Skip to main content

Lift-and-Project Methods for Set Cover and Knapsack

  • Conference paper
Algorithms and Data Structures (WADS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8037))

Included in the following conference series:

Abstract

We study the applicability of lift-and-project methods to the Set Cover and Knapsack problems. Inspired by recent work of Karlin, Mathieu, and Nguyen [IPCO 2011], who examined this connection for Knapsack, we consider the applicability and limitations of these methods for Set Cover, as well as extending extending the existing results for Knapsack.

For the Set Cover problem, Cygan, Kowalik, and Wykurz [IPL 2009] gave sub-exponential-time approximation algorithms with approximation ratios better than ln n. We present a very simple combinatorial algorithm which has nearly the same time-approximation tradeoff as the algorithm of Cygan et al. We then adapt this to an LP-based algorithm using the LP hierarchy of Lovász and Schrijver. However, our approach involves the trick of “lifting the objective function”. We show that this trick is essential, by demonstrating an integrality gap of (1 − ε)ln n at level Ω(n) of the stronger LP hierarchy of Sherali and Adams (when the objective function is not lifted).

Finally, we show that the SDP hierarchy of Lovász and Schrijver (LS + ) reduces the integrality gap for Knapsack to (1 + ε) at level O(1). This stands in contrast to Set Cover (where the work of Aleknovich, Arora, and Tourlakis [STOC 2005] rules out any improvement using LS + ), and extends the work of Karlin et al., who demonstrated such an improvement only for the more powerful SDP hierarchy of Lasserre. Our LS +  based rounding and analysis are quite different from theirs (in particular, not relying on the decomposition theorem they prove for the Lasserre hierarchy), and to the best of our knowledge represents the first explicit demonstration of such a reduction in the integrality gap of LS +  relaxations after a constant number of rounds.

Full version available as arXiv:1204.5489. The first author’s work is partially supported by the Lynn and William Frankel Center for Computer Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability results in the Lovász-Schrijver hierarchy. In: Proceedings of ACM Symposium on Theory of Computing, pp. 294–303 (2005)

    Google Scholar 

  2. Barak, B., Raghavendra, P., Steurer, D.: Rounding semidefinite programming hierarchies via global correlation. In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 472–481 (2011)

    Google Scholar 

  3. Chlamtáč, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979), doi:10.2307/3689577

    Article  MathSciNet  MATH  Google Scholar 

  5. Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guruswami, V., Sinop, A.K.: Lasserre hierarchy, higher eigenvalues, and approximation schemes for graph partitioning and quadratic integer programming with PSD objectives. In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 482–491 (October 2011)

    Google Scholar 

  8. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MATH  Google Scholar 

  11. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  13. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM Journal on Optimization 12(3), 756–769 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13(4), 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moshkovitz, D.: The projection games conjecture and the NP-hardness of ln n-approximating set-cover. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 276–287. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Raghavendra, P.: Optimal algorithms and inapproximability results for every csp? In: Proceedings of ACM Symposium on Theory of Computing, pp. 245–254 (2008)

    Google Scholar 

  18. Raghavendra, P., Tan, N.: Approximating csps with global cardinality constraints using sdp hierarchies. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 373–387. SIAM (2012)

    Google Scholar 

  19. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chlamtáč, E., Friggstad, Z., Georgiou, K. (2013). Lift-and-Project Methods for Set Cover and Knapsack. In: Dehne, F., Solis-Oba, R., Sack, JR. (eds) Algorithms and Data Structures. WADS 2013. Lecture Notes in Computer Science, vol 8037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40104-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40104-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40103-9

  • Online ISBN: 978-3-642-40104-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics