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Abstract

Access graphs, which have been used previously in connection with
competitive analysis and relative worst order analysis to model local-
ity of reference in paging, are considered in connection with relative
interval analysis. The algorithms LRU, FIFO, FWF, and FAR are
compared using the path, star, and cycle access graphs. In this model,
some of the expected results are obtained. However, although LRU is
found to be strictly better than FIFO on paths, it has worse perfor-
mance on stars, cycles, and complete graphs, in this model. We solve
an open question from [Dorrigiv, López-Ortiz, Munro, 2009], obtaining
tight bounds on the relationship between LRU and FIFO with relative
interval analysis.

1 Introduction

The paging problem is the problem of maintaining a subset of a potentially
very large set of pages from memory in a significantly smaller cache. When
a page is requested, it may already be in cache (called a “hit”), or it must
be brought into cache (called a “fault”). The algorithmic problem is the one
of choosing an eviction strategy, i.e., which page to evict from cache in the
case of a fault, with the objective of minimizing the total number of faults.
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Many different paging algorithms have been considered in the literature,
many of which can be found in [3, 12]. Among the best known are LRU
(least-recently-used), which always evicts the least recently used page, and
FIFO (first-in-first-out), which evicts pages in the order they entered the
cache. We also consider a known bad algorithm, FWF (flush-when-full),
which is often used for reference, since quality measures ought to be able
to determine at the very least that it is worse than the other algorithms. If
FWF encounters a fault with a full cache, it empties its cache, and brings
the new page in. Finally, we consider a more involved algorithm, FAR,
which works with respect to a known access graph. Whenever a page is
requested, it is marked. When it is necessary to evict a page, it always
evicts an unmarked page. If all pages are marked in such a situation, FAR
first unmarks all pages. The unmarked page it chooses to evict is the one
farthest from any marked page in the access graph. For breaking possible
ties, we assume the LRU strategy in this paper.

Understanding differences in paging algorithms’ behavior under various cir-
cumstances has been a topic for much research. The most standard measure
of quality of an online algorithm, competitive analysis [17, 14], cannot di-
rectly distinguish between most of them. It deems LRU, FIFO, and FWF
equivalent, with a competitive ratio of k, where k denotes the size of the
cache. Other measures, such as relative worst order analysis [5, 6], can be
used to obtain more separations, including that LRU and FIFO are bet-
ter than FWF and that look-ahead helps. No techniques have been able
to separate LRU and FIFO, without adding some modelling of locality of
reference.

Although LRU performs better than FIFO in some practical situations [18],
if one considers all sequences of length n for any n, bijective/average analysis
shows that their average number of faults on these sequences is identical [2],
which basically follows from LRU and FIFO being demand paging algo-
rithms. Thus, it is not surprising that some assumptions involving locality
of reference are necessary to separate them.

A separation between FIFO and LRU was established quite early using
access graphs for modelling locality of reference [9], showing that under
competitive analysis, no matter which access graph one restricts to, LRU
always does at least as well as FIFO. This proved a conjecture in [4], where
the access graph model was introduced. Another way to restrict the input
sequences was investigated in [1]. Using Denning’s working set model [10, 11]
as an inspiration, sequences were limited with regards to the number of
distinct pages in a sliding window of size k. This also favors LRU, as does
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bijective analysis [2], using the same locality of reference definition as [1].
There has also been work in the direction of probabilistic models, including
the diffuse adversary model [16] and Markov chain based models [15].

The earlier successes and the generality of access graphs, together with the
possibilities the model offers with regards to investigating specific access
patterns, makes it an interesting object for further studies. In the light of
the recent focus on development of new performance measures, together with
the comparative studies initiated in [8], exploring access graphs results in the
context of new performance measures seems like a promising direction for
expanding our understanding of performance measures as well as concrete
algorithms.

One step in that direction was carried out in [7], where more nuanced results
were demonstrated, showing that restricting input sequences using the access
graph model, while applying relative worst order analysis, LRU is strictly
better than FIFO on paths and cycles. The question as to whether or
not LRU is at least as good as FIFO on all finite graphs was left as an
open problem, but it was shown that there exists a family of graphs which
grows with the length of the corresponding request sequence, where LRU and
FIFO are incomparable. Since LRU is optimal on paths, it is not surprising
that both competitive analysis and relative worst order analysis find that
LRU is better than FIFO on paths. Any “reasonable” analysis technique
should give this result. Under competitive analysis, LRU and FIFO are
equivalent on cycles. The separation by relative worst order analysis occurs
because cycles contain paths, LRU is better on paths, and relative worst
order analysis can reflect this. The fact that there exists an infinite family
of graphs which grows with the length of the sequence where LRU and FIFO
are incomparable may or may not be interesting. There are many sequences
were FIFO is better than LRU; they just seem to occur less often in real
applications.

Comparing two algorithms under almost any analysis technique is generally
equivalent to considering them with the complete graph as an access graph,
since the complete graph does not restrict the request sequence in any way.
Thus, LRU and FIFO are equivalent on complete graphs under both com-
petitive analysis and relative worst order analysis, since they are equivalent
without considering access graphs.

In this paper, we consider relative interval analysis [13]. In some ways rela-
tive interval analysis is between competitive analysis and relative worst order
analysis. As with relative worst order analysis, two algorithms are compared
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directly to each other, rather than compared to OPT. This gives the ad-
vantage that, when one algorithm dominates another in the sense that it is
at least as good as the other on every request sequence and better on some,
the analysis will reflect this. However, it is similar to competitive analysis in
that the two algorithms are always compared on exactly the same sequence.
To compare two algorithms, LRU and FIFO for example, one considers the
difference between LRU’s and FIFO’s performance on any sequence, divided
by the length of that sequence. The range that these ratios can take is the
“interval” for that pair of algorithms. For FIFO and LRU, [13] found two

families of sequences In and Jn such that limn→∞
FIFO(In)−LRU(In)

n
= −1+ 1

k

and limn→∞
FIFO(Jn)−LRU(Jn)

n
= 1

2 − 1
4k−2 . They left it as an open problem

to determine if worse sequences exist, making the interval even larger. In
their notation, they proved: [−1 + 1

k
, 12 − 1

4k−2 ] ⊆ I(FIFO,LRU). We start

by proving that this is tight: I(FIFO,LRU) = [−1 + 1
k
, 12 − 1

4k−2 ]. These
results would be interpreted as saying that FIFO has better performance

than LRU, since the absolute value of the minimum value in the interval is
larger than the maximum, but also that they have different strengths, since
zero is contained in the interior of the interval. We obtain more nuanced
results by considering various types of access graphs, such as paths (PN ),
stars (SN ), and cycles (CN ), splitting the interval of [−1+ 1

k
, 12 −

1
4k−2 ] into

subintervals for the respective graph classes. Considering complete graphs
(or cliques) implies that there are no restrictions on the input sequences,
so this is equivalent to considering the situation without an access graph.
Table 1 shows our results.

Comparing these results with the results from competitive analysis and rel-
ative worst order analysis, both with respect to access graphs, it becomes
clear that different measures highlight different aspects of the algorithms.
All the measures show that LRU is strictly best on paths, which is not sur-
prising since it is in fact optimal on paths and FIFO is not. On the other
access graphs considered here, relative interval analysis gives results which
can be interpreted as incomparability, but leaning towards deeming FIFO
the better algorithm. Relative worst order analysis, on the other hand,
shows that on cycles, LRU is strictly better than FIFO, and on complete
graphs, they are equivalent. It has not yet been studied on stars, but an
incomparability result for LRU and FIFO has been found for a family of
graphs growing with the length of the input.
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Table 1: Summary of Results

Lower Bound Relative Interval Upper Bound Th.

I[FIFO,LRU] =
[

−1 + 1
k
, 1

2
− 1

4k−2

]

1

I[FWF,A] =
[
0, 1− 1

k

]
2

[
0, 1− k+1

k2

]
⊆ I[FWF,FIFO] ⊆

[
0, 1− 1

k

]
3

IPN [FIFO,A] =
[
0, 1

2
− 1

2k

]
4

IPN [FWF,A] =
[
0, 1− 1

k

]
2

[
0, 1− k+1

k2

]
⊆ IPN [FWF,FIFO] ⊆

[
0, 1− 1

k

]
3

[
− 1

2
+Θ( 1

k
), 1

4
+Θ( 1

k
)
]
⊆ ISN [FIFO,A] ⊆

[
− 1

2
+Θ( 1

k
), 1

4
+Θ( 1

k
)
]

5

ISN [FWF,B] =
[
0, 1

2

]
6

[

−1 + r

k
, 1

2
− 1

4k−2

]

⊆ ICN [FIFO,LRU] ⊆
[

−1 + 1
k
, 1

2
− 1

4k−2

]

7

ICN [FWF,LRU] =
[
0, 1− 1

k

]
8

[

−
r

(⌊

log N̂

r

⌋

−1
)

N−1
, 1− Xr

k

]

⊆ ICN [LRU,FAR] ⊆
[
−Xr−1

k
, 1− 1

k

]
9

[
0, 1− Xr

k

]
⊆ ICN [FWF,FAR] ⊆

[
0, 1− 1

k

]
9

[
0, 1− k+1

k2

]
⊆ ICN [FWF,FIFO] ⊆

[
0, 1− 1

k

]
3

A ∈ {FAR,LRU} and B ∈ {FAR,FIFO,LRU}.
N = k + r, with 1 ≤ r ≤ k − 1, Xr = r(x − 1) +

⌈
N

2x

⌉
with x =

⌊
log N

r

⌋
.

N̂ denotes N if N is even, and N − 1 otherwise.

2 Preliminaries

We have defined the paging algorithms in the introduction. If more detail
is desired, the algorithms are described in [3].

An access graph for paging models the access patterns, i.e., which pages can
be requested after a given page. Thus, the vertices are pages, and after a
page p has been requested, the next request is to p or one of its neighbors
in the access graph. We let N denote the number of vertices of the access
graph under consideration at a given time. This is the same as the number
of different pages we consider. We will always assume that N > k, since
otherwise the problem is trivial, and let r = N −k. A requests sequence is a
sequence of pages and the sequence respects a given access graph if any two
consecutive requests are either identical or neighbors in the access graph.
We let L(G) denote the set of all request sequences respecting G.

We use the definition of k-phases from [3]:
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Definition 1 A request sequence can be divided recursively into a number
of k-phases as follows: Phase 0 is the empty sequence. For every i ≥ 1,
Phase i is a maximal sequence following Phase i− 1 containing at most k
distinct requests. ✷

Thus, Phase i begins on the (k+1)st distinct page requested since the start
of Phase i− 1, and the last phase may contain fewer than k different pages.
We generally want to ignore Phase 0, and refer to Phase 1 as the first phase.

Similarly, we can define x-blocks, for some integer x, focusing on when a
given algorithm A has faulted x times.

Definition 2 A request sequence can be divided recursively into a number
of x-blocks with respect to an algorithm A as follows: The 0th x-block is
the empty sequence. For every i ≥ 1, the ith x-block is a maximal sequence
following the (i− 1)st x-block for which A faults at most x times.

The complete blocks are defined to be the ones with x faults, i.e., excluding
the 0th block and possibly the last. ✷

There are some well-known and important classifications of paging algo-
rithms, which are used here and in most other papers on paging [3]: An
paging algorithm is called conservative if it incurs at most k page faults
on any consecutive subsequence of the input containing k or fewer distinct
page references. LRU and FIFO belong to this class. Similarly, a paging
algorithm is called a marking algorithm if for any k-phase, once a page has
been requested in that phase, it is not evicted for the duration of that phase.
LRU, FAR, and FWF are marking algorithms.

If A is a paging algorithm, we let A(I) denote A’s cost (number of faults)
on the input (request) sequence I. We now adapt relative interval analysis
from [13] to access graphs. Let A and B be two algorithms. We define the
following notation:

MinA,B(n,G) = min
|I|=n,I∈L(G)

{A(I)− B(I)}

MaxA,B(n,G) = max
|I|=n,I∈L(G)

{A(I)− B(I)}

MinG(A,B) = lim
n→∞

inf
MinA,B(n,G)

n
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MaxG(A,B) = lim
n→∞

sup
MaxA,B(n,G)

n

Definition 3 The relative interval of two algorithms A and B with respect
to the access graph, G, is

IG(A,B) = [MinG(A,B),MaxG(A,B)]

B has better performance than A if MaxG(A,B) > |MinG(A,B)|.

B dominates A if IG(A,B) = [0, β] for some β > 0. ✷

Note that in the above, MaxG(A,B) = −MinG(B,A).

This definition generalizes the one from [13] in that the original definition is
the special case where G is the complete graph, which is the same as saying
that there are no restrictions on the sequences. We omit G in the notation
when G is complete.

Note that if B dominates A, this means that A does not outperform B
on any sequence (asymptotically), while there are sequences on which B
outperforms A. Also, when MaxG(A,B) is close to 0, this indicates that A’s
performance is not much worse than that of B’s.

The following general lemmas will prove helpful later. The first observation
is well known for k-phases [3]:

Lemma 1 Any algorithm has at least b+k−1 faults on a sequence consisting
of b complete k-phases or b complete k-blocks defined with respect to any
conservative or marking algorithm.

Proof Let p be the page requested first in Phase i and let I ′ be the subse-
quence starting with the second request in Phase i and ending right after the
first request in Phase i+ 1. Since there are k different pages in I ′ different
from p, and p is in cache right after it has been processed, any algorithm
must fault at least once in I ′. Thus, an algorithm must fault at least k + 1
times on Phase 1 and the first request in Phase 2, and then at least once for
the next b− 2 k-phases, summing to b+ k − 1.

The only properties used in the above are the following: First, there are at
least k distinct requests in a k-phase, and, second, for any phase, the first
request is different from any request in the previous phase; specifically, the
first request in two subsequent k-phases are different. Any conservative or
marking algorithm gives rise to such k-blocks. ✷
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Lemma 2 Assume that for two algorithms A and B, there exist functions
f and g such that

• limn→∞MaxA,B(n,G) = ∞,

• for all I ∈ L(G), A(I)−B(I) ≤ f(bI) and |I| ≥ g(bI), where bI denotes
the number of complete k-phases or k-blocks in I, and the k-blocks
are defined with respect to a conservative or marking algorithm, and

• the limit limb→∞
f(b)
g(b) exists.

Then MaxG(A,B) ≤ limb→∞
f(b)
g(b) .

Proof In this proof, we will take the word “phase” to mean either a k-phase
or a k-block.

We define a sequence of request sequences as follows. For j ≥ 1, let Ij be a
sequence of length j such that Ij maximizes A(I)−B(I) over all sequences
of length j.

By construction, MaxA,B(n,G) = max|I|=j,I∈L(G){A(I) − B(I)} = A(Ij) −

B(Ij) ≤ f(bIj), and by assumption, |Ij | ≥ g(bIj ). Thus
MaxA,B(n,G)

|Ij|
≤

f(bIj )

g(bIj )
.

Now,

MaxG(A,B) ≤ lim sup
j→∞

f(bIj)

g(bIj )
= lim sup

b→∞

f(b)

g(b)
= lim

b→∞

f(b)

g(b)
.

The second to last equality holds since {bIj | j ≥ 1} contains infinitely many
values. Assume to the contrary that it had a maximum value bIj′ for some j′.
That would mean that for any j, MaxA,B(|Ij |, G) ≤ max{f(b) | 1 ≤ b ≤ bIj′},
contradicting the assumption of the left-hand expression being unbounded.

The last equality holds since we have assumed that the limit exists. ✷

The proof of the following is analogous to the lemma just proven. Note,
however, that the function f in the second bullet has image in R−.

Lemma 3 Assume that for two algorithms A and B, there exist functions
f and g such that

• limn→∞MinA,B(n,G) = −∞,
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• for all I ∈ L(G), A(I)−B(I) ≥ f(bI) and |I| ≥ g(bI), where bI denotes
the number of complete k-phases or k-block in I, and the k-blocks are
defined with respect to a conservative or marking algorithm, and

• the limit limb→∞
f(b)
g(b) exists.

Then MinG(A,B) ≥ limb→∞
f(b)
g(b) .

3 Complete Graphs

As remarked earlier, if the access graph is complete, it incurs no restrictions,
so the result of this section is in the same model as [13]. In [13], it is shown
that [−k−1

k
, k−1
2k−1 ] ⊆ I(FIFO,LRU). Below, we answer an open question

from [13], proving that this is tight.

Lemma 4 For any access graph G,

−1 +
1

k
≤ MinG(FIFO,LRU) and MaxG(FIFO,LRU) ≤

1

2
−

1

4k − 2
.

Proof We first consider the Min value. Suppose that a sequence I has
b complete k-phases. Since LRU is conservative and a complete k-phase
contains k distinct pages, it cannot fault more than bk+ k− 1 times [3]. By
Lemma 1, FIFO(I) ≥ k + b − 1. Thus, FIFO(I) − LRU(I) ≥ k + b − 1 −
(bk + k − 1) = −b(k − 1). Each k-phase must have length at least k, and

limb→∞
−b(k−1)

bk
= −k−1

k
. Clearly, min|I|=n,I∈L(G){FIFO(I)− LRU(I)} goes

towards −∞ as a function of n (see for instance the family of sequences Jn
from Lemma 11). Thus, by Lemma 3, MinG(FIFO,LRU) ≥ −k−1

k
= −1+ 1

k
.

We now consider the Max value. Given a request sequence I, we let Bi

denote the ith k-block for FIFO. Assume that there are b complete k-
blocks. FIFO faults k times per complete k-block and up to k− 1 times for
the possible final k-block. Thus, FIFO(I) ≤ bk+(k− 1). Assume that LRU
faults αi times in Bi. By Lemma 1, LRU faults at least b + k − 1 times.
Thus, Σb

i=1αi ≥ b+ k − 1.

We now compute a lower bound on the length of the request sequence I based
on the number of complete k-blocks in it and the algorithms’ behavior on
it.

As a first step, with every request on which FIFO faults and LRU has a
hit, we associate a distinct request where FIFO has a hit. Let r be such
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a request to a page p in Bi. Since it is a hit for LRU, p must have been
requested in the maximal subsequence of requests I ′ consisting of k distinct
pages and ending just before r. Consider the first such request, r′, in I ′. If
it were a fault for FIFO, FIFO could not have faulted again on r. Thus, r′

was a hit for FIFO and we associate r′ with r.

To establish that the association is distinct, assume that r′ also gets associ-
ated with a request r′′. Without loss of generality, assume that r′′ is later
than r. For FIFO to fault on both r and r′′, there must be at least k distinct
pages different from p in between r and r′′. However, since we are assuming
that LRU has a hit on r′′, by the property of LRU, the page requested by
r′′ must have been requested during the same k distinct pages. Thus, by
the construction above, the page that gets associated with r′′ (and r) will
be later than r, which is a contradiction.

Thus, if LRU faults αi times in Bi, by the procedure above, we identify at
least k − αi distinct requests. In total, there are at least Σb

i=1(k − αi) =
bk − Σb

i=1αi distinct hits for FIFO in I and, since there are b complete k-
blocks, at least bk faults. Thus, the length of I is at least 2bk − Σb

i=1αi,
and

FIFO(I)− LRU(I)

|I|
≤

bk + k − 1−Σb
i=1αi

2bk − Σb
i=1αi

.

By the lower bound on Σb
i=1αi above, and the arithmetic observation that

u−y
v−y

< u−x
v−x

, if u < v and x < y < v, we have that

bk + k − 1− Σb
i=1αi

2bk − Σb
i=1αi

≤
bk + k − 1− (b+ k − 1)

2bk − (b+ k − 1)
=

b(k − 1)

b(2k − 1)− k + 1
.

Clearly, max|I|=n,I∈L(G){FIFO(I)−LRU(I))} is unbounded as a function of
n (see for instance the family of sequences In in Lemma 9). By Lemma 2,

MaxG(FIFO,LRU) ≤ k−1
2k−1 = 1

2 − 1
4k−2 , since limb→∞

b(k−1)
b(2k−1)−k+1 = k−1

2k−1 .

✷

From [13] and Lemma 4, we have the following:

Theorem 1 I(FIFO,LRU) = [−1 + 1
k
, 12 −

1
4k−2 ].

The following gives general bounds that are applicable to all pairs of al-
gorithms considered here, though in many cases better bounds are proven
later. The proof was essentially given in the first paragraph of the proof of
Lemma 4.
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Proposition 1 Let A be a conservative or marking algorithm and B be any
algorithm for paging, then for any access graph G, MinG[B,A] ≥ −1 + 1

k

and MaxG[A,B] ≤ 1− 1
k
.

3.1 FWF

FWF performs very badly compared to the other algorithms considered here,
LRU, FAR, and FIFO. The following is folklore:

Lemma 5 For any sequence I and any conservative or marking algorithm
A, we have A(I) ≤ FWF(I).

This implies that for any access graph G, AG(I) ≤ FWFG(I) and so

MinG[FWF,LRU] = MinG[FWF,FIFO] = MinG[FWF,FAR] = 0.

Thus, LRU, FIFO, and FAR all dominate FWF.

The upper bound of 1− 1
k
from Proposition 1 is tight for FWF versus either

LRU, for any access graph containing a path on k+1 vertices, and it is tight
for FWF versus FAR on a path containing at least k+1 vertices. Note that
a cycle on k + 1 vertices contains a path on k + 1 vertices, but FAR does
not behave identically on these two graphs.

Theorem 2 For the path access graph PN , where N ≥ k+1 (and for LRU
for any graph containing Pk+1), and A ∈ {LRU,FAR},

IPN [FWF,A] =

[

0, 1 −
1

k

]

.

Proof Consider the sequence In = 〈1, 2, . . . , k, k+1, k, . . . , 2〉n. For this we
have LRU(In) = FAR(In) = 2n + k − 1, and FWF(In) = 2kn. Therefore,

lim
n→∞

FWF(In)− LRU(In)

|In|
= lim

n→∞

FWF(In)− FAR(In)

|In|
=

k − 1

k
.

By Proposition 1, this gives MaxPN (FWF,LRU) = MaxPN (FWF,FAR) =
1− 1

k
. Lemma 5 shows that LRU and FAR dominate FWF. ✷

The same tight result for FWF versus FIFO almost holds.
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Theorem 3 For any graph G containing a path with k + 1 vertices, if k is
odd, then

IG[FWF,FIFO] =

[

0, 1−
1

k

]

,

and if k is even, then

[

0,
k2 − k − 1

k2

]

⊆ IG[FWF,FIFO] ⊆

[

0,
k − 1

k

]

.

Proof Let h = ⌊(k + 1)/2⌋. Define the subsequence

Si = 〈h+ i, h + i− 1, ..., h, ..., h − i, h − i+ 1, ..., h, ..., h + i〉

and define the subsequence R which starts with page h and then requests
S1, S2, ..., Sh−1. This initial part of every sequence in our family of sequences
ensures that FIFO’s order for faulting is always 〈h, h + 1, h − 1, h + 2, h −
2, ..., 2h − 1, 1〉. The value 2h− 1 is k if k is odd and k − 1 if k is even.

Suppose k is odd. Let In = 〈R,Kn〉, where J = 〈k + 1, k, ..., 1, 2, ...k〉h and
Kn = Jn. FWF and FIFO fault the same number of times on R. FWF faults
2khn times on Kn. On the first request to k+1 in In, FIFO evicts h. Thus,
after the fault on k+1, its only fault while going “left” (towards lower page
numbers) for the first time in J is on h, and its only fault going “right” is on
h+1. On the ith iteration (i ≤ h−1) of J , it faults on h−i+1 going left and
on h+i going right. On iteration h, it only faults on 1, so FIFO has the same
cache configuration immediately after J as it had immediately before. Thus,
FIFO has k + 1 faults on J , giving (k + 1)n in all. The number of requests

in Kn is 2kn. Thus, limn → ∞FWF(In)−FIFO(In)
|In|

= 2khn−(k+1)n
2khn = k−1

k
.

Suppose k is even. We define similar sequences, but let In = 〈R, k,Kn〉,
since k is not requested yet. FIFO will still fault k + 1 times on J , but

limn → ∞
FWF(In)− FIFO(In)

|In|
=

2khn − (k + 1)n

2khn
=

k2 − k − 1

k2
.

Lemma 5 shows that FIFO dominates FWF. ✷

4 Path Graphs

In this section, we analyze path access graphs, PN , with N vertices. We
assume that N ≥ k + 1, since otherwise, results become trivial.
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Lemma 6 For the path access graph PN ,

MaxPN (FIFO,LRU) ≤
1

2
−

1

2k
.

Proof Consider any request sequence I. We divide the sequence up into
phases as described now (these are not k-phases). Initially, define a direction
by where LRU makes its kth fault compared with its cache content. Without
loss of generality, we assume this happens going to the right on the path.

We start the first phase with the first request and later explain how subse-
quent phases are started. In all the phases, we start to the left (relatively).
In all phases, except the first, LRU has the first k − 1 distinct pages that
will be requested during that phase in cache. In all phases, the first fault by
LRU in the phase, after having processed the first k − 1 distinct pages, is
to the right. We maintain this as an invariant that holds at the start of any
phase, though the direction can change, as we will get back to at the end of
the proof. The exception in the first phase, adding an extra k − 1 faults to
the cost of LRU as compared with the analysis below, will not influence the
result in the the limit for the length of the request sequence going towards
infinity.

We want to analyze a phase where LRU faults to the right before it faults
to the left again. These faults to the right may not appear consecutively.
There may be some faults in a row, but then there may be hits and then
faults again, etc. Thus, assume that there are m maximal subsequences
of requests to the right where LRU faults—all of this before LRU faults
going to the left again. Assume further that these maximal subsequences of
requests give rise to s1, s2, . . . , sm faults, respectively, where, by definition,
m ≥ 1, and let s = Σm

i=1si.

Eleft Eright

k+t
︷ ︸︸ ︷

s
︷ ︸︸ ︷

s1 s1s2 sm

For now, we assume that for all i, si < k. Thus, LRU moves left and right at
least m times; maybe more times where it does not give rise to faults. Since

13



it does not fault going to the left during these turns, the faults are to pages
further and further to the right. Let Eright denote the extreme rightmost
position it reaches during these faults to the right.

When LRU faults again to the left after having processed Eright, we consider
the leftmost node Eleft, where LRU faults after the s faults described above,
but before it faults to the right again. We end the phase with the first
request to Eleft after the s faults. We define subsequent phases inductively
in the same way, starting with the first request not included in the previous
phase, possibly leaving an incomplete phase at the end.

We now consider the costs of the algorithms and the length of the sequence
per phase. LRU faults s times going to the right during the m turns in the
phase. Additionally, LRU must fault at least t times going from Eright to
Eleft, where t is defined by there being k+ t nodes between Eleft and Eright,
including both endpoints. This sums up to s+ t faults.

For FIFO, we postpone the discussion of the first s1 distinct pages seen in a
phase. Just to avoid any confusion, note that these pages are immediately
to the right of Eleft (the endpoint of the previous phase) and thus not the
pages that LRU faults on. After that, consider the maximal subsequence
of at most k distinct pages. This subsequence starts with the (s1 + 1)st
distinct request (the last request to it before the s2 faults) and continues up
to, but not including the first request that LRU has one of its s2 faults on.
We know that there are at most k pages there, because LRU only faults s1
times there. Assume that FIFO faults f1 times on this subsequence. Since
FIFO is conservative, f1 ≤ k.

We define more such subsequences repeatedly, the (m− 1)st of these ending
just before LRU’s first fault of the sm faults, and the mth including the sm
faults and k of the k+t nodes before we reach Eleft. Finally, we return to the
question of the first s1 distinct pages seen in the phase. These overlap with
the “t pages” from the previous phase; otherwise we would not have started
the phase where we did. If FIFO faults on one of these pages when going
through the t pages in the previous phase, it will not fault on them again
in this phase. Thus, we only have to count them in one phase, and choose
to do this in the previous phase. In total, FIFO faults at most (Σm

i=1fi) + t
times, and for all i, fi ≤ k.

The difference between the cost of FIFO and LRU is then at most (Σm
i=1fi)+

t− (s+ t) = (Σm
i=1fi)− s = (Σm

i=1(fi − 1))− (s−m).

From the analysis of FIFO above, knowing that on a subsequence of length at
most k, FIFO can fault at most once on any given page, if it faults fi times,

14



the subsequence has at least fi distinct pages. Given that the subsequence
starts at the left end of the “si pages” and ends at the right end of the “si
pages”, all pages that FIFO faults on, except possibly the leftmost, must be
requested at least twice, giving at least 2fi − 1 requests. So, the length of
the sequence is at least (Σm

i=1(2fi − 1)) + t. We now sum up over all phases,
equipping each variable with a superscript denoting the phase number.

First, the total length, L, is at least

L ≥ Σj(Σ
mj

i=1(2f
j
i − 1)) + tj = Σj(Σ

mj

i=12f
j
i )−mj + tj.

Since s expresses how far we move to the right and t how far we move to the
left, and the whole path has a bounded number of nodes N , we have that
Σjt

j ≥ Σjs
j −N . Thus, L ≥ (Σj(Σ

mj

i=12f
j
i )−mj + sj)−N .

I has a number of complete phases and then some extra requests in addition
to that. There must exist a fixed constant c independent of I such that the
cost of FIFO on the extra part of any sequence is bounded by c. This follows
since there is a limit of N on how far requests can move to the right. So
if requests never again come so far to the left that LRU faults, all requests
thereafter are to only k pages. This added constant can also take care of
the initial extra cost of k − 1. Since we are just using a lower bound on the
sequence length, we can ignore the length of a possibly incomplete phase at
the end. Thus,

FIFO(I)− LRU(I)

|I|
≤

c+ΣjΣ
mj

i=1(f
j
i − 1)− (sj −mj)

−N +Σj(Σ
mj

i=12f
j
i )−mj + sj

≤
c+ΣjΣ

mj

i=1(f
j
i − 1)

−N +ΣjΣmj

i=12f
j
i

≤
c+Σjm

j(k − 1)

−N +Σjmj2k

=
c+ (k − 1)Σjm

j

−N + 2kΣjmj

The second inequality follows since sj ≥ mj, and the third inequality follows

because
f
j
i
−1

2fj
i

≤ 1
2 and k ≥ fi implies that

f
j
i
−1

2fj
i

≤ k−1
2k .

For sequences where the number of phases does not approach infinity, as
argued above, FIFO’s cost will be bounded. For the number of phases
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approaching infinity, limj→∞
c+(k−1)Σjm

j

−N+2kΣjmj = k−1
2k = 1

2 −
1
2k , which implies the

result.

Now, for this proof, we assumed that si < k. If si ≥ k, we simply terminate
the phase after the processing of the si requests that LRU faults on, and
continue to define phases inductively from there. All the bounds from above
hold with t = 0 and the observation that FIFO will not fault on the first
s1 requests in the next phase. The direction of the construction is now
reversed. In this process, whenever we reverse the direction as above, we
also rename the variable s to t and t to s, such that s continues to keep track
of movement to the right and t of movement to the left, and the inequality
Σjt

j ≥ Σjs
j −N still holds. ✷

Lemma 7 For the path access graph PN ,

MaxPN (FIFO,LRU) =
1

2
−

1

2k
.

Proof The upper bound was shown in Lemma 6. Consider the family
of sequences In = 〈1, 2, . . . , k, k + 1, k, k − 1, . . . , 2〉n. In each iteration,
except the first, LRU faults twice (on pages 1 and k + 1), whereas FIFO
faults on pages 1 through k + 1 in every iteration. So on this family,
limn→∞

FIFO(In)−LRU(In)
|In|

= k−1
2k = 1

2 − 1
2k , so the maximum must be at

least that large. ✷

Since LRU is optimal on paths, this gives :

Theorem 4 IPN [FIFO,LRU] = [0, 12 − 1
2k ], and LRU dominates FIFO on

paths.

Note that FAR and LRU perform identically on paths, so FAR also domi-
nates FIFO with the same interval.

5 Star Graphs

We let SN denote a star graph with N vertices. A star graph has a central
vertex, s, which is directly connected to N − 1 other vertices, none of which
are directly connected. Thus, we could also see a star graph as a tree with
root s and N − 1 leaves, all located at a distance one from the root. We
assume that N ≥ k + 1, since otherwise, results become trivial.
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Lemma 8 For the star access graph SN ,

−
1

2
+

1

2(k − 1)
≤ MinSN (FIFO,LRU) ≤ −

1

2
+

1

2(k − 1)
+

1

2k(k − 1)

Proof Consider an arbitrary sequence I respecting the star access graph,
and consider its division into k-phases. Since the central vertex occurs after
each request to a leaf, each k-phase, except the last, must contain requests to
k−1 different leaves, and must be of length at least 2(k−1). As in the proof
of Lemma 4, FIFO faults at least once for each of these phases. LRU faults
only on the leaves and only once on each, so it faults at most k − 1 times
for each phase. Thus, if I has b phases, not counting the first empty phase,,
|I| ≥ 2(k−1)(b−1)+1 and FIFO(I)−LRU(I) ≥ (b−1)−(k−1)(b−1)−k =
−(k − 2)(b− 1)− k, and so MinSN (FIFO,LRU) ≥ − k−2

2(k−1) = −1
2 +

1
2(k−1) .

We will show that the upper bound on MinSN (FIFO,LRU) comes very close
to this by analyzing the following sequence.

In = 〈P, Jn〉, J = B1, . . . , Bk−1

P = 〈1, s, 2, s, . . . s, k − 2, s, k − 1, s, k − 2, s, . . . s, 2, s, 1, s〉

Bi = 〈k, s, k − 1, s, . . . , s, 1, s〉, for 1 ≤ i ≤ k − 1

We note that k does not appear in P and that all the Bi are identical (we use
the index for reference). Each |Bi| = 2k, so |In| = 2(2k − 3) + 2k(k − 1)n.
LRU starts B1 with a fault on the request to k, thereby evicting k − 1.
It then faults on k − 1 and evicts k − 2. This repeats and ends with the
eviction of k at the request to 1 such that k − 1 is the least recently used
page. Thus, it faults everywhere except on the central vertex s, which is
never evicted by LRU. Since LRU’s cache configuration—content as well as
the relative ordering of the recency of pages—is the same at the end of B1

as it was at the end of P , the same pattern must be repeated in each Bi.
Thus, LRU(In) = k + (k − 1)kn.

FIFO has three faults in B1: On the request to k, where 1 is evicted, and at
the last two requests of B1. So FIFO ends B1 with 2 being outside its cache.
From there onwards, FIFO faults exactly once in each Bi, 2 ≤ i ≤ k − 1,
at the request to i, on which it evicts i + 1. Therefore, FIFO ends each J
with k outside its cache and, hence, the above described fault and eviction
pattern is repeated in every J . This gives the cost FIFO(In) = k+(k+1)n,

and limn→∞
FIFO(In)−LRU(In)

|In|
equals

lim
n→∞

k + (k + 1)n − (k + (k − 1)kn)

2(2k − 3) + 2k(k − 1)n
= −

1

2
+

k + 1

2k(k − 1)
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Thus, MinSN (FIFO,LRU) ≤ −1
2 +

k+1
2k(k−1) = −1

2 +
1

2(k−1) +
1

2k(k−1) . ✷

Lemma 9 For the star access graph SN ,

MaxSN (FIFO,LRU) =
1

4
+

1

8k − 12
.

Proof We give a sequence respecting SN for N ≥ k + 1 giving rise to the
stated ratio. Let

In = 〈P,Bn〉, where P = 〈1, s, 2, s, . . . , s, k − 2, s, k − 1, s〉 and B is












k − 2, s, . . . s, 2, s, 1, s, k, s, 1, s, 2, s, . . . s, k − 2, s
k − 3, s, . . . s, 1, s, k, s, k− 1, s, k, s, 1, s, . . . s, k − 3, s
k − 4, s, . . . s, k, s, k − 1, s, k− 2, s, k − 1, s k, s, . . . s, k − 4, s

...
... . . .

...
...

...
...

...
...

...
...

...
...

... . . .
...

...
...

k, s, . . . s, 4, s, 3, s, 2, s, 3, s, 4, s, . . . s, k, s
k − 1, s, . . . s, 3, s, 2, s, 1, s, 2, s, 3, s, . . . s, k − 1, s












Writing the sequence B like this is just to give an overview. The sequence
is the concatenation of all the rows from top to bottom.

The column in bold indicates the requests that are faults for LRU. LRU
faults on exactly one request in every row and so we have LRU(In) = k+kn.
FIFO faults on k distinct pages in each row, starting with the request at
which LRU faults. Thus, FIFO(In) = k + k2n. Furthermore, |In| = 2(k −
1) + (4k − 6)kn. Since

lim
n→∞

FIFOSN (In)− LRUSN (In)

|In|
= lim

n→∞

k + k2n− (k + kn)

2(k − 1) + (4k − 6)kn
=

k − 1

4k − 6
,

we have that MaxSN (FIFO,LRU) ≥ k−1
4k−6 = 1

4 +
1

8k−12 .

To prove a tight upper bound on MaxSN (FIFO,LRU), we consider an ar-
bitrary sequence I. We can assume without loss of generality that I does
not contain any consecutive requests to the same page as they only result
in hits for both algorithms, while increasing the length of the sequence.

We view I as a partition of k-blocks with respect to FIFO, denoted by
B1, . . . , Bn, ignoring the first empty block. Since both FIFO are LRU are
conservative, each block, excluding perhaps the last one, must have requests
to at least k distinct pages. The access graph is a star, so each request must
be followed by a request to s. The number of faults incurred by LRU in Bi
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is denoted by αi, where α1 = k. From the maximality of the blocks Bi, each
block must have at least one fault for LRU. Since s is never evicted from
the cache by LRU, we have 1 ≤ αi ≤ k − 1.

We now find a lower bound on the length of Bi. First recall that FIFO faults
on k−1 leaf requests. We now establish some hits by FIFO. Consider a leaf
request r that is a fault for FIFO, but a hit for LRU. Since it is not a fault
for LRU, there must have been a request r′ to the same page in the last
k − 1 distinct page requests. If r′ were a fault for FIFO, then r would have
to be a hit. Since it is not, r′ must be a hit for FIFO. Since LRU incurs αi

faults in Bi, there are at least k − 1 − αi distinct leaf requests where LRU
has a hit while FIFO faults, ensuring at least k − 1 − αi distinct hits for
FIFO. Note that even though the hit we establish for FIFO could be in the
previous block, Bi−1, it cannot be counted twice, since there are no more
faults on that page after r′ in Bi−1.

The faults and the hits, together with the requests to s following each of
them, gives us at least 2(k− 1)+2(k− 1−αi) requests. Since the terms not
involving n disappear in the limit,

MaxSN (FIFO,LRU) ≤ max
α2,...,αn

αi≥1

{ ∑n
i=2 k − αi

∑n−1
i=2 (4k − 4− 2αi)

}

This is maximized for αi = 1 for 2 ≤ i ≤ n. Hence, MaxSN (FIFO,LRU) ≤
k−1
4k−6 . ✷

The algorithms FAR and LRU behave identically on star graphs. Neither
of them ever evicts the central vertex. We state the result for both LRU
and FAR in the main theorem, though FAR is not directly mentioned in the
lemmas and proofs.

Theorem 5 For the star access graph SN and A ∈ {LRU,FAR},
[

−1
2 + 1

2(k−1) ,
1
4 +

1
8k−12

]

⊆ ISN [FIFO,A]

⊆
[

−1
2 +

1
2(k−1) +

1
2k(k−1) ,

1
4 + 1

8k−12

]

Proof This follows directly from Lemmas 8 and 9. ✷

In [13], it was shown that Max(FIFO,LRU) ≥ k−1
2k−1 = 1

2 −
1

4k−2 . The above
result shows that for star access graphs, that bound can be decreased by a
factor of approximately two.
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Since LRU and FAR perform identically on stars, MinSN (FAR,LRU) =
MaxSN (FAR,LRU) = 0.

The star access graph is another example of where FWF performs poorly
compared with the other algorithms.

Lemma 10 For the star access graph SN , and B ∈ {LRU,FIFO},

MaxSN (FWF,B) ≤
1

2
.

Proof Given any sequence I in SN , it can be viewed a partition of k-
phases. Since it is a star, each phase must be of length at least 2(k− 1) and
by Lemma 1 B must incur at least one fault in each phase. Since FWF can
incur at most k faults in each phase, if there are n complete phases in In,
then FWF(I)−B(I)

|I| ≤ n(k−1)
2n(k−1) =

1
2 . Hence, MaxSN (FWF,B) ≤ 1

2 . ✷

Theorem 6 For the star access graph SN , and A ∈ {LRU,FAR,FIFO},

ISN [FWF,A] =

[

0,
1

2

]

.

Proof By Lemma 5,

MinSN (FWF,LRU) = MinSN (FWF,FIFO) = 0.

Furthermore, since LRU and FAR perform identically on star graphs, we
also have that MinSN (FWF,FAR) = 0.

Given any sequence I respecting SN , it can be viewed a partition of k-
phases. Since SN is a star, each phase must be of length at least 2(k − 1),
and A must incur at least one fault in each phase. Since FWF can incur
at most k faults in each phase, limn→∞

FWF(I)−A(I)
|I| ≤ k−1

2(k−1) = 1
2 . Hence,

MaxSN (FWF,A) ≤ 1
2 .

Consider the sequence In = 〈P, (B1, B2)
n〉, where P = 〈1, s, 2, s, . . . , s, k −

2, s, k − 1, s〉,

B1 = 〈k, s, k − 1, s, . . . , s, 2, s〉, and B2 = 〈1, s, 2, s, . . . , s, k − 1, s〉

B1 and B2 have requests to k distinct pages, excluding 1 and k, respectively.

LRU faults on the first request in each Bi. FWF flushes its cache at the
start of each Bi. So |In| = 4(k − 1)n + 2(k − 1),LRU(In) = 2n + k
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and FWF(In) = 2kn + k. So limn→∞
FWF(In)−LRU(In)

|In|
= 2(k−1)

4(k−1) = 1
2 and

MaxSN (FWF,LRU) ≥ 1
2 .

Let In = 〈P,Bn〉 where P = 〈1, s, 2, s, . . . , s, k − 2, s, k − 1, s〉 and

B =















k, s, k − 1 · · · · · · s
1, s, k · · · · · · s
2, s, 1 · · · · · · s,
...

...
... · · · · · ·

...
...

... · · · · · ·
...

k − 2, s k − 3, · · · · · · s,
k − 1, s, k − 2, · · · · · · s,















The ith row is i-free. Hence, each row is of length 2(k − 1) and |In| =
2(k − 1) + 2(k − 1)kn. Since FIFO only faults on the first request in each
row, FIFO(B) = k and FIFO(In) = kn+ k. Since FWF flushes its cache at
the start of each row, it incurs k faults in each row. Therefore, FWF(B) = k2

and FWF(In) = k2n+k. Therefore, limn→∞
FWF(In)−FIFO(In)

|In|
= k(k−1)

2(k−1)k = 1
2

and MaxSN (FWF,FIFO) ≥ 1
2 . Since FAR and LRU behave identically on

SN , by Lemma 10, we get MaxSN (FWF,A) = 1
2 . ✷

6 Cycle Graphs

We consider graphs consisting of exactly one cycle, containing N vertices.
We assume that N ≥ k + 1, since otherwise, results become trivial, and
define r = N − k. We concentrate on the case where r < k, since otherwise
the cycle is so large that for the algorithms considered here, it works as
if it were an infinite path. Thus, for example, there are sequences where
FIFO performs worse than LRU, but on worst case sequences, simply going
around the cycle, the algorithms perform identically. In this section, it is
convenient to work modulo N when indexing pages on the cycle. Thus, if
p < 1 or p > N , we let p denote the page p− 1( mod N) + 1. We will not
mention this again later in the proofs to follow.

The following sequences were used in [13, Theorem 7] to show that [−1 +
1
k
, 12 − 1

4k−2 ] ⊆ I[FIFO,LRU].

Im = 〈P,Bm〉, where P = 〈1, 2, . . . , k − 1, k〉, and B is
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








k − 1 k − 2 · · · 2 1 k+ 1 1 2 · · · k − 1
k − 2 k − 3 · · · 1 k + 1 k k + 1 1 · · · k − 2
k − 3 k − 4 · · · k + 1 k k− 1 k k + 1 · · · k − 3

...
...

...
...

...
...

...
...

...
...

k k − 1 · · · 3 2 1 2 3 · · · k










IM = 〈P,BM 〉, where P = 〈1, 2, . . . , k − 1, k, k − 1, . . . , 1〉, and

B =












k+ 1 k k − 1 · · · 3 2
1 k + 1 k · · · 4 3
2 1 k + 1 · · · 5 4
...

...
... · · ·

...
...

k− 1 k − 2 k − 3 · · · k k + 1
k k − 1 k − 2 · · · 2 1












These sequences respect Ck+1, the cycle access graph on k + 1 vertices.
Hence, that bound is applicable to cycles of length k + 1 as well.

Proposition 2 For the cycle access graph Ck+1,

ICk+1 [FIFO,LRU] = [−1 +
1

k
,
1

2
−

1

4k − 2
].

Proof This follows from the results in [13], using the sequences above which
respect the cycle, and Lemma 4. ✷

We now generalize these results to values of N = k+ r, where 1 ≤ r ≤ k−1.

Lemma 11 For the cycle access graph CN ,

MinCN (FIFO,LRU) ≤ −1 + r
k
and MinCN (FIFO,FWF) ≤ −1 + r

k

Proof We define Jn = 〈P,Bn〉, where P = 〈1, 2, . . . , k, . . . N, 1, 2, . . . , r−1〉
and B is defined by

B =










r r − 1 · · · 1 N N − 1 · · · 2r + 2 2r + 1
2r 2r − 1 · · · r + 1 r r − 1 · · · 3r + 2 3r + 1
3r 3r − 1 · · · 2r + 1 2r 2r − 1 · · · 4r + 2 4r + 1
...

... · · ·
...

...
... · · ·

...
...

N N − 1 · · · k + 1 k k − 1 · · · r + 2 r + 1









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The vertical line is merely for reference in the proof.

Let R denote the number of rows in B. (Note that R = LCM(N,r)
r

, where
LCM(N, r) denotes the least common multiple of N and r.) There are
r columns before and k − r columns after the vertical line. Thus, |Jn| =
N + r − 1 + kRn.

Observe that the sequence turns exactly once, namely after the first request
in B. There are k − 1 hits following that request for both FIFO and LRU.
After that, the sequence moves around the cycle, so LRU faults on all of these
requests, giving a total cost of LRUCN (Jn) = N + r − k + kRn. Note that
FWF faults on the same requests as LRU, so FWFCN (Jn) = LRUCN (Jn).

For FIFO, when processing 〈k+1, . . . , N〉 in P , it evicts {1, . . . , r}, and then
when processing 〈1, 2, . . . , r − 1〉, it evicts {r + 1, . . . , 2r − 1}. Then, at the
very first request of B, it incurs the next fault and evicts 2r. After that, the
set of pages outside its cache is {r+1, . . . , 2r}, and FIFO does not fault again
in the first row of B. FIFO then faults on the first r requests in the second
row, evicting {2r + 1, . . . , 3r}. This pattern continues, so FIFO only faults
on the first r entries in each row of B. Therefore, FIFOCN (Jn) = N + rRn.

This gives

MinCN (FIFO,LRU) ≤ lim
n→∞

FIFOCN (Jn)− LRUCN (Jn)

|Jn|

= lim
n→∞

N + rRn− (N + r − k + kRn)

N + r − 1 + kRn

=−
k − r

k
= −1 +

r

k
.

✷

Lemma 12 For the cycle access graph CN ,

MaxCN (FIFO,LRU) ≥
1

2
−

1

4k − 2

Proof Let In = 〈S0, S1, ..., Sn〉, where

Si = 〈i+ k, i+ k − 1, . . . , i+ 2, i+ 1, i + 2, . . . , i+ k − 1, i+ k〉.

Clearly, FIFO(S0) = LRU(S0) = k.

In processing S1, LRU only faults on 1 + k, where it evicts 1, which is not
requested in S1. In general, LRU faults only on the first request in each Si,
evicting page i, which is not requested in Si. Hence, LRU(In) = k + n.
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FIFO faults on the first request in S1, evicting k, which is requested next.
At that request k − 1 is evicted, leading to a fault on the following request,
etc. In total, FIFO faults k times on S1 and pages were brought into cache
in the ordering i+ k through i+1. Thus, in general, when the processing of
Si+1 starts, the situation repeats. Hence, we have FIFO(In) = k + kn. The
length of the sequence is |In| = (2k − 1)(n + 1). So,

MaxCN (FIFO,LRU) ≥ lim
n→∞

FIFO(In)− LRU(In)

|In|

= lim
n→∞

k + kn− (k + n)

(2k − 1)(n + 1)

=
k − 1

2k − 1
=

1

2
−

1

4k − 2

✷

Theorem 7 For the cycle access graph CN ,
[

−1 +
r

k
,
1

2
−

1

4k − 2

]

⊆ ICN [FIFO,LRU] ⊆

[

−1 +
1

k
,
1

2
−

1

4k − 2

]

Proof The left-most containment follows from Lemmas 11 and 12, and the
right-most from Lemma 4. ✷

Theorem 8 For the cycle access graph CN ,

ICN [FWF,LRU] =

[

0, 1 −
1

k

]

Proof Sequence, In = 〈1, 2, . . . , k, k + 1, k, . . . , 2〉n, respecting CN , gives
the right endpoint in conjunction with Proposition 1. The left endpoint is
given by Lemma 5. ✷

The exact results to be presented sometimes depend on the relationship
between k and N , e.g., whether or not r divides N (denoted r | N). To
express many of the results, we need the following term that, for brevity, we
will simply denote Xr:

Xr = r(x− 1) +

⌈
N

2x

⌉

, where x =

⌊

log
N

r

⌋

In the following lemma, we analyze FAR’s behavior on the simplest sequence
exploiting the cycle structure.
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Lemma 13 For FAR and the sequence In = 〈1, 2, . . . , k, . . . , N〉n in CN ,
each k-phase, except the first and possibly the last, has Xr faults, and

⌊
nN

k

⌋

Xr + k −Xr ≤ FARCN (In) ≤

⌊
nN

k

⌋

Xr + k − 1.

Proof In the given sequence, as in any other sequence, the first k-phase
contributes k faults. The first phase change in In occurs at k + 1, at which
all the other N − 1 pages are unmarked. Given that the sequence goes
around the cycle n times, without turning, the properties discussed about
faults in the second phase holds for all subsequent ones, with the possible
exception of the last which may contain just one fault. Consider the fault
incurred at the phase change at k + 1. The page evicted lies in the middle
of the unmarked segment [k + 2, . . . , N, 1, . . . , k]. Following this, there are
r− 1 more faults before the next hit. Each fault leads to the eviction of the
page adjacent to the most recently evicted page, the evictions moving in the
same direction in which the faults are encountered.

In each phase, we refer to the first r faults as the first batch, faults numbered
r + 1 through 2r as the second batch, and so on. If there are i batches of
faults in one k-phase, then the first i − 1 batches will contribute r faults
each, and the last batch will have at least one and at most r faults. For the
ith batch, we denote the length of the unmarked segment after marking the
first page in the batch by di, and the distance to the page evicted at the first
fault in the ith batch by Di. These distances are measured in the direction
in which the faulting page was approached. Therefore, d1 = N − 1 and for
i ≥ 1, di+1 = di −Di. Since LRU is used to break ties, if for some i, di is
even, then the closer of the two midpoints is evicted at the first fault of the
ith batch. Thus, we have the following dependencies:

For i ≥ 1, Di = ⌈di/2⌉ and di+1 = di −Di = ⌊di/2⌋

From the recurrence di = ⌊di−1/2⌋, we obtain the following relation:

For i ≥ 1, di =

⌊
di−1

2

⌋

=

⌊
1

2

⌊
di−2

2

⌋⌋

=

⌊
di−2

22

⌋

=

⌊
d1
2i−1

⌋

=

⌊
N − 1

2i−1

⌋

A k-phase ends when all the pages in the cache are marked and the next
request will be a fault. At any given instant, the marked segment is a
path in CN . This implies that a phase ends when the r pages outside the
cache constitute the unmarked segment, and one of those unmarked pages
is requested. Therefore, if there are i batches in a k-phase, then di+1 ≤ 2r.
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Stated differently, the smallest value of i for which di + 1 ≤ 2r gives the
number of batches in a phase.

If there is an i such that di+1 = 2r, then the phase has i batches contributing
r faults each. Otherwise, if di+1 < 2r, then the first i−1 batches contribute
r faults each and the last batch contributes fewer than r.

It follows from the above that di + 1 =
⌈

N
2i−1

⌉
. Solving

⌈
N

2i−1

⌉
≤ 2r gives

i− 1 =
⌊
log N

r

⌋
batches with r faults each and the last with y =

⌈
N

2i−1

⌉
− r

faults. Therefore, each phase in In, excluding the first and perhaps the last,
contains r(i − 1) + y faults. There are

⌊
nN
k

⌋
complete phases in Ir,n and

if the last phase is not complete, that is, k ∤ nN , then the last phase can
contain at most r(i−1)+y−1 faults. Thus, we obtain the following relation
for FAR serving In:

⌊
nN

k

⌋

(rx+ y) + c ≤ FARCN (In) ≤

⌊
nN

k

⌋

(rx+ y) + rx+ y − 1 + c,

where x =
⌊
log N

r

⌋
, y =

⌈
N
2x

⌉
− r and c = k − (rx+ y). ✷

The following lemma analyzes FAR’s behavior on a cycle when the cycle
structure is not used. Thus, the cycle access graph is used as a path access
graph. However, FAR is oblivious to this and uses distances involving the
non-utilized edge in the graph, leading to non-optimal results.

From now on, whenever needed , we use N̂ to denote N , if N is even, and
N − 1, otherwise.

Lemma 14 For FAR and the sequence In = 〈1, 2, . . . , k, . . . , N − 1, N,N −
1, . . . , 2〉n in CN , each k-phase, except the first (which has k) and the last

(which has r), has rx+ y faults, where x =
⌊

log N̂
r

⌋

and y =
⌊
N̂
2x

⌋

− r.

Proof The first k-phase in In has k faults. In any k-phase of In, excluding
the first, the first set of r faults is called the first batch, faults numbered
r+1 through 2r is called the second batch, and so on. If there are i batches
of faults in one k-phase, then the first i− 1 batches will contribute r faults
each, and the last batch will have at least one and at most r faults.

As before, the length of the unmarked segment after marking the first page
of the ith batch is denoted by di and the page located Di pages away is
evicted at that fault. All these distances are measured in the direction in
which the first fault of the batch was encountered. Note that within each
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iteration within In, there are two phase changes, occurring first at k+1 and
then at r. In the following discussion, we explain the behavior of FAR in
one iteration within In. Since the same properties hold for others, that will
lead to a bound for FARCN (In).

At the end of a phase and right before the start of the next, FAR’s cache
is connected. Hence, the r pages outside the cache also form a connected
component, implying that the sets of pages outside FAR’s cache immediately
before the phase changes at k+1 and r are {k+1, . . . , N} and {r, r−1, . . . , 1},
respectively.

For the phase changes at k + 1 and r, the faulting request is approached
from k and r + 1, respectively. For either case, we have d1 = N − 1 and as
in Lemma 13, the page located D1 = ⌈d1/2⌉ vertices away is evicted at the
first fault in the phase. The next r−1 faults lead to eviction of pages in the
same direction in which the faults are encountered. Unlike in the previous
lemma, the sequence considered here turns back at the end of the first batch
and so the second batch of faults start at the most recently evicted page.

Phase change at k + 1: The first fault in the second batch occurs when the
sequence reaches D1, which is also the first page marked in the batch. The
unmarked segment at that instant is {D1,D1 − 1, . . . , 1}.

Phase change at r: Analogously to the previous case, the second batch of
faults starts when the sequence reaches N −D1+1. The unmarked segment
at that instant is
[

N −D1 + 2, N −D1 + 3, . . . , N −D1 + r, . . . , k, k + 1, . . . , N − 1, N
]

.

In either case, the length of the unmarked segment is d2 = D1−1. Note that
for both locations of phase change, the change in direction of the sequence
right after the first batch affects the resolution of ties in subsequent batches.
In fact, if d2 is even, then the farther of the two midpoints, measured in
the same direction as the fault, is less recently requested than the other.
Therefore, for each phase, we have the following correspondence:

D2 =

{

d2/2 + 1, if d2 is even

⌈d2/2⌉ , if d2 is odd

Since, in either case, from the second batch onwards, the sequence does not
change direction for the rest of the phase, all subsequent ties within the
phase are resolved in the manner of the second batch. Therefore, in any
given phase, from the second batch onwards, if the unmarked segment is
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even, the farther of the two midpoints, measured in the same direction in
which the fault was approached is evicted in favor of the other. This yields
the following set of relations: d1 = N − 1, D1 = ⌈d1/2⌉, d2 = D1 − 1, and
for i ≥ 2,

Di =

{

di/2 + 1, if di is even

⌈di/2⌉ , if di is odd

and

di+1 = di −Di =

{

di/2 − 1, if di is even

⌊di/2⌋ , if di is odd

This implies that for all i ≥ 2, di+1 =
⌊
di−1
2

⌋

.

We now establish the following claim. Recall that N̂ denotes N , if N is
even, and N − 1, otherwise.

Claim 1 For i ≥ 3, we have di + 1 =
⌊

D1

2i−2

⌋
=
⌊

N̂
2i−1

⌋

.

Proof Since D1 =
⌈
N−1
2

⌉
, using the new notation, D1 =

N̂
2 .

We proceed to show by induction that for i ≥ 3, di + 1 =
⌊

D1

2i−2

⌋
.

For the base case, i = 3, we have

d3 =

⌊
d2 − 1

2

⌋

=

⌊
(D1 − 1)− 1

2

⌋

=

⌊
D1

2

⌋

− 1.

Hence, d3 + 1 =
⌊

D1

23−2

⌋
.

Now, we assume that the induction hypothesis holds up to some i ≥ 3. For
the induction step, we prove the relation dt+1 =

⌊
dt−1
2

⌋
, by applying the

hypothesis for dt in the last equality below.

dt+1 =

⌊
dt − 1

2

⌋

=

⌊
1

2
(dt + 1)− 1

⌋

=

⌊
1

2

⌊
D1

2t−2

⌋⌋

− 1

Therefore, dt+1 + 1 =
⌊

D1

2t−1

⌋
, and the claim is proved. ✷

As was the case in the previous lemma, the last batch starts when for the
first time in the current phase, the length of the unmarked segment is no
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greater than 2r, i.e., the smallest value i for which di + 1 ≤ 2r gives the

number of batches in the phase. Solving
⌊

N̂
2i−1

⌋

≤ 2r gives i− 1 =
⌊

log N̂
r

⌋

.

Therefore, the first i− 1 batches in a k-phase have r faults each. In the last

batch, though, there are exactly
⌊

N̂
2i−1

⌋

− r faults.

Right before the start of the ith batch, the length of the unmarked segment
is di + 1. The phase must end when the length of the unmarked segment
becomes r. Therefore, di +1− r is an upper bound on the number of faults
incurred in the ith batch. ✷

Note that in the above proof, making the sequence go only up to some other
value between k + 1 and N − 1, instead of up to N , would never give more
faults.

Lemma 15 For 1 ≤ r ≤ k − 1, in any sequence respecting the cycle access
graph CN , the maximum number of faults incurred by FAR in a k-phase,
excluding the first, is at most Xr. In particular, FAR incurs the maximum
number of faults in a k-phase if the sequence takes the shortest path between
any two faults in that phase. Consequently, in Ck+1, each k-phase can
generate at most ⌈log(k + 1)⌉ faults for FAR.

Proof Given the eviction rule of FAR in CN , which is that it evicts the
midpoint of the current unmarked segment, it follows that when a sequence
does not turn inside a phase, it is taking the shortest path to the next fault.
This situation is analyzed in Lemma 13. When a sequence turns such that at
least one page is marked before the next turn, then all those pages become
unavailable for eviction for the remainder of the phase. A phase ends when
all the pages in the cache are marked and a new phase starts at the next
fault. Therefore, if a sequence keeps moving along the shortest path which
takes it to the next fault, then it is also marking the fewest number of pages
in order to get to the next fault, thereby, maximizing the number of faults
FAR incurs in the current phase. Hence, the maximum number of faults
incurred by FAR in each phase, excluding the first, is upper bounded by
Xr, as proved in Lemma 13. The special case of Ck+1 is given by r = 1 and
so the lemma is proved. ✷

Lemma 16 For the cycle access graph CN , and A ∈ {LRU,FIFO,FWF},

MinCN (A,FAR) ≥ −
Xr − 1

k
.
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Proof Consider an arbitrary sequence In in CN , where n denotes the
number of k-phases in the sequence. The last phase of a sequence may
contain fewer than k distinct pages and in that case we can ignore the last
phase in In. Note that each phase contains requests to k distinct pages. It
follows that each phase in a sequence is of length at least k and A incurs
at least one fault in each of them. By Lemma 15, we know that FAR can
incur at most Xr faults in each phase, excluding the first. By Lemma 1, A
faults at least once in each phase. In the first phase both algorithms incur
k faults. Thus, in each phase, the absolute value of the maximum difference
in faults is at most Xr − 1. Thus, limn→∞

A(In)−FAR(In)
|In|

≥ −Xr−1
k

. ✷

Lemma 17 For the cycle access graph CN ,

MinCN (FIFO,FAR) ≤ −
Xr − r

k
.

Proof Recall the sequence Jn from the proof of Lemma 11.

Jn = 〈P,Bn〉, where P = 〈1, 2, . . . , k, k + 1, . . . , N, 1, 2, . . . , r − 1〉

and

B =











r r − 1 · · · 1 N N − 1 · · · 2r + 2 2r + 1
2r 2r − 1 · · · r + 1 r r − 1 · · · 3r + 2 3r + 1
3r 3r − 1 · · · 2r + 1 2r 2r − 1 · · · 4r + 2 4r + 1
...

... · · ·
...

...
... · · ·

...
...

N N − 1 · · · k + 1 k
... · · · r + 2 r + 1











|Jn| = kRn+N + r − 1 and FIFOCN (Jn) = N + rRn.

There is exactly one turn in Jn, which occurs at the first request in B and
nowhere else. For the rest of the sequence, it moves around the cycle without
turning. Hence, the number of faults incurred by FAR in each phase of B,
excluding the first two, is given by Lemma 13, to be Xr = r

(
x− 1

)
+
⌈
N
2x

⌉
,

where x =
⌊
log N

r

⌋
. Therefore, FARCN (Jn) =

⌊
nkR
k

⌋
Xr + c, where c is a

constant. The constant bounds the number of faults in the first two phases.
Now, MinCN (FIFO,FAR) is at most

lim
n→∞

FIFOCN (Jn)− FARCN (Jn)

|Jn|
= lim

n→∞

nR(r −Xr)

nRk + N + r − 1
= −

Xr − r

k

✷
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Lemma 18 For the cycle access graph CN , and A ∈ {LRU,FIFO,FWF},

MaxCN (A,FAR) ≥ 1−
Xr

k
.

Proof Consider the sequences In = 〈1, 2, . . . , N〉n in CN such that k divides
nN . It is easy to see that A(In) = |In| = Nn. By Lemma 13, we have
FARCN (In) ≤

Nn
k
Xr + k − 1. Thus, MaxCN (A,FAR) is at least

lim
n→∞

ACN (In)− FARCN (In)

|In|
≥ lim

n→∞

nN − nN
k
Xr − (k − 1)

nN
= 1−

Xr

k

✷

Lemma 19 For the cycle access graph CN ,

MinCN (LRU,FAR) ≤ −
r
(⌊

log N̂
r

⌋

− 1
)

N − 1

where N̂ is N and N − 1 if N is even and odd, respectively.

Proof Consider the sequence In = 〈1, 2, . . . , N − 1, N,N − 1, . . . , 2〉n used
in the proof of Lemma 14. Clearly, LRUCN (In) = 2nr + k − 1 and |In| =
2(N − 1)n. There are two phase changes in each iteration of In, so by
Lemma 14,

k + 2n

(

r

⌊

log
N̂

r

⌋

+

⌊

N̂

2x

⌋

− r

)

≤ FARCN (In),

where x =
⌊

log N̂
r

⌋

.

Now, since r ≤
⌊
N̂
2x

⌋

,

lim
n→∞

LRUCN (In)− FARCN (In)

|In|
≤ −

r
(⌊

log N̂
r

⌋

− 1
)

N − 1

✷

When r = 1, we get the bound MinCk+1(LRU,FAR) ≤ − ⌊log k⌋−1
k

.
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Theorem 9 For the cycle access graph CN ,

[

−
Xr − r

k
, 1−

Xr

k

]

⊆ ICN [FIFO,FAR] ⊆

[

−
Xr − 1

k
, 1−

1

k

]

,



−
r
(⌊

log N̂
r

⌋

− 1
)

N − 1
, 1−

Xr

k



 ⊆ ICN [LRU,FAR] ⊆

[

−
Xr − 1

k
, 1−

1

k

]

and [

0, 1 −
Xr

k

]

⊆ ICN [FWF,FAR] ⊆

[

0, 1 −
1

k

]

.

Proof The first relation follows from Proposition 1 and Lemmas 16, 17,
and 18, and the second from Proposition 1 and Lemmas 16, 19, and 18. The
third result follows from Proposition 1 and Lemmas 5 and 18. ✷

7 Concluding Remarks

Relative interval analysis has the advantage that it can separate algorithms
properly when one algorithm is at least as good as another on every sequence
and is better on some. This was reflected in the results concerning FWF
which is dominated by the other algorithms considered for all access graphs.
It was also reflected by the result showing that LRU and FAR have better
performance than FIFO on paths. The analysis also found the expected re-
sult that FAR, which is designed to perform well on access graphs, performs
better than both LRU and FIFO on cycles.

However, it is disappointing that the relative interval analysis of LRU and
FIFO on stars and cycles found that FIFO had the better performance,
confirming the original results by [13] on complete graphs. Clearly, the
access graph technique cannot be arbitrarily applied to all quality measures
for online algorithms to show that LRU is better than FIFO. To try to
understand quality measures better, it would be interesting to determine on
which the access graph technique is useful for this well studied problem and
on which it is not.
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