If z is not t-protected, then follow its 1 -edge, i.e., let $z=z_{1}$.
- If z is t-protected, then follow its 0 -edge, i.e., let $z=z_{0}$.

The pseudocode of this algorithm can be found in Algorithm 1.

```
\(\overline{\text { Algorithm } 1 \text { Given two points } s \text { and } t \text { of } P \text { such that } s \text { lies to the left of } t \text {, algorithm to }}\)
compute the path \(\sigma_{s \rightarrow t}\)
    Let \(z=s\).
    Append \(s\) to \(\sigma_{s \rightarrow t}\).
    while \(z \neq t\) and \(z\) is not a \(t\)-protected point lying to the right of \(t\) do
        if \(z\) is \(t\)-protected then \(z=z_{0}\) else \(z=z_{1}\)
        Append \(z\) to \(\sigma_{s \rightarrow t}\).
    end while
    return \(\sigma_{s \rightarrow t}\)
```

Lemma 7. Let s and t be two points of P such that s lies to the left of t. Algorithm 1 produces a light x-monotone path $\sigma_{s \rightarrow t}$ joining s with a t-protected point w such that either $w=t$ or w lies to the right of t. Moreover, every edge on $\sigma_{s \rightarrow t}$ is contained in $S(s)$.

Proof. By construction, Algorithm 1 finishes only when reaching either t or a t-protected point lying to the right of t. Since every edge of $\sigma_{s \rightarrow t}$ is either a 0 -edge or a 1edge traversed from left to right, $\sigma_{s \rightarrow t}$ is x-monotone.

The left endpoint of every 0-edge in $\sigma_{s \rightarrow t}$ lies in $C_{2}(t)$ as it most be t-protected and no t-protected point lies in $C_{3}(t)$. Thus, if $v v_{0}$ is a 0-edge, then v lies in $C_{2}(t)$ and hence, v_{0} lies inside $S(s)$ and above ℓ^{+}. Otherwise t would lie inside $\Delta_{0}(v)$. Therefore, every 0-edge in $\sigma_{s \rightarrow t}$ is contained in $S(s)$.

Every 1-edge in $\sigma_{s \rightarrow t}$ has its two endpoints lying below ℓ^{-}; otherwise, we followed the 1-edge of a t -

Figure 3: If v is a t-protected point, then edge $v v_{0}$ is light in any path $\sigma_{s \rightarrow t}$ that contains it. protected point which is not allowed by Step 4 of Algorithm 1. Thus, every 1-edge in $\sigma_{s \rightarrow t}$ lies below ℓ^{-}and to the right of s. As 1-edges are traversed from bottom to top and the 0-edges of $\sigma_{s \rightarrow t}$ are enclosed by $S(s)$, every 1-edge in $\sigma_{s \rightarrow t}$ is contained in $S(s)$.

Let $v v_{0}$ be any 0 -edge of $\sigma_{s \rightarrow t}$. Since we followed the 0 -edge of v, we know that v is t-protected and hence no point of P lies in $C_{1}(v)$ and below ℓ^{-}. As every 1-edge has its two endpoints lying below ℓ^{-}and $\sigma_{s \rightarrow t}$ is x-monotone, no 1-edge in $\sigma_{s \rightarrow t}$ can have an endpoint in $C_{1}(v)$. In addition, every 0-edge of $\sigma_{s \rightarrow t}$ joins its left endpoint with a point below it. Thus, no 0-edge of $\sigma_{s \rightarrow t}$ can cross the ray shooting to the right from v. Consequently, $v v_{0}$ is light and hence $\sigma_{s \rightarrow t}$ is a light path; see Fig 3 .

Given two points p and q, let $|p q|_{x}$ and $|p q|_{y}$ be the absolute differences between their x - and y-coordinates, respectively, i.e., $d_{L_{1}}(p, q)=|p q|_{x}+|p q|_{y}$.

Lemma 8. Let s and t be two points of P such that s lies to the left of t. If s is t-protected, then $\left|\sigma_{s \rightarrow t}\right| \leq 3 \cdot d_{L_{1}}(s, t)$.

Proof. To bound the length of $\sigma_{s \rightarrow t}$, we bound the length of its 0-edges and the length of its 1-edges separately. Let Z be the set of all 0-edges in $\sigma_{s \rightarrow t}$ and consider their orthogonal projection on ℓ^{-}. By Lemma 6, all these projections are disjoint. Moreover, the length of every 0 -edge in Z is at most $\sqrt{2}$ times the length of its projection. Let s_{\perp} be the

Figure 4: a) The segment δ having length $d_{L_{1}}(s, t) / \sqrt{2}$. b) The 0 -edges of $\sigma_{s \rightarrow t}$ have disjoint projections on ℓ^{-}and the 1-edges have disjoint projections on the horizontal line passing through t. The slope between the endpoints of the maximal paths γ_{0} and γ_{1} is less than 1 .
orthogonal projection of s on ℓ^{-}and let δ be the segment joining s_{\perp} with t. Since s is t-protected and $\sigma_{s \rightarrow t}$ is x-monotone, the orthogonal projection of every 0 -edge of Z on ℓ^{-} is contained in δ and hence $\sum_{e \in Z}|e| \leq \sqrt{2} \cdot|\delta|$. Since $|\delta|=d_{L_{1}}(s, t) / \sqrt{2}$ as depicted in Fig. 4 (a), we conclude that $\sum_{e \in Z}|e| \leq d_{L_{1}}(s, t)$.

Let O be the set of all 1-edges in $\sigma_{s \rightarrow t}$ and let η be the horizontal line passing through t. Since $\sigma_{s \rightarrow t}$ is x-monotone, the orthogonal projections of all edges in O on η are disjoint. Let $\gamma_{0}, \ldots, \gamma_{k}$ be the connected components induced by O, i.e., the set of maximal connected paths that can be formed by the 1-edges in O; see Fig. 4 (b). We claim that the slope of the line joining the two endpoints p^{i}, q^{i} of every γ_{i} is smaller than 1 . If this claim is true, the length of every γ_{i} is bounded by $\left|p^{i} q^{i}\right|_{x}+\left|p^{i} q^{i}\right|_{y} \leq 2 \cdot\left|p^{i} q^{i}\right|_{x}$ as each γ_{i} is x - and y-monotone.

To prove that the slope between p^{i} and q^{i} is smaller than 1 , let $v v_{0}$ be the 0 -edge of $\sigma_{s \rightarrow t}$ such that $v_{0}=p^{i}$. Since $v v_{0}$ is in $\sigma_{s \rightarrow t}, v$ is t-protected by Step 4 of Algorithm 1 and hence, as $\Delta_{0}(v)$ is empty, q^{i} must lie below the line with slope +1 passing through p^{i} yielding our claim.

Let ω be the segment obtained by shooting a ray from t to the left until hitting the boundary of $S(s)$. We bound the length of all edges in O using the length of ω. Notice that the orthogonal projection of every γ_{i} on η is contained in ω, except maybe for γ_{k} whose right endpoint q^{k} could lie below and to the right of t. Two cases arise: If the projection of γ_{k} on η is contained in ω, then $\sum_{i=0}^{k}\left|\gamma_{i}\right| \leq \sum_{i=0}^{k} 2 \cdot\left|p^{i} q^{i}{ }_{x} \leq 2 \cdot\right| \omega \mid$. Otherwise, since q_{k} is t-protected, q_{k} lies below ℓ^{-}and hence $d_{L_{1}}\left(p^{k}, q^{k}\right) \leq d_{L_{1}}\left(p^{k}, t\right)$. Moreover, p^{k} must lie above ℓ^{+}as p^{k} is reached by a 0 -edge coming from above η, i.e., $\left|p^{k} t\right|_{y}<\left|p^{k} t\right|_{x}$. Therefore,

$$
\left|\gamma_{k}\right| \leq d_{L_{1}}\left(p^{k}, q^{k}\right) \leq d_{L_{1}}\left(p^{k}, t\right)=\left|p^{k} t\right|_{x}+\left|p^{k} t\right|_{y} \leq 2 \cdot\left|p^{k} t\right|_{x}
$$

Consequently, $\sum_{i=0}^{k}\left|\gamma_{i}\right| \leq 2 \cdot\left|p^{k} t\right|_{x}+\sum_{i=0}^{k-1} 2 \cdot\left|p^{i} q^{i}\right|_{x} \leq 2 \cdot|\omega|$. Since $|\omega| \leq d_{L_{1}}(s, t)$, we get that $\sum_{e \in O}|e|=\sum_{i=0}^{k}\left|\gamma_{i}\right| \leq 2 \cdot d_{L_{1}}(s, t)$. Thus, $\sigma_{s \rightarrow t}$ is a light path of length at most $\sum_{e \in O}|e|+\sum_{e \in Z}|e| \leq 3 \cdot d_{L_{1}}(s, t)$.

By the construction of the light path in Algorithm 1, we observe the following.
Lemma 9. Let s and t be two points of P such that s lies to the left of t. If the right endpoint w of $\sigma_{s \rightarrow t}$ is not equal to t, then w lies either above ℓ^{+}if $w \in C_{1}(t)$, or below ℓ^{-} if $w \in C_{0}(t)$.

Proof. If w lies in $C_{1}(t)$, then by Step 4 of Algorithm $1, w$ was reached by a 0-edge $p w$ such that p is a t-protected point lying above and to the left of t. As $\Delta_{0}(p)$ is empty, t lies below the hypotenuse of $\Delta_{0}(p)$ and hence w lies above ℓ^{+}.

Assume that w lies in $C_{0}(t)$. Notice that w is the only t-protected point of $\sigma_{s \rightarrow t}$ that lies to the right of t; otherwise, Algorithm 1 finishes before reaching w. By Step 4 of Algorithm 1, every 0-edge of $\sigma_{s \rightarrow t}$ needs to have a t-protected left endpoint. Moreover, every t-protected point of $\sigma_{s \rightarrow t}$, other that w, lies above and to the left of t. Therefore, w is not reached by a 0 -edge of $\sigma_{s \rightarrow t}$, i.e., w must be the right endpoint of a 1-edge $p w$ of $\sigma_{s \rightarrow t}$. Notice that w cannot lie above ℓ^{-}since otherwise p is t-protected and hence Algorithm 1 finishes before reaching w yielding a contradiction. Thus, w lies below ℓ^{-}.

4 One empty quadrant

In this section, we provide the proof of Lemma 1. Before stepping into the proof, we need one last definition. Given a point p of P, the $\max _{1}-p a t h$ of p is the longest path having p as an endpoint that consists only of 1 -edges and contains the edge $p p_{1}$. We restate Lemma 1 using the notions of t-protected and s - t-path.

Lemma 1. Let s and t be two points of P such that t lies in $C_{0}(s)$. If the top-right quadrant of $S(s)$ is empty and s is t-protected, then there is an s - t-path in the θ_{4}-graph of P of length at most $18 \cdot d_{L_{1}}(s, t)$.

Proof. Since s is t-protected, no point of P lies above s, to the right of s and below ℓ^{-}; see the dark-shaded region in Fig. 5. Let R be the smallest axis-aligned rectangle enclosing s and t and let k be the number of t-protected points inside R, by the general position assumption, these points are strictly contained in R. We prove the lemma by induction on k.

Base case: Assume that R contains no t protected point, i.e., $k=0$. We claim that R must be empty and we prove it by contradiction. Let q be a point in R and note that q cannot lie above ℓ^{-}as it would be t-protected yielding a contradiction. If q lies below ℓ^{-}, we can follow the $\max _{1}$-path from q until reaching a t-protected point p lying below ℓ^{-}. Since s is t-protected, p must lie inside R which is also a contradiction. Thus, R must be empty.

Assume that $s_{0} \neq t$ since otherwise the result is trivial. As R is empty and $s_{0} \neq t, s_{0}$ lies below t and above ℓ^{+}. Moreover, no point of P lies above t, below

Figure 5: Base case. ℓ^{-}and inside $S\left(s_{0}\right)$ since s is t-protected. Thus, if we think of the set of points P rotated 90 degrees clockwise around t, Lemma 8 and Lemma 9 guarantee the existence of an $s_{0}-t$-path γ of length at most $3 \cdot d_{L_{1}}\left(s_{0}, t\right)$. Since s_{0} lies above $\ell^{+}, d_{L_{1}}\left(s, s_{0}\right) \leq d_{L_{1}}(s, t)$. Furthermore, $d_{L_{1}}\left(s_{0}, t\right) \leq 2 \cdot d_{L_{1}}(s, t)$ as s_{0} lies inside $S(s)$. Thus, by joining $s s_{0}$ with γ, we obtain an s - t-path of length at most $7 \cdot d_{L_{1}}(s, t)$.

Inductive step: We aim to show the existence of a path γ joining s with a t-protected point $w \in R$ such that the length of γ is at most $18 \cdot d_{L_{1}}(s, w)$. If this is true, we can merge γ with the w - t-path φ existing by the induction hypothesis to obtain the desired s - t-path with length at most $18 \cdot d_{L_{1}}(s, t)$. We analyze two cases depending on the position of s_{0} with respect to R.

Case 1. Assume that s_{0} lies inside R. If s_{0} lies above ℓ^{-}, then s_{0} is t-protected and hence we are done after applying our induction hypothesis on s_{0}. If s_{0} lies below ℓ^{-}, then we can follow its $\max _{1}$-path to reach a t-protected point w that must lie inside R as s is t protected. By running Algorithm 1 on s and w, we obtain a path $\sigma_{s \rightarrow w}$ that goes through the edge $s s_{0}$ and then follows the $\max _{1}$-path of s_{0} until reaching w; see Fig. 6.

Figure 6: Case 1.

Since s is t-protected and w lies below ℓ^{-}, s is also w-protected. Therefore, Lemma 8 guarantees that $\left|\sigma_{s \rightarrow w}\right| \leq 3 \cdot d_{L_{1}}(s, w)$. By induction hypothesis on w, there is a w-t-path φ such that $|\varphi| \leq 18 \cdot d_{L_{1}}(w, t)$. As w lies in R, by joining $\sigma_{s \rightarrow w}$ with φ we obtain the desired s-t-path of length at most $18 \cdot d_{L_{1}}(s, t)$.

Case 2. Assume that s_{0} does not lie in R. This implies that s_{0} lies below t. Assume also that $\sigma_{s \rightarrow t}$ does not reach t; otherwise we are done since $\left|\sigma_{s \rightarrow t}\right| \leq 3 \cdot d_{L_{1}}(s, t)$. Thus, as the top-right quadrant of $S(s)$ is empty, $\sigma_{s \rightarrow t}$ ends at a t-protected point z lying in the bottom-right quadrant of $S(s)$. We consider two sub-cases depending on whether $\sigma_{s \rightarrow t}$ contains a point inside R or not.

Case 2.1. If $\sigma_{s \rightarrow t}$ contains a point inside R, let w be the first t-protected point of $\sigma_{s \rightarrow t}$ after s and note that w also lies inside R since s is t-protected. Notice that the part of $\sigma_{s \rightarrow t}$ going from s to w is in fact equal to $\sigma_{s \rightarrow w}$ since w lies above t and only 1-edges were followed after s_{0} by Step 4 of Algorithm 1, see Fig. 7. Thus, as s is also w-protected, the length of $\sigma_{s \rightarrow w}$ is bounded by $3 \cdot d_{L_{1}}(s, w)$ by Lemma 8. Hence, we can apply the induction hypothesis on w as

Figure 7: Case 2.1. before and obtain the desired s - t-path.

Case 2.2. If $\sigma_{s \rightarrow t}$ does not contain a point inside R, then $\sigma_{s \rightarrow t}$ follows only 1-edges from s_{0} until reaching z in the bottom-right quadrant of $S(s)$; see Fig. 8(a). Let P^{*} be the set of points obtained by reflecting P on the line ℓ^{+}. Since z remains t-protected after the reflection, we can use Algorithm 1 to produce a path $\sigma_{z \rightarrow t}^{*}$ in the θ_{4}-graph of P^{*}. Let $\gamma_{z \rightarrow t}$ be the path in the θ_{4} graph of P obtain by reflecting $\sigma_{z \rightarrow t}^{*}$ on ℓ^{+}. Note that $\gamma_{z \rightarrow t}$ ends at a point w such that w is either equal to t or w lies in the top-left quadrant of $S(s)$ since the top-right quadrant of $S(s)$ is empty. Since z lies inside $S(s), d_{L_{1}}(z, t) \leq 2 \cdot d_{L_{1}}(s, t)$. Therefore, by Lemma 8 , the length of $\sigma_{s \rightarrow t} \cup \gamma_{z \rightarrow t}$ is given by

$$
\left|\sigma_{s \rightarrow t}\right|+\left|\gamma_{z \rightarrow t}\right| \leq 3 \cdot d_{L_{1}}(s, t)+3 \cdot d_{L_{1}}(z, t) \leq 3 \cdot d_{L_{1}}(s, t)+6 \cdot d_{L_{1}}(s, t)=9 \cdot d_{L_{1}}(s, t)
$$

Two cases arise: If $\gamma_{z \rightarrow t}$ reaches $t(w=t)$, then we are done since $\sigma_{s \rightarrow t} \cup \gamma_{z \rightarrow t}$ joins s with t through z.

If $\gamma_{z \rightarrow t}$ does not reach $t(w \neq t)$, then w lies below ℓ^{-}by Lemma 9 applied on $\sigma_{z \rightarrow t}^{*}$. Moreover, as s is t-protected, no point in $C_{1}(s)$ can be reached by $\gamma_{z \rightarrow t}$ and hence w must lie inside R. We claim that $d_{L_{1}}(s, t) \leq 2 \cdot d_{L_{1}}(s, w)$. If this claim is true, $\left|\sigma_{s \rightarrow t} \cup \gamma_{z \rightarrow t}\right| \leq$ $9 \cdot d_{L_{1}}(s, t) \leq 18 \cdot d_{L_{1}}(s, w)$. Furthermore, by the induction hypothesis, there is a path φ joining w with t of length at most $18 \cdot d_{L_{1}}(w, t)$. Consequently, by joining $\sigma_{s \rightarrow t}, \gamma_{z \rightarrow t}$ and φ, we obtain an s - t-path of length at most $18 \cdot d_{L_{1}}(s, w)+18 \cdot d_{L_{1}}(w, t)=18 \cdot d_{L_{1}}(s, t)$.

Figure 8: a) Case 2.2 in the proof of Lemma 1, path $\sigma_{s \rightarrow t}$ has no point inside R and reaches a point z lying in the bottom-right quadrant of $S(s)$. b) The inductive argument proving that the point w, reached after taking the path $\gamma_{z \rightarrow t}$, lies outside of the triangle Q^{+}containing all the points above ρ and below s. As s is t-protected, the region above s and below ρ is empty.

To prove that $d_{L_{1}}(s, t) \leq 2 \cdot d_{L_{1}}(s, w)$, let s_{\perp} be the orthogonal projection of s on ℓ^{+}. Let ρ be the perpendicular bisector of the segment $s s_{\perp}$ and notice that for every point y in $C_{0}(s), d_{L_{1}}(s, t) \leq 2 \cdot d_{L_{1}}(s, y)$ if and only if y lies below ρ.

Let Q be the minimum axis-aligned square containing s and s_{\perp}. Note that ρ splits Q into two equal triangles Q^{+}and Q^{-}as one diagonal of Q is contained in ρ. Assume that Q^{+}is the triangle that lies above ρ. Notice that all points lying in $C_{0}(s)$ and above ρ are contained in Q^{+}; see Fig. 8 (b). We prove that w lies outside of Q^{+}and hence, that w must lie below ρ.

If s_{0} lies below ρ, then the empty triangle $\Delta_{0}(s)$ contains Q^{+}forcing w to lie below ρ. Assume that s_{0} lies above ρ. In this case, z lies above s_{0} as we only followed 1-edges to reach z in the construction of $\sigma_{s \rightarrow t}$ by Step 4 of Algorithm 1. Let a be the intersection of ℓ^{+}and the ray shooting to the left from z. Notice that w must lie to the right of a as the path $\gamma_{z \rightarrow t}$ is contained in the square $S(z)$ and a is one of its corners. As z lies above s_{0} and s_{0} lies above s_{\perp}, we conclude that a is above s_{\perp} and both lie on ℓ^{+}. Therefore, a lies to the right of s_{\perp}, implying that w lies to the right of s_{\perp} and hence outside of Q^{+}. As we proved that w lies below ρ, we conclude that $d_{L_{1}}(s, t) \leq 2 \cdot d_{L_{1}}(s, w)$.

5 Lower Bound

In this section we show how to construct a lower bound of 7 for the θ_{4}-graph. We start with two vertices u and w such that w lies in $C_{2}(u)$ and the difference of their x-coordinates is arbitrarily small. To construct the lower bound, we repeatedly replace a single edge of the shortest u - w-path by placing vertices in the corners of the empty triangle(s) associated with that edge. The final graph is shown in Fig. 9 ,

We start out by removing the edge between u and w by placing two vertices, one inside $\Delta_{2}(u)$ and one inside $\Delta_{0}(w)$, both arbitrarily close to the corner that does not contain u nor w. Let v_{1} be the vertex placed in $\Delta_{2}(u)$. Placing v_{1} and the other vertex in $\Delta_{0}(w)$ removed edge $u w$, but created two new shortest paths, $u v_{1} w$ being one of them. Hence, our next step is to extend this path.

We remove edge $v_{1} w$ (and its equivalent in the other path) by placing a vertex arbitrarily close to the corner of $\Delta_{1}\left(v_{1}\right)$ and $\Delta_{3}(w)$ that is farthest from u. Let v_{2} be the vertex placed inside $\Delta_{1}\left(v_{1}\right)$. Hence, edge $v_{1} w$ is replaced by the path $v_{1} v_{2} w$.

Next, we extend the path again by removing edge $v_{2} w$ (and its equivalent edge in the other paths). Like before, we place a vertex arbitrarily close to the corner of $\Delta_{0}\left(v_{2}\right)$ and $\Delta_{2}(w)$ that is farthest from u. Let v_{3} be the vertex placed in $\Delta_{0}\left(v_{2}\right)$. Hence, edge $v_{2} w$ is replaced by $v_{2} v_{3} w$.

Finally, we replace edge $v_{3} w$ (and its equivalent edge in the other paths). For all paths for which this edge lies on the outer face, we place a vertex in the corner of the two empty triangles defining that edge. However, for edge $v_{3} w$ which does not lie on the outer face, we place a single vertex v_{4} in the intersection of $\Delta_{3}\left(v_{3}\right)$ and $\Delta_{1}(w)$. In this way, edge $v_{3} w$ is replaced by $v_{3} v_{4} w$. When placing v_{4}, we need to ensure that no edge $u v_{4}$ is added as this would created a shortcut. This is easily achieved by placing v_{4} such that it is closer to v_{3} than to w. The resulting graph is shown in Fig. 9 .

Figure 9: A lower bound for the θ_{4}-graph. One of the shortest paths from u to w goes via v_{1}, v_{2}, v_{3}, and v_{4}.

Lemma 10. The stretch factor of the θ_{4}-graph is at least 7 .
Proof. We look at path $u v_{1} v_{2} v_{3} v_{4} w$ from Fig. 9. Edges $u v_{1}, v_{3} v_{4}$, and $v_{4} w$ have length $|u w|-\varepsilon$ and edges $v_{1} v_{2}$ and $v_{2} v_{3}$ have length $2 \cdot|u w|-\varepsilon$, where ε is positive and arbitrarily close to 0 . Hence the stretch factor of this path is arbitrarily close to 7 .

References

[1] N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas. Connections between theta-graphs, Delaunay triangulations, and orthogonal surfaces. In Proceedings of the 36th International Conference on Graph Theoretic Concepts in Computer Science (WG 2010), pages 266-278, 2010.
[2] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perković. The stretch factor of $L_{1^{-}}$and $L_{\infty^{-}}$ Delaunay triangulations. In Proceedings of the European Symposia on Algorithms (ESA 2012), pages 205-216, 2012.
[3] P. Bose, M. Damian, K. Douïeb, J. O'Rourke, B. Seamone, M. Smid, and S. Wuhrer. $\pi / 2$-angle Yao graphs are spanners. International Journal of Computational Geometry $£$ Applications, 22(1):61-82, 2012.
[4] P. Bose, P. Morin, A. van Renssen, and S. Verdonschot. The θ_{5}-graph is a spanner. Computer Research Repository (CoRR), abs/1212.0570, 2012.
[5] K. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages 56-65, 1987.
[6] N. M. El Molla. Yao spanners for wireless ad hoc networks. Master's thesis, Villanova University, 2009.
[7] J. Keil. Approximating the complete Euclidean graph. In Proceedings of the 1st Scandinavian Workshop on Algorithm Theory (SWAT 1988), pages 208-213, 1988.
[8] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, 2007.
[9] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph. In Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG 1991), pages 207-210, 1991.

[^0]: *Carleton University, Ottawa, Canada
 ${ }^{\dagger}$ Université Libre de Bruxelles, Brussels, Belgium

