
ar
X

iv
:1

30
5.

27
77

v2
 [

cs
.D

S]
 1

6
M

ay
 2

01
3

Fingerprints in Compressed Strings∗

Philip Bille

phbi@dtu.dk

Patrick Hagge Cording

phaco@dtu.dk

Inge Li Gørtz†

inge@dtu.dk

Benjamin Sach

sach@dcs.warwick.ac.uk

Hjalte Wedel Vildhøj

hwvi@dtu.dk

Søren Vind‡

sovi@dtu.dk

November 9, 2018

Abstract

The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has
been used in many string algorithms. In this paper we show how to construct a data structure
for a string S of size N compressed by a context-free grammar of size n that answers fingerprint
queries. That is, given indices i and j, the answer to a query is the fingerprint of the substring
S[i, j]. We present the first O(n) space data structures that answer fingerprint queries without
decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time,
and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we
get O(log logN) query time. Hence, our data structures has the same time and space complexity
as for random access in SLPs. We utilize the fingerprint data structures to solve the longest
common extension problem in query time O(logN log ℓ) and O(log ℓ log log ℓ + log logN) for
SLPs and Linear SLPs, respectively. Here, ℓ denotes the length of the LCE.

1 Introduction

Given a string S of sizeN and a Karp-Rabin fingerprint function φ, the answer to a Fingerprint(i, j)
query is the fingerprint φ(S[i, j]) of the substring S[i, j]. We consider the problem of constructing
a data structure that efficiently answers fingerprint queries when the string is compressed by a
context-free grammar of size n.

The fingerprint of a string is an alternative representation that is much shorter than the string
itself. By choosing the fingerprint function randomly at runtime it exhibits strong guarantees for
the probability of two different strings having different fingerprints. Fingerprints were introduced
by Karp and Rabin [22] and used to design a randomized string matching algorithm. Since then,
they have been used as a central tool to design algorithms for a wide range of problems (see
e.g., [2, 3, 11–13,15,17,21,24]).

A fingerprint requires constant space and it has the useful property that given the fingerprints
φ(S[1, i−1]) and φ(S[1, j]), the fingerprint φ(S[i, j]) can be computed in constant time. By storing
the fingerprints φ(S[1, i]) for i = 1 . . . N a query can be answered in O(1) time. However, this data

∗An extended abstract of this paper appeared at the 13th Algorithms and Data Structures Symposium.
†Supported by a grant from the Danish Council for Independent Research | Natural Sciences.
‡Supported by a grant from the Danish National Advanced Technology Foundation.

1

http://arxiv.org/abs/1305.2777v2

structure uses O(N) space which can be exponential in n. Another approach is to use the data
structure of Ga̧sieniec et al. [18] which supports linear time decompression of a prefix or suffix of
the string generated by a node. To answer a query we find the deepest node that generates a string
containing S[i] and S[j] and decompress the appropriate suffix of its left child and prefix of its right
child. Consequently, the space usage is O(n) and the query time is O(h + j − i), where h is the
height of the grammar. The O(h) time to find the correct node can be improved to O(logN) using
the data structure by Bille et al. [8] giving O(logN + j − i) time for a Fingerprint(i, j) query.
Note that the query time depends on the length of the decompressed string which can be large.

We present the first data structures that answers fingerprint queries on grammar compressed
strings without decompressing any characters, and improve all of the above time-space trade-offs.
Assume without loss of generality that the compressed string is given as a Straight Line Program
(SLP). An SLP is a grammar in Chomsky normal form, i.e., each nonterminal has exactly two
children. A Linear SLP is an SLP where the root is allowed to have more than two children,
and for all other internal nodes, the right child must be a leaf. Linear SLPs capture the LZ78
compression scheme [29] and its variations. Our data structures give the following theorem.

Theorem 1 Let S be a string of length N compressed into an SLP G of size n. We can construct
data structures that support Fingerprint queries in:

(i) O(n) space and query time O(logN)

(ii) O(n) space and query time O(log logN) if G is a Linear SLP

Hence, we show a data structure for fingerprint queries that has the same time and space complexity
as for random access in SLPs.

Our fingerprint data structures are based on the idea that a random access query for i produces
a path from the root to a leaf labelled S[i]. The concatenation of the substrings produced by the
left children of the nodes on this path produce the prefix S[1, i]. We store the fingerprints of the
strings produced by each node and concatenate these to get the fingerprint of the prefix instead.
For Theorem 1(i), we combine this with the fast random access data structure by Bille et al. [8].
For Linear SLPs we use the fact that the production rules form a tree to do large jumps in the SLP
in constant time using a level ancestor data structure. Then a random access query is dominated
by finding the node that produces S[i] among the children of the root, which can be modelled as
the predecessor problem.

Furthermore, we show how to obtain faster query time in Linear SLPs using finger searching
techniques. Specifically, a finger for position i in a Linear SLP is a pointer to the child of the root
that produces S[i].

Theorem 2 Let S be a string of length N compressed into an SLP G of size n. We can construct
an O(n) space data structure such that given a finger f for position i or j, we can answer a
Fingerprint(i, j) query in time O(log logD) where D = |i− j|.

Along the way we give a new and simple reduction for solving the finger predecessor problem on
integers using any predecessor data structure as a black box.

In compliance with all related work on grammar compressed strings, we assume that the model
of computation is the RAM model with a word size of logN bits.

2

1.1 Longest common extension in compressed strings

As an application we show how to efficiently solve the longest common extension problem (LCE).
Given two indices i, j in a string S, the answer to the LCE(i, j) query is the length ℓ of the maxi-
mum substring such that S[i, i + ℓ] = S[j, j + ℓ]. The compressed LCE problem is to preprocess a
compressed string to support LCE queries. On uncompressed strings this is solvable in O(N) pre-
processing time, O(N) space, and O(1) query time with a nearest common ancestor data structure
on the suffix tree for S [20]. Other trade-offs are obtained by doing an exponential search over the
fingerprints of strings starting in i and j [7]. Using the exponential search in combination with the
previously mentioned methods for obtaining fingerprints without decompressing the entire string
we get O((h + ℓ) log ℓ) or O((logN + ℓ) log ℓ) time using O(n) space for an LCE query. Using our
new (finger) fingerprint data structures and the exponential search we obtain Theorem 3.

Theorem 3 Let G be an SLP of size n that produces a string S of length N . The SLP G can
be preprocessed in O(N) time into a Monte Carlo data structure of size O(n) that supports LCE
queries on S in

(i) O(log ℓ logN) time

(ii) O(log ℓ log log ℓ+ log logN) time if G is a Linear SLP.

Here ℓ denotes the LCE value and queries are answered correctly with high probability. Moreover,
a Las Vegas version of both data structures that always answers queries correctly can be obtained
with O(N2/n logN) preprocessing time with high probability.

We furthermore show how to reduce the Las Vegas preprocessing time to O(N logN log logN) when
all the internal nodes in the Linear SLP are children of the root (which is the case in LZ78).

The following corollary follows immediately because an LZ77 compression [28] consisting of n
phrases can be transformed to an SLP with O(n log N

n
) production rules [9, 25].

Corollary 1 We can solve the LCE problem in O(n log N
n
) space and query time O(log ℓ logN)

for LZ77 compression.

Finally, the LZ78 compression can be modelled by a Linear SLP GL with constant overhead.
Consider an LZ78 compression with n phrases, denoted r1, . . . , rn. A terminal phrase corresponds
to a leaf in GL, and each phrase rj = (ri, a), i < j, corresponds to a node v ∈ GL with ri
corresponding to the left child of v and the right child of v being the leaf corresponding to a.
Therefore, we get the following corollary.

Corollary 2 We can solve the LCE problem in O(n) space and query time O(log ℓ log log ℓ +
log logN) for LZ78 compression.

2 Preliminaries

Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character in S at index i and let
S[i, j] be the substring of S of length j−i+1 from index i ≥ 1 to |S| ≥ j ≥ i, both indices included.

A Straight Line Program (SLP) G is a context-free grammar in Chomsky normal form that
we represent as a node-labeled and ordered directed acyclic graph. Each leaf in G is labelled with

3

a character, and corresponds to a terminal grammar production rule. Each internal node in G is
labeled with a nonterminal rule from the grammar. The unique string S(v) of length size(v) = |S(v)|
is produced by a depth-first left-to-right traversal of v ∈ G and consist of the characters on the leafs
in the order they are visited. We let root (G) denote the root of G, and left(v) and right(v) denote
the left and right child of an internal node v ∈ G, respectively.

A Linear SLP GL is an SLP where we allow root (GL) to have more than two children. All other
internal nodes v ∈ GL have a leaf as right(v). Although similar, this is not the same definition as
given for the Relaxed SLP by Claude and Navarro [10]. The Linear SLP is more restricted since
the right child of any node (except the root) must be a leaf. Any Linear SLP can be transformed
into an SLP of at most double size by adding a new rule for each child of the root.

We extend the classic heavy path decomposition of Harel and Tarjan [20] to SLPs as in [8]. For
each node v ∈ G, we select one edge from v to a child with maximum size and call it the heavy
edge. The remaining edges are light edges. Observe that size(u) ≤ size(v)/2 if v is a parent of u
and the edge connecting them is light. Thus, the number of light edges on any path from the root
to a leaf is at most O(logN). A heavy path is a path where all edges are heavy. The heavy path of
a node v, denoted H(v), is the unique path of heavy edges starting at v. Since all nodes only have
a single outgoing heavy edge, the heavy path H(v) and its leaf leaf (H(v)), is well-defined for each
node v ∈ G.

A predecessor data structure supports predecessor and successor queries on a set R ⊆ U =
{0, . . . , N − 1} of n integers from a universe U of size N . The answer to a predecessor query
pred(q) is the largest integer r− ∈ R such that r− ≤ q, while the answer to a successor query
succ(q) is the smallest integer r+ ∈ R such that r+ ≥ q. There exist predecessor data structures
achieving a query time of O(log logN) using space O(n) [23,26,27].

Given a rooted tree T with n vertices, we let depth(v) denote the length of the path from the
root of T to a node v ∈ T . A level ancestor data structure on T supports level ancestor queries
LA(v, i), asking for the ancestor u of v ∈ T such that depth(u) = depth(v) − i. There is a level
ancestor data structure answering queries in O(1) time using O(n) space [14] (see also [1, 5, 6]).

2.1 Fingerprinting

The Karp-Rabin fingerprint [22] of a string x is defined as φ(x) =
∑|x|

i=1 x[i] · c
i mod p, where c is

a randomly chosen positive integer, and 2N c+4 ≤ p ≤ 4N c+4 is a prime. Karp-Rabin fingerprints
guarantee that given two strings x and y, if x = y then φ(x) = φ(y). Furthermore, if x 6= y, then
with high probability φ(x) 6= φ(y). Fingerprints can be composed and subtracted as follows.

Lemma 1 Let x = yz be a string decomposable into a prefix y and suffix z. Let N be the maximum
length of x, c be a random integer and 2N c+4 ≤ p ≤ 4N c+4 be a prime. Given any two of the
Karp-Rabin fingerprints φ(x), φ(y) and φ(z), it is possible to calculate the remaining fingerprint in
constant time as follows:

φ(x) = φ(y)⊕ φ(z) = φ(y) + c|y| · φ(z) mod p

φ(y) = φ(x)⊖s φ(z) = φ(x)−
c|x|

c|z|
· φ(z) mod p

φ(z) = φ(x)⊖p φ(y) =
φ(x)− φ(y)

c|y|
mod p

4

In order to calculate the fingerprints of Lemma 1 in constant time, each fingerprint for a string
x must also store the associated exponent c|x| mod p, and we will assume this is always the case.
Observe that a fingerprint for any substring φ(S[i, j]) of a string can be calculated by subtracting
the two fingerprints for the prefixes φ(S[1, i − 1]) and φ(S[1, j]). Hence, we will only show how to
find fingerprints for prefixes in this paper.

3 Basic fingerprint queries in SLPs

We now describe a simple data structure for answering Fingerprint(1, i) queries for a string
S compressed into a SLP G in time O(h), where h is the height of the parse tree for S. This
method does not unpack the string to obtain the fingerprint, instead the fingerprint is generated
by traversing G.

The data structure stores size(v) and the fingerprint φ(S(v)) of the string produced by each
node v ∈ G. To compose the fingerprint f = φ(S[1, i]) we start from the root of G and do the
following. Let v′ denote the currently visited node, and let p = 0 be a variable denoting the size
the concatenation of strings produced by left children of visited nodes. We follow an edge to the
right child of v′ if p+ size(left(v′)) < i, and follow a left edge otherwise. If following a right edge,
update f = f ⊕ φ(S(left(v′))) such that the fingerprint of the full string generated by the left child
of v′ is added to f , and set p = p + size(left(v′)). When following a left edge, f and p remains
unchanged. When a leaf is reached, let f = f ⊕ φ(S(v′)) to include the fingerprint of the terminal
character. Aside from the concatenation of fingerprints for substrings, this procedure resembles a
random access query for the character in position i of S.

The procedure correctly composes f = φ(S[1, i]) because the order in which the fingerprints for
the substrings are added to f is identical to the order in which the substrings are decompressed
when decompressing S[1, i].

Since the fingerprint composition takes constant time per addition, the time spent generating
a fingerprint using this method is bounded by the height of the parse tree for S[i], denoted O(h).
Only constant additional space is spent for each node in G, so the space usage is O(n).

4 Faster fingerprints in SLPs

Using the data structure of Bille et al. [8] to perform random access queries allows for a faster way
to answer Fingerprint(1, i) queries.

Lemma 2 ([8]) Let S be a string of length N compressed into a SLP G of size n. Given a node
v ∈ G, we can support random access in S(v) in O(log(size(v))) time, at the same time reporting
the sequence of heavy paths and their entry- and exit points in the corresponding depth-first traversal
of G(v).

The main idea is to compose the final fingerprint from substring fingerprints by performing a
constant number of fingerprint additions per heavy path visited.

In order to describe the data structure, we will use the following notation. Let V (v) be the
left children of the nodes in H(v) where the heavy path was extended to the right child, ordered
by increasing depth. The order of nodes in V (v) is equal to the sequence in which they occur
when decompressing S(v), so the concatenation of the strings produced by nodes in V (v) yields the

5

S(u) S(a2) S(b1)

S(v) S(a1) S(a2) S(b1) S(b2)

P (v) S(a1) S(a2)

P (u) S(a2)

a1

a2

a3

b2

b1

v

u

V (v) = {a1, a2, a3}
leaf (H(v))

Figure 1: Figure showing how S(v) and its prefix P (v) is composed of substrings generated by the
left children a1, a2, a3 and right children b1, b2 of the heavy path H(v). Also illustrates how this
relates to S(u) and P (u) for a node u ∈ H(v).

prefix P (v) = S(v)[1, L(v)], where L(v) =
∑

u∈V (v) size(u). Observe that P (u) is a suffix of P (v) if
u ∈ H(v). See Figure 1 for the relationship between u, v and the defined strings.

Let each node v ∈ G store its unique outgoing heavy path H(v), the length L(v), size(v), and
the fingerprints φ(P (v)) and φ(S(v)). By forming heavy path trees of total size O(n) as in [8], we
can store H(v) as a pointer to a node in a heavy path tree (instead of each node storing the full
sequence).

The fingerprint f = φ(S[1, i]) is composed from the sequence of heavy paths visited when
performing a single random access query for S[i] using Lemma 2. Instead of adding all left-children
of the path towards S[i] to f individually, we show how to add all left-children hanging from each
visited heavy path in constant time per heavy path. Thus, the time taken to compose f is O(logN).

More precisely, for the pair of entry- and exit-nodes v, u on each heavy path H traversed from
the root to S[i], we set f = f ⊕ (φ(P (v)) ⊖s φ(P (u)) (which is allowed because P (u) is a suffix of
P (v)). If we leave u by following a right-pointer, we additionally set f = f ⊕ φ(S(left(u))). If u is
a leaf, set f = f ⊕ φ(S(u)) to include the fingerprint of the terminal character.

Remember that P (v) is exactly the string generated from v along H, produced by the left
children of nodes on H where the heavy path was extended to the right child. Thus, this method
corresponds exactly to adding the fingerprint for the substrings generated by all left children of
nodes on H between the entry- and exit-nodes in depth-first order, and the argument for correctness
from the slower fingerprint generation also applies here.

6

r1 r2 r3 r4 r5 r6

a a ab b b
(a) Linear SLP.

r1 r2

r3r4

r5 r6

a b

b

a

a

b

(b) Dictionary tree.

Figure 2: A Linear SLP compressing the string abbaabbaabab and the dictionary tree obtained
from the Linear SLP.

Since the fingerprint composition takes constant time per addition, the time spent generating
a fingerprint using this method is bounded by the number of heavy paths traversed, which is
O(logN). Only constant additional space is spent for each node in G, so the space usage is O(n).
This concludes the proof of Theorem 1(i).

5 Faster fingerprints in Linear SLPs

In this section we show how to quickly answer Fingerprint(1, i) queries on a Linear SLP GL. In
the following we denote the sequence of k children of root(GL) from left to right by r1, . . . , rk. Also,
let R(j) =

∑j
m=1 size(rm) for j = 0, . . . , k. That is, R(j) is the length of the prefix of S produced

by GL including rj (and R(0) is the empty prefix).
We also define the dictionary tree F over GL as follows. Each node v ∈ GL corresponds to a

single vertex vF ∈ F . There is an edge (uF , vF) labeled c if u = left(v) and c = S(right(v)). If v is
a leaf, there is an edge (root (F), vF) labeled S(v). That is, a left child edge of v ∈ GL is converted
to a parent edge of vF ∈ F labeled like the right child leaf of v. Note that for any node v ∈ GL

except the root, producing S(v) is equivalent to following edges and reporting edge labels on the
path from root (F) to vF . Thus, the prefix of length a of S(v) may be produced by reporting the
edge labels on the path from root (F) until reaching the ancestor of vF at depth a.

The data structure stores a predecessor data structure over the prefix lengths R(j) and the
associated node rj and fingerprint φ(S[1, R(j)]) for j = 0, . . . , k. We also have a doubly linked
list of all rj ’s with bidirectional pointers to the predecessor data structure and GL. We store the
dictionary tree F over GL, augment it with a level ancestor data structure, and add bidirectional
pointers between v ∈ GL and vF ∈ F . Finally, for each node v ∈ GL, we store the fingerprint of
the string it produces, φ(S(v)).

A query Fingerprint(1, i) is answered as follows. Let R(m) be the predecessor of i among
R(0), R(1), . . . , R(k). Compose the answer to Fingerprint(1, i) from the two fingerprints φ(S[1, R(m)])⊕
φ(S[R(m)+1, i]). The first fingerprint φ(S[1, R(m)]) is stored in the data structure and the second
fingerprint φ(S[R(m)+1, i]) can be found as follows. Observe that S[R(m)+1, i] is fully generated
by rm+1 and hence a prefix of S(rm+1) of length i − R(m). We can get rm+1 in constant time
from rm using the doubly linked list. We use a level ancestor query uF = LA(rFm+1, i − R(m)) to
determine the ancestor of rFm+1 at depth i−R(m), corresponding to a prefix of rm+1 of the correct
length. From uF we can find φ(S(u)) = φ(S[R(m) + 1, i]).

7

It takes constant time to find φ(S[R(m)+1, i]) using a single level ancestor query and following
pointers. Thus, the time to answer a query is bounded by the time spent determining φ(S[1, R(m)]),
which requires a predecessor query among k elements (i.e. the number of children of root(GL))
from a universe of size N . The data structure uses O(n) space, as there is a bijection between
nodes in GL and vertices in F , and we only spend constant additional space per node in GL and
vertex in F . This concludes the proof of Theorem 1(ii).

6 Finger fingerprints in Linear SLPs

The O(log logN) running time of a Fingerprint(1, i) query is dominated by having to find the
predecessor R(m) of i among R(0), R(1), . . . , R(k). Given R(m) the rest of the query takes constant
time. In the following, we show how to improve the running time of a Fingerprint(1, i) query to
O(log log |j − i|) given a finger for position j. Recall that a finger f for a position j is a pointer to
the node rm producing S[j]. To achieve this, we present a simple linear space finger predecessor
data structure that is interchangeable with any other predecessor data structure.

6.1 Finger Predecessor

Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of size N . Given a finger
f ∈ R and a query point q ∈ U , the finger predecessor problem is to answer finger predecessor or
successor queries in time depending on the universe distance D = |f − q| from the finger to the
query point. Belazzougui et al. [4] present a succinct solution for solving the finger predecessor
problem relying on a modification of z-fast tries. Here, we use a simple reduction for solving the
finger predecessor problem using any predecessor data structure as a black box.

Lemma 3 Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of size N . Given
a predecessor data structure with query time t(N,n) using s(N,n) space, we can solve the finger
predecessor problem in time O(t(D,n)) using space O(s(N, n

logN) logN).

Proof. Construct a complete balanced binary search tree T over the universe U . The leaves of
T represent the integers in U , and we say that a vertex span the range of U represented by the
leaves in its subtree. Mark the leaves of T representing the integers in R. We remove all vertices
in T where the subtree contains no marked vertices. Observe that a vertex at height j span a
universe range of size O(2j). We augment T with a level ancestor data structure answering queries
in constant time. Finally, left- and right-neighbour pointers are added for all nodes in T .

Each internal node v ∈ T at height j store an instance of the given predecessor data structure
for the set of marked leaves in the subtree of v. The size of the universe for the predecessor data
structure equals the span of the vertex and is O(2j)1.

Given a finger f ∈ R and a query point q ∈ U , we will now describe how to find both succ(q)
and pred(q) when q < f . The case q > f is symmetric. Observe that f corresponds to a leaf in
T , denoted fl. We answer a query by determining the ancestor v of fl at height h = ⌈log(|f − q|)⌉
and its left neighbour vL (if it exists). We query for succ(q) in the predecessor data structures
of both v and vL, finding at least one leaf in T (since v spans f and q < f). We return the leaf
representing the smallest result as succ(q) and its left neighbour in T as pred(q).

1The integers stored by the data structure may be shifted by some constant k · 2j for a vertex at height j, but we
can shift all queries by the same constant and thus the size of the universe is 2j .

8

Observe that the predecessor data structures in v and vL each span a universe of size O(2h) =
O(|f − q|) = O(D). All other operations performed take constant time. Thus, for a predecessor
data structure with query time t(N,n), we can answer finger predecessor queries in time O(t(D,n)).

The height of T is O(logN), and there are O(n logN) vertices in T (since vertices spanning
no elements from R are removed). Each element from R is stored in O(logN) predecessor data
structures. Hence, given a predecessor data structure with space usage s(N,n), the total space
usage of the data structure is O(s(N,n) logN).

We reduce the size of the data structure by reducing the number of elements it stores to O(n
logN).

This is done by partitioning R into O(n
logN) sets of consecutive elements Ri of size O(logN). We

choose the largest integer in each Ri set as the representative gi for that set, and store that in the
data structure described above. We store the integers in set Ri in an atomic heap [16,19] capable
of answering predecessor queries in O(1) time and linear space for a set of size O(logN). Each
element in R keep a pointer to the set Ri it belongs to, and each set left- and right-neighbour
pointers.

Given a finger f ∈ R and a query point q ∈ U , we describe how to determine pred(q) and
succ(q) when q < f . The case q > f is symmetric. We first determine the closest representatives
gl and gr on the left and right of f , respectively. Assuming q < gl, we proceed as before using
gl as the finger into T and query point q. This gives p = pred(q) and s = succ(q) among the
representatives. If gl is undefined or gl < q < f ≤ gr, we select p = gl and s = gr. To produce the
final answers, we perform at most 4 queries in the atomic heaps that p and s are representatives
for.

All queries in the atomic heaps take constant time, and we can find gl and gr in constant time
by following pointers. If we query a predecessor data structure, we know that the range it spans is
O(|gl − q|) = O(|f − q|) = O(D) since q < gl < f . Thus, given a predecessor data structure with
query time t(N,n), we can solve the finger predecessor problem in time O(t(D,n)).

The total space spent on the atomic heaps is O(n) since they partition R. The number of
representatives is O(n

logN). Thus, given a predecessor data structure with space usage s(N,n), we
can solve the finger predecessor problem in space O(s(N, n

logN) logN). �

Using the van Emde Boas predecessor data structure [23,26,27] with t(N,n) = O(log logN) query
time using s(N,n) = O(n) space, we obtain the following corollary.

Corollary 3 Let R ⊆ U = {0, . . . , N − 1} be a set of n integers from a universe U of size N .
Given a finger f ∈ R and a query point q ∈ U , we can solve the finger predecessor problem in time
O(log log |f − q|) and space O(n).

6.2 Finger Fingerprints

We can now prove Theorem 2. Assume wlog that we have a finger for i, i.e., we are given a finger
f to the node rm generating S[i]. From this we can in constant time get a pointer to rm+1 in
the doubly linked list and from this a pointer to R(m + 1) in the predecessor data structure. If
R(m + 1) > j then R(m) is the predecessor of j. Otherwise, using Corollary 3 we can in time
O(log log |R(m + 1) − j|) find the predecessor of j. Since R(m + 1) ≥ i and the rest of the query
takes constant time, the total time for the query is O(log log |i− j|).

9

7 Longest Common Extensions in Compressed Strings

Given an SLP G, the longest common extension (LCE) problem is to build a data structure for G
that supports longest common extension queries LCE(i, j). In this section we show how to use our
fingerprint data structures as a tool for doing LCE queries and hereby obtain Theorem 3.

7.1 Computing Longest Common Extensions with Fingerprints

We start by showing the following general lemma that establishes the connection between LCE and
fingerprint queries.

Lemma 4 For any string S and any partition S = s1s2 · · · st of S into k non-empty substrings
called phrases, ℓ = LCE(i, j) can be found by comparing O(log ℓ) pairs of substrings of S for
equality. Furthermore, all substring comparisons x = y are of one of the following two types:

Type 1 Both x and y are fully contained in (possibly different) phrase substrings.

Type 2 |x| = |y| = 2p for some p = 0, . . . , log(ℓ) + 1 and for x or y it holds that

(a) The start position is also the start position of a phrase substring, or

(b) The end position is also the end position of a phrase substring.

Proof. Let a position of S be a start (end) position if a phrase starts (ends) at that position.
Moreover, let a comparison of two substrings be of type 1 (type 2) if it satisfies the first (second)
property in the lemma. We now describe how to find ℓ = LCE(i, j) by using O(log ℓ) type 1 or 2
comparisons.

If i or j is not a start position, we first check if S[i, i+ k] = S[j, j + k] (type 1), where k ≥ 0 is
the minimum integer such that i+ k or j + k is an end position. If the comparison fails, we have
restricted the search for ℓ to two phrase substrings, and we can find the exact value using O(log ℓ)
type 1 comparisons.

Otherwise, LCE(i, j) = k+LCE(i+ k+1, j + k+1) and either i+ k+1 or j + k+1 is a start
position. This leaves us with the task of describing how to answer LCE(i, j), assuming that either
i or j is a start position.

We first use p = O(log ℓ) type 2 comparisons to determine the biggest integer p such that
S[i, i + 2p] = S[j, j + 2p]. It follows that ℓ ∈ [2p, 2p+1]. Now let q < 2p denote the length of the
longest common prefix of the substrings x = S[i+ 2p + 1, i+ 2p+1] and y = S[j + 2p + 1, j + 2p+1],
both of length 2p. Clearly, ℓ = 2p + q. By comparing the first half x′ of x to the first half y′ of y,
we can determine if q ∈ [0, 2p−1] or q ∈ [2p−1 + 1, 2p − 1]. By recursing we obtain the exact value
of q after log 2p = O(log ℓ) comparisons.

However, comparing x′ = S[a1, b1] and y′ = S[a2, b2] directly is not guaranteed to be of type 1
or 2. To fix this, we compare them indirectly using a type 1 and type 2 comparison as follows. Let
k < 2p be the minimum integer such that b1 − k or b2 − k is a start position. If there is no such k
then we can compare x′ and y′ directly as a type 1 comparison. Otherwise, it holds that x′ = y′ if
and only if S[b1−k, b1] = S[b2−k, b2] (type 1) and S[a1−k−1, b1−k−1] = S[a2−k−1, b2−k−1]
(type 2). �

10

Theorem 3 follows by using fingerprints to perform the substring comparisons. In particular, we
obtain a Monte Carlo data structure that can answer a LCE query in O(log ℓ logN) time for SLPs
and in O(log ℓ log logN) time for Linear SLPs. In the latter case, we can use Theorem 2 to reduce
the query time to O(log ℓ log log ℓ + log logN) by observing that for all but the first fingerprint
query, we have a finger into the data structure.

7.2 Verifying the Fingerprint Function

Since the data structure is Monte Carlo, there may be collisions among the fingerprints used to
determine the LCE, and consequently the answer to a query may be incorrect. We now describe
how to obtain a Las Vegas data structure that always answers LCE queries correctly. We do so
by showing how to efficiently verify that the fingerprint function φ is good, i.e., collision-free on all
substrings compared in the computation of LCE(i, j). We give two verification algorithms. One
that works for LCE queries in SLPs, and a faster one that works for Linear SLPs where all internal
nodes are children of the root (e.g. LZ78).

7.2.1 SLPs

If we let the phrases of S be its individual characters, we can assume that all fingerprint comparisons
are of type 2 (see Lemma 4). We thus only have to check that φ is collision-free among all substrings
of length 2p, p = 0, . . . , logN . We verify this in logN rounds. In round p we maintain the fingerprint
of a sliding window of length 2p over S. For each substring x we insert φ(x) into a dictionary. If
the dictionary already contains a fingerprint φ(y) = φ(x), we verify that x = y in constant time
by checking if φ(x[1, 2p−1]) = φ(y[1, 2p−1]) and φ(x[2p−1 + 1, 2p]) = φ(y[2p−1 + 1, 2p]). This works
because we have already verified that the fingerprinting function is collision-free for substrings of
length 2p−1. Note that we can assume that for any fingerprint φ(x) the fingerprints of the first and
last half of x are available in constant time, since we can store and maintain these at no extra cost.
In the first round p = 0, we check that x = y by comparing the two characters explicitly. If x 6= y
we have found a collision and we abort and report that φ is not good. If all rounds are successfully
verified, we report that φ is good.

For the analysis, observe that computing all fingerprints of length 2p in the sliding window can
be implemented by a single traversal of the SLP parse tree in O(N) time. Thus, the algorithm
correctly decides whether φ is good in O(N logN) time and O(N) space. We can easily reduce the
space to O(n) by carrying out each round in O(N/n) iterations, where no more than n fingerprints
are stored in the dictionary in each iteration. So, alternatively, φ can be verified in O(N2/n logN)
time and O(n) space.

7.2.2 Linear SLPs

In Linear SLPs where all internal nodes are children of the root, we can reduce the verification time
to O(N logN log logN), while still using O(n) space. To do so, we use Lemma 4 with the partition
of S being the root substrings. We verify that φ is collision-free for type 1 and type 2 comparisons
separately.

Type 1 Comparisons. We carry out the verification in rounds. In round p we check that no
collisions occur among the p-length substrings of the root substrings as follows: We traverse the

11

SLP maintaining the fingerprint of all p-length substrings. For each substring x of length p, we
insert φ(x) into a dictionary. If the dictionary already contains a fingerprint φ(y) = φ(x) we verify
that x = y in constant time by checking if x[1] = y[1] and φ(x[2, |x|]) = φ(y[2, |y|]) (type 1).

Every substring of a root substring ends in a leaf in the SLP and is thus a suffix of a root
substring. Consequently, they can be generated by a bottom up traversal of the SLP. The substrings
of length 1 are exactly the leaves. Having generated the substrings of length p, the substrings of
length p + 1 are obtained by following the parents left child to another root node and prepending
its right child. In each round the p length substrings correspond to a subset of the root nodes, so
the dictionary never holds more than n fingerprints. Furthermore, since each substring is a suffix
of a root substring, and the root substrings have at most N suffixes in total, the algorithm will
terminate in O(N) time.

Type 2 Comparisons. We adopt an approach similar to that for SLPs and verify φ in O(logN)
rounds. In round p we store the fingerprints of the substrings of length 2p that start or end
at a phrase boundary in a dictionary. We then slide a window of length 2p over S to find the
substrings whose fingerprint equals one of those in the dictionary. Suppose the dictionary in
round p contains the fingerprint φ(y), and we detect a substring x such that φ(x) = φ(y). To
verify that x = y, assume that y starts at a phrase boundary (the case when it ends in a phrase
boundary is symmetric). As before, we first check that the first half of x is equal to the first half
of y using fingerprints of length 2p−1, which we know are collision-free. Let x′ = S[a1, b1] and
y′ = S[a2, b2] be the second half of x and y. Contrary to before, we can not directly compare
φ(x′) = φ(y′), since neither x′ nor y′ is guaranteed to start or end at a phrase boundary. Instead,
we compare them indirectly using a type 1 and type 2 comparison as follows: Let k < 2p−1 be the
minimum integer such that b1 − k or b2 − k is a start position. If there is no such k then we can
compare x′ and y′ directly as a type 1 comparison. Otherwise, it holds that x′ = y′ if and only if
φ(S[b1−k, b1]) = φ(S[b2−k, b2]) (type 1) and φ(S[a1−k−1, b1−k−1]) = φ(S[a2−k−1, b2−k−1])
(type 2), since we have already verified that φ is collision-free for type 1 comparisions and type 2
comparisions of length 2p−1.

The analysis is similar to that for SLPs. The sliding window can be implemented in O(N) time,
but for each window position we now need O(log logN) time to retrieve the fingerprints, so the
total time to verify φ for type 2 collisions becomes O(N logN log logN). The space is O(n) since
in each round the dictionary stores at most O(n) fingerprints.

References

[1] S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic trees. In
Proc. 27th ICALP, pages 73–84, 2000.

[2] A. Amir, M. Farach, and Y. Matias. Efficient randomized dictionary matching algorithms. In
Proc. 3rd CPM, pages 262–275, 1992.

[3] A. Andoni and P. Indyk. Efficient algorithms for substring near neighbor problem. In Proc.
17th SODA, pages 1203–1212, 2006.

[4] D. Belazzougui, P. Boldi, and S. Vigna. Predecessor search with distance-sensitive query time.
arXiv:1209.5441, 2012.

12

[5] M. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoret. Comput.
Sci., 321:5–12, 2004.

[6] O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. System Sci.,
48(2):214–230, 1994.

[7] P. Bille, I. L. Gørtz, B. Sach, and H. W. Vildhøj. Time-space trade-offs for longest common
extensions. In Proc. 23rd CPM, pages 293–305, 2012.

[8] P. Bille, G. Landau, R. Raman, K. Sadakane, S. Satti, and O. Weimann. Random access to
grammar-compressed strings. In Proc. 22nd SODA, pages 373–389, 2011.

[9] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.

[10] F. Claude and G. Navarro. Self-indexed grammar-based compression. Fundamenta Informat-
icae, 111(3):313–337, 2011.

[11] R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links. SIAM J.
Comput., 33(1):26–42, 2003.

[12] G. Cormode and S. Muthukrishnan. Substring compression problems. In Proc. 16th SODA,
pages 321–330, 2005.

[13] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves.
ACM Trans. Algorithms, 3(1):2, 2007.

[14] P. F. Dietz. Finding level-ancestors in dynamic trees. In Proc. 2nd WADS, pages 32–40, 1991.

[15] M. Farach and M. Thorup. String matching in Lempel–Ziv compressed strings. Algorithmica,
20(4):388–404, 1998.

[16] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion
trees. J. Comput. System Sci., 47(3):424–436, 1993.

[17] L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Randomized efficient algorithms
for compressed strings: The finger-print approach. In Proc. 7th CPM, pages 39–49, 1996.

[18] L. Ga̧sieniec, R. Kolpakov, I. Potapov, and P. Sant. Real-time traversal in grammar-based
compressed files. In Proc. 15th DCC, page 458, 2005.

[19] T. Hagerup. Sorting and searching on the Word RAM. In Proc. 15th STACS, pages 366–398,
1998.

[20] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput., 13(2):338–355, 1984.

[21] A. Kalai. Efficient pattern-matching with don’t cares. In Proc. 13th SODA, pages 655–656,
2002.

[22] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM J. Res.
Dev., 31(2):249–260, 1987.

13

[23] K. Mehlhorn and S. Näher. Bounded ordered dictionaries in O(log logN) time and O(n) space.
Inform. Process. Lett., 35(4):183–189, 1990.

[24] B. Porat and E. Porat. Exact and approximate pattern matching in the streaming model. In
Proc. 50th FOCS, pages 315–323, 2009.

[25] W. Rytter. Application of Lempel–Ziv factorization to the approximation of grammar-based
compression. Theoret. Comput. Sci., 302(1):211–222, 2003.

[26] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority
queue. Theory Comput. Syst., 10(1):99–127, 1976.

[27] D. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). Inform.
Process. Lett., 17(2):81–84, 1983.

[28] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. Information
Theory, IEEE Trans. Inf. Theory, 23(3):337–343, 1977.

[29] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. Informa-
tion Theory, IEEE Trans. Inf. Theory, 24(5):530–536, 1978.

14

	1 Introduction
	1.1 Longest common extension in compressed strings

	2 Preliminaries
	2.1 Fingerprinting

	3 Basic fingerprint queries in SLPs
	4 Faster fingerprints in SLPs
	5 Faster fingerprints in Linear SLPs
	6 Finger fingerprints in Linear SLPs
	6.1 Finger Predecessor
	6.2 Finger Fingerprints

	7 Longest Common Extensions in Compressed Strings
	7.1 Computing Longest Common Extensions with Fingerprints
	7.2 Verifying the Fingerprint Function
	7.2.1 SLPs
	7.2.2 Linear SLPs

