Smart-grid Electricity Allocation via Strip
Packing with Slicing *

Soroush Alamdari®, Therese Biedl!, Timothy M. Chan', Elyot Grant?,
Krishnam Raju Jampani®, S. Keshav!, Anna Lubiw!, and Vinayak Pathak!

L Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{s26hosseinia1amdari ,biedl,tmchan,alubiw,keshav, vpathak}@uwaterloo .ca
2 Massachusetts Institute of Technology, Cambridge, USA
elyot@mit.edu
3 University of Guelph, Guelph, Canada
rjampaniQuoguelph.ca

Abstract. One advantage of smart grids is that they can reduce the
peak load by distributing electricity-demands over multiple short inter-
vals. Finding a schedule that minimizes the peak load corresponds to a
variant of a strip packing problem. Normally, for strip packing problems,
a given set of axis-aligned rectangles must be packed into a fixed-width
strip, and the goal is to minimize the height of the strip. The electricity-
allocation application can be modelled as strip packing with slicing: each
rectangle may be cut vertically into multiple slices and the slices may be
packed into the strip as individual pieces. The stacking constraint for-
bids solutions in which a vertical line intersects two slices of the same
rectangle.

We give a fully polynomial time approximation scheme for this problem,
as well as a practical polynomial time algorithm that slices each rectangle
at most once and yields a solution of height at most 5/3 times the optimal
height.

1 Introduction

The conventional approach to generating and distributing electricity relies on
sizing infrastructure to support the peak load, when demand for electricity is
highest. However, this peak is rarely reached, so much of the expensive infras-
tructure is idle most of the time. For example, in 2009, 15% of the generation
capacity in Massachusetts was used less than 88 hours per year [7]. Reducing the
infrastructure size is not practical since unsupported demand can cause black-
outs. Therefore, there is considerable benefit to reducing the peak load itself.
Peak load occurs when many consumers use power-hungry appliances simul-
taneously. However, there is often flexibility in scheduling the use of particular
appliances. For example, a water heater requires a certain amount of electricity
to heat the water, but can equally well heat the water in one continuous interval

* This work was done as part of an Algorithms Problem Session at the University of
Waterloo. Research of TB, TC, SK and AL supported by NSERC.

or in multiple short intervalsﬁ It is anticipated that future smart grids would
obtain (at each substation) daily “demand schedules” for appliance use from the
consumers in its local area, and then automatically re-schedule appliance use to
minimize peak load [I8].

The demand schedule can be modelled as a set of rectangles, one for each
appliance, with power consumption as height, and desired running time as width.
The re-scheduling should cover a given length of time, which corresponds to a
strip of given width. The objective is then to pack slices of the rectangles into
the strip so as to minimize the maximum power consumption, i.e., the maximum
height of the packing. Because appliances cannot be powered at double the
usual power, we have the additional stacking constraint requiring that no vertical
line may intersect two slices from the same rectangle. Slicing with the stacking
constraint is new, but strip packing has been well-studied, as we review in the
following section.

Strip Packing Problems. In the two-dimensional strip packing problem (ab-
breviated 2SP), a set of axis-aligned rectangles of specified dimensions must be
packed, without rotation, into a rectangular strip of fixed width, with the goal
of minimizing the height of the strip. The 2SP problem is very well-studied [I4],
and generalizes the bin packing problem, which is equivalent to the case in which
all rectangles have unit height. The current best approximation algorithm for
2SP has an approximation factor of 5/3 4 ¢ for any € > 0 [9], and was achieved
after a long sequence of successive improvements [IJIGII7I19]. This is an abso-
lute performance bound, i.e., the height achieved is at most 5/3 + ¢ times the
optimal height. Many other authors have proposed algorithms with asymptotic
performance guarantees [AI3[T1] where an additive term is allowed.

Motivated by the electricity-allocation problem, we study a variant called
two-dimensional strip packing with slicing (hereafter 2SP-S). In 2SP-S, we are
allowed to cut each rectangle vertically into multiple slices, which may be packed
into the strip as individual rectangles. Formally, the input consists of a number
W and a set of rectangles r1,79,...,7,. Here W is the width of the strip, which
consists of two vertical sides at x = 0 and x = W, and the “base” at y = 0.
Rectangle 7; has width w; and height h;; let hyax = max}_; h; be the maximum
height. A solution to 2SP-S consists of a partition of each rectangle r; into
vertical slices and an assignment of positions to the slices so that the interiors
of the slices are pairwise disjoint. Slices must not be rotated. The height of a
solution, denoted by H, is the minimum y-coordinate above which the strip is
empty. The objective is to find a solution with minimal possible height Hopr.

Related Results: Strip packing with slicing has been studied for a variant in
which the width of each rectangle represents a demand for a number of concur-
rently running processors [2]. However, this problem differs substantially from
2SP-S because the slices must have integer widths and must be horizontally
aligned due to concurrency, and results for it do not carry over.

4 To simplify the modelling we presume that no extra electricity is needed for re-
starting the appliance.

One may observe that if each rectangle is pre-cut into slices of some small
width § = W/m (where m is a positive integer), then solving the resulting 2SP
problem is precisely equivalent to solving the minimum makespan scheduling
problem on m parallel machines (the Py, ||Cpaz problem, in three-field notation).
Unfortunately, the known approximation schemes for this problem all have a
running time that is either exponential in m [I5] or in 1 [I0]. In fact, when
the number of machines m is an input to the problem, minimum makespan
scheduling on m parallel machines admits no FPTAS unless P=NP [3], so it
appears hopeless to find an FPTAS for 2SP-S using such an approach.

A second reason that existing results do not apply to electricity-allocation
(at least not as far as we can prove) is that in our application we have the
additional stacking constraint requiring that no vertical line may intersect two
slices from the same rectangle. The version of 2SP-S with the stacking constraint
is denoted by 2SP-SSC. Many of our results in this paper hold for both 2SP-S
and 2SP-SSC; we shall note situations in which there are differences.

Results For 2SP-S and 2SP-SSC. The freedom to slice rectangles can be
highly beneficial. It is easy to construct an example where slicing reduces the
required height by a factor of 2—e. Slicing also makes a difference in the complex-
ity of the problem. Standard 2SP generalizes bin packing and is thus strongly
NP-complete. Also, a simple reduction from the Partition problem [5] shows that
2SP admits no (3/2 — €)-approximation for any £ > 0 unless P=NP. In contrast,
25P-S and 2SP-SSC are easily shown to be NP-hard, but not hard to approxi-
mate: we will give a fully polynomial-time approximation scheme (FPTAS).

The FPTAS is based on solving a linear program with exponentially many
constraints, and hence mostly of theoretical interest. We also develop simpler,
more practical algorithms, and also limit the number of times a rectangle may be
sliced (which is of interest in the electricity-allocation problem to avoid start-up
costs for the appliance)ﬂ We give two simple 2-approximation algorithms based
on the well-known First Fit and Shelf paradigms. In fact, these algorithm achieve
height HopTt + hmax, hence they achieve optimal height up to an additive term.
Then, building on these algorithms, and splitting the problem into two halves,
we give two other polynomial-time algorithms that perform no worse than First
Fit and Shelf. One has absolute performance bound 3/2. The other uses at most
one cut per rectangle and has absolute performance bound 5/3.

Our paper is organized as follows. The First Fit and Shelf algorithms are
in Section [2] Section [3] contains the FPTAS, and Section [develops practical
algorithms. We conclude in Section

2 Basic Algorithms

This section describes the First Fit and Shelf heuristics for 2SP-S and 2SP-
SSC. Both algorithms achieve an approximation factor of 2, which is noteworthy

5 More precisely, we want to minimze the times a rectangle is interrupted, i.e., one slice
ends and no other slice starts. The number of times a rectangle is sliced is certainly
an upper bound for this.

given that, for the standard strip packing problem, 2-approximation algorithms
are difficult to obtain [I6/19]. Both algorithms in fact achieve a height of Hopr+
hmax, and hence have asymptotically performance bound 1.

First Fit Algorithm Given a list of rectangles r1,79,...,7,, the First Fit
algorithm processes them in order, repeatedly finds the lowest column in the
current solution where a slice of r; can be placed, and places the widest possible
slice of r; there, breaking ties arbitrarily. Repeat with the remainder of r;, and
continue until all rectangles have been processed. In the case of 2SP-SSC, the
stacking constraint must be respected when placing slices. See Figure

3

24 13 "3 F

1 7'3

Fig. 1. An execution of the First Fit algorithm on a 2SP-SSC instance. Note that r3 is
sliced twice, and a smaller height would be achieved without the stacking constraint.

It is not hard to show that after placing each rectangle, the difference between
the maximum height H and the floor F' (the maximum height to which the
entire strip is filled) is at most hmax. Since by area-consideration Hopr > F,
First Fit achieves height at most Hopt + hmax and is a 2-approximation since
hmax < HOPT~

Unfortunately there are instances where First Fit needs nearly twice the
optimal height. A natural improvement to First Fit is to sort the rectangles by
decreasing heights first; we call this variant First Fit Decreasing. One can easily
construct an instance on which even First Fit Decreasing is a factor of % away
from the optimum. We do not know whether this is tight, but we can show:

Lemma 1. First Fit Decreasing is a %-appmmimation.

Proof. (Sketch) We prove this by defining another algorithm that packs (until a
certain condition is fulfilled) as much as possible into columns that contain only
rectangles of height at most Hopr/2. One can show that the “tall” (in some
sense) columns of this algorithm have the same heights as the “tall” columns
of First Fit Decreasing. One can also show that this other algorithm is a %—
approximation. Putting the two together shows that First Fit Decreasing is a

3 . .
5-approximation. O

Shelf Algorithm Given a set of rectangles, the Shelf algorithm works as follows.
Sort the rectangles by decreasing height so that hy > hy > ... > h,,. Pack the
rectangles in this order on “shelves” (also called “levels”). The first shelf is the
base of the strip. Place rectangles on the current shelf from left to right. When
we reach a rectangle r; that is too wide for the remaining space, we pack the
widest possible slice of 7;. The rest of r; goes back in the list of remaining
rectangles. Then we place a horizontal line across the strip to form a new shelf
at the current maximum height of the packing, and continue on the new shelf
with the remaining rectangles. See Figure 2| Note that the stacking constraint
is automatically satisfied, and each rectangle is sliced at most once.

5 — r2
7
4 S

2 — rl

1 - r

Fig. 2. An execution of the Shelf algorithm on the same instance as Figure [1f (but
rectangles have been sorted by height.)

The Shelf algorithm is the same as the Next-Fit-Decreasing-Height algorithm
for strip packing [4], except that we fill the entire width of the shelf immediately
because we can slice rectangles. It is known that Next-Fit-Decreasing-Height
achieves height 2 - Hopr + hmax even for strip packing without slicing [4]. As we
will show now, permitting to slice allows to decrease this bound to Hopr + Amax-

Observe that (with h,4+1 := 0) the empty space below height H has area at
most >+, (h; — hit1) - W. To see this, partition the empty space into rectangles
by cutting it horizontally, and assign each empty rectangle to the rectangle r;
that has a slice below it in the same shelf. Therefore, the empty space is at most
h1 W = hpax - W, which proves that the Shelf algorithm achieves height at most
HOPT + hmax'

3 Approximation Schemes

In this section, we sketch the FPTAS for 2SP-S and 2SP-SSC.

Theorem 1. For any € > 0, there exist (1 4 £)-approzimation algorithms for
28P-S and 25P-SSC, assuming input numbers are rationals represented explicitly
in binary. Their run-time is polynomial in the input size and é

The approach uses a linear programming relaxation and is relatively standard
in the literature; in particular it resembles the classic work of Karmarkar and
Karp concerning the bin-packing problem [I2]. The linear program we solve is
similar to the one used to obtain fractional strip packings in [13], though our full
algorithm requires different searching and rounding routines since the variables
in our linear program must correspond to vertical configurations rather than
horizontal ones.

In the remainder of this section, we prove Theorem|[I]for the case of 2SP-SSC;
we omit the (minor changes) that must be done for 2SP-S.

Step 1: Reducing the general problem to a decision version
Given a guess Hgugss for the optimal height Hopr, the main algorithm that
we describe in steps 2 through 5 is capable of establishing one of the following:

(YES) There is a solution of value at most Hgugrss(1 + §).
(NO) There is no solution of value less than or equal to Hgugss.

Since the optimal height Hopr is at most Y7 ; h; and at least L 3" | hy, it is
possible, via binary search, to establish Hopt to within a multiplicative factor
of 1 + ¢ using only O(log(%)) queries to our main algorithm. This then yields a
(1 + e)-approximation for the problem. The remaining steps describe how such
queries can be answered constructively in polynomial time.

Step 2: Rounding the heights
Our linear programming method will require us to solve an instance of the knap-
sack problem to obtain a solution to the separation problem for the dual lin-
ear program. To render these knapsack instances tractable, we must round the
heights of the rectangles in the input to multiples of an appropriate value hyg.
For 2SP-S, given a value of Hgygss, we round all of the heights of the input
rectangles down to the nearest multiple of hg = 5~ Haugss. We will subsequently
solve the resulting instance exactly using linear programming, obtaining a solu-
tion S of height H*. It is immediate that H* < Hopr, and thus if H* > Hgyugss,
then there is no solution of value less than or equal to Hgyugss. Conversely, the
stacking constraint implies that each vertical line passes through the interior of
at most n rectangles in S, so after undoing the rounding, the height of S increases
by at most §Hgugrss. Thus if H* < Hgugss, then there exists a solution to the
original (unrounded) problem of value at most Hgugess(1 + 5). Consequently,
we can answer (YES) or (NO) depending on whether or not H* < Hgugss.

Step 3: Linear programming formulation
After rounding, each rectangle’s height is a multiple of hg, and we attempt to
pack all rectangles into a strip of height at most Hgugss. We define a pattern
to be any subset of {rq,...,r,} whose total height is at most Hgugss, and let
P denote the set of all patterns. We observe that if arbitrary vertical slicing
is permitted, then a solution to the strip packing problem can be exhibited by
specifying, for each pattern P € P, the total width of pattern P used in the
arrangement. This idea motivates our formulation.

For each pattern P, we define the variable zp to represent the total width
of pattern P used in a solution. It follows that determining the minimum strip

width required to pack all of the rectangles into a strip of height Hgugss is
equivalent to solving the following linear program:

minimize: Z Tp
PeP

subject to: Z xp>w; foralll <i<n (LP)
PeP|r;eP

xp >0 forall PeP

It is immediate that upon solving this exactly, we may answer (YES) if and only
if the optimal objective value W* is at most W.

Step 4: Solving the linear program
We provide a polynomial algorithm for finding the optimal objective value W*
to our linear program. To do this, we examine the following dual of (LP):

n
maximize: Z Wil
=1
subject to: Z y; <1lforall PeP (LP*)
ilr;€P

yi>0foralll<i<mn

Despite this linear program having exponentially many constraints, we can tackle
it using the ellipsoid algorithm. Specifically, since we assumed that the widths of
the rectangles in the input are rational numbers represented explicitly in binary,
we can find the ezact optimal objective value of (LP*) in time polynomial in
the input size and %, provided that we can solve the corresponding separation
problem in time polynomial in the input size and é

The separation problem for this linear program asks the following: Given
values of y;, either find a pattern P such that Zi\mePyi > 1, or determine
that no such pattern exists. If we regard each rectangle as having height h;
and value y;, then this essentially asks if there is any set of rectangles of total
height less than Hgugss having total value greater than 1, and to return such a
pattern if one exists. This can be answered by solving a knapsack instance having
weight-value pairs (h;,y;) and maximum weight Hgugss. Since each height in
the rounded problem is a multiple of hy and Hgyugss = 2?"ho, this can be done
in O(";) time using standard dynamic programming methods.

If one wishes to achieve a more practical running time, it is feasible to replace
the ellipsoid algorithm with the simplex algorithm, using the column generation
technique of Gilmore and Gomory [6].

Step 5: Returning the solution

We observe that it is possible to reconstruct an optimum solution to (LP) while
solving (LP*) using this technique (see [12] for details). Consequently, we can
not only approximate the optimum height of a packing, but can in fact return
a packing having that height. We already argued with Step 2 that this satisfies

the approximation bound. Moreover, since a basic solution to (LP) is obtained,
there are at most n patterns P for which the primal variables xp are non-zero
in the solution, implying that our algorithm returns a solution in which each
rectangle is sliced at most n — 1 times.

We also observe that in the solution produced by the FPTAS, the number of
cuts per rectangle can be further reduced to a constant that depends only on ¢.
More precisely, we can show (details are omitted) that any feasible solution can
be modified so that each rectangle is sliced at most (1/¢)°(1/¢) times, without
increasing the height by more than a factor of 1 + O(e).

4 Algorithms With Few Slices

Although the approximation scheme from the previous section may be more prac-
tical if the simplex method is used, it is still unsuitable for electricity-allocation
applications both due to its runtime and because it may result in rectangles that
have been sliced numerous times. In fact, we can create instances where some
rectangle must be sliced 2(n/logn) times in any optimal solution. For practi-
cal purposes, it would be worth sacrificing some height if in exchange we can
guarantee that rectangles are not sliced too often. We develop such algorithms
now.

The approach is to partition the bin vertically into two parts, slice each rect-
angle once, and pack the two slices in the two parts with Shelf. With a judicious
choice of where to partition and slice, this results in a 5/3-approximation that
slices each rectangle at most three times. (We note that this result is achieved
with Shelf already if hpax < 2HOPT.) With some more work we can align rect-
angle slices so that each rectangle is sliced at most once.

The algorithm assumes that the value of Hopr is known (we will find Hopr
with binary search as explained later). It depends on some parameter t >
Hopr/2; using t = 2Hopr/3 gives the best approximation bound.

Step 1. Assuming the rectangles have been sorted in decreasing order of heights,
find the largest & such that wy+---+wp < W. Byt > Hopr/2 we have hyq1 < t.
Find the largest j < k such that h; > ¢. (In case hmax < t, we define j to be
0; the algorithm becomes identical to Shelf in this case.) Call r1,...,r; the left
floor rectangles (of heights > t) and 7;41,...,7 the right floor rectangles (of
heights < t). We divide the strip into two parts, where the left side has width
wy + - -+ + w;. Define a to be (w1 + - -+ w;)/W, so the left side has width oW
and the right side has width (1 — a)W. Note that we may have a =0 or a = 1,
but a < 1 since in any optimal packing no two floor rectangles may overlap
vertically by ¢t > Hopr/2.

Step 2. We split each rectangle into left and right pieces, subject to the con-
straint that the width of the left (resp. right) piece is at most aWW (resp.
(1 — a)W). Either piece is allowed to be empty. The splitting procedure is de-
scribed below. In the following, shifting a rectangle rightward means enlarging
the width of its right piece by ¢ and shrinking the width of its left piece by § for
some amount § > 0. Shifting a rectangle leftward is similarly defined.

We say that a rectangle is shifted completely rightward if the left piece is
empty or the right piece has width (1 — «a)W. We say that a rectangle is shifted
completely leftward if the right piece is empty or the left piece has width aW.

All left floor rectangles are shifted completely leftward and all right floor
rectangles are shifted completely rightward. All non-floor rectangles are initially
shifted completely rightward. Let A% and A% be the total area of all left (resp.
right) pieces after this initialization. We now shift rectangles so that Agr (the
area of the current right pieces) equals (1 — a)HoptW, if possible, and do this
using a greedy procedure:

— If A% < (1 — a)HoprW, then stop.

— Otherwise, for each non-floor rectangle from minimum to mazimum height
while Ap > (1 — a)HoprW, decrease Ag by shifting the rectangle leftward
either completely or until Ag = (1 — a)HoprW.

Observe that except for one critical rectangle, which we denote by r,, all
rectangles are either shifted completely leftward or completely rightward. We
also claim that the above procedure ends with either Ap = A% or Ap = (1 -
a)HoprW, whichever is smaller. For assume that all non-floor rectangles have
been shifted completely leftward. The left floor rectangles have total area at
least taW and the right floor rectangles have total area less than ¢(1 — «)W, so
among the floor rectangles, at least an a-fraction of the area has been assigned
to the left. Each non-floor rectangle (shifted completely leftward) has at least
an a-fraction of the area on the left. Therefore the area to the left is at least
a-fraction of the total area, or A, > «A, which implies A = A — A <
(1—-a)A < (1 —a)HoprW. So if A% > (1 — a)HoprW, then at some point
during the shifting process we reach a moment when Ar = (1 — a)HoptW as
desired.

Step 3. Pack the left pieces into the left strip and the right pieces into the right
strip, using Shelf on both sides.

Theorem 2. There exists a 5/3-approxzimation for 25P-SSC that slices every
rectangle at most three times and runs in time O(nlog (nM)), where M is an
upper bound on the integer heights of the rectangles.

Proof. Assume for now that Hopr is known and apply the above algorithm.
This gives a packing with at most 3 cuts per rectangle (one to partition it into
the left and right piece, and one by each application of Shelf), and the only
rectangle that may have 3 cuts is r,.

We first analyze the height of the left strip. The bottommost shelf has height
hmax, and (by definition) contains the left floor rectangles whose total area is at
least taWW. The left pieces of non-floor rectangles hence have total area at most
Ap —taW =: Aypr. Let £ be the tallest height of a non-floor rectangle whose
left piece is non-empty (¢ = 0 if there is no such piece.) By the same analysis
as for Shelf, the shelves for the left pieces of non-floor rectangles have empty
space at most £aW, hence they contribute height at most (Anrr)/(aW) 4+ € =
AL/OéW —t+ /.

Claim: /(+t < Hopr. Clearly this holds if £ = 0, so assume ¢ > 0. To prove the
claim, consider an optimal packing S* and assume that its height is less than
¢ 4 t. Then no vertical line intersects two left floor rectangles in S*, since these
all have height > ¢t and > /. Rearrange S* so that all vertical lines containing
left floor rectangles appear at the left end, and call this part the left strip of S*,
which has width aW. Again, since the height of S* is less than ¢ + ¢, no right
floor rectangles and no non-floor rectangle of height > ¢ can appear in the left
strip of S*. Thus the right floor rectangles and non-floor rectangles of height > ¢
all fit in the right strip of S*. Also, all such non-floor rectangles have width at
most (1 — «)W. Finally, for any non-floor rectangle of height < ¢, at most a slice
of width oW can be in the left strip, so if the rectangle has width > oW, then
its right piece, even when entirely shifted leftward, also fits within the right strip
of §*.

Recall that the greedy procedure for splitting rectangles processes rectangles
in increasing height. Since we have a left piece of a non-floor rectangle of height
£, all non-floor rectangles of height < ¢ must be completely shifted leftward.
So by the time the procedure reaches the rectangle of height ¢, the right pieces
consists of the right floor rectangles, the minimum possible right pieces of non-
floor rectangles of height < ¢, and the entire non-floor rectangles of height > ¢.
By the above discussion, all these pieces fit into the right strip of S*, which has
area (1 — o)W Hopr. But then Agr < (1 — &)W Hopr already and the greedy
procedure would have stopped and not shifted the rectangle of height ¢ leftward.
This is a contradiction, so the optimal height is at least ¢ + ¢, which proves the
claim.

Putting all of this together and using hm.x < Hopr, the left strip has height
at most
AL AL AL
hmax + ——= —t+{ < H — —t+ H —t=2H — 2t + —.
max T PNiTa + £ < Hopt + PNT7a + Hopr OPT + PNTTa
In the right strip, all rectangles have height at most ¢t. Hence the right strip has
at most ¢(1 — o)W empty area, and its height is at most

AR +t < (1 — a)HopTW

)
m >~ (1—a)W +t:HOPT+t§§HOPT

by choice of t. We have chosen the partition into left and right pieces carefully
to ensure that Ay, is “just right”. In the first case, Agp = (1 — @)HoprW, which
implies that A; < aHoprW. In this case the left strip has height at most
3Hopr — 2t < %HOPT by choice of t. To prove the bound for the left strip in the
second case where Ar = A% < (1 —a)HoprW, we need the following result:

0
Claim: f—ﬁ, < Hopr. To prove this claim, let R denote the set of left pieces
(including the left floor rectangles ry,...,7;) when all non-floor rectangles are

shifted completely rightward. Consider again an optimal solution S* (with an
unbounded number of slices) and rearrange the columns in S* so that the left
floor rectangles form a left strip of width aW. Then the left side of the strip in

10

S* must contain at least the pieces in RY and thus must contain a total area of
at least AY. It follows that AY < HopraW, and hence the claim holds.

With this claim, the left strip has height 2HopT — 2t + % < 3Hopr —2t <
%H opt by choice of ¢, and we have now proved the approximation bound.

Lastly, we remove the assumption that the value of Hopr is given. By re-
placing Hopr with a user-supplied value Hgugss in the algorithm, it is easy to
check that the algorithm has the following behavior: if Haugss > Hopr, the so-
lution returned has height at most (5/3) Hougss. Thus, if the solution returned
has height at most (5/3) Hgugss, we can conclude that Hopr < (5/3) Hgugss,
otherwise Hopr > Hgurss-

We can apply a binary search to find an approximation to Hopr. Start with
X = %HS, the height computed by the Shelf algorithm. We know X < Hopr <
(5/3)cX with ¢ = 6/5, so this is a (5/3)c-approximation. Now run the above
algorithm with Hgugss = /¢ X, and conclude either that Hopt < (5/3)1/cX or
Hopr > v/cX. In either case, we obtain a ((5/3)+/c)-approximation. Repeating
for O(log(1/¢)) iterations, we then obtain a (5/3 4 ¢)-approximation. Assuming
that all rectangle heights are integers bounded by M, we can set € = 1/(4nM),
for example, and a (5/3 4 €)-approximation becomes a 5/3-approximation; the
running time increases by an O(log(nM)) factor only. a

We can reduce the number of slices even further by packing them into the
shelves carefully so that pieces become aligned on the shelf, and (in some cases)
apply Steinberg’s algorithm for 2SP [19] on one of the sides. Details are omitted.

Theorem 3. There exists a 5/3-approximation for 2SP-SSC that slices every
rectangle at most once and runs in time O(nlog® nlog(nM)/loglogn).

5 Conclusions

Motivated by an application in electricity allocation, this paper explored variants
of the strip packing problem in which rectangles could be sliced vertically as long
as no two slices of the same rectangle are stacked atop each other. We provided
simple 2-approximation algorithms, an FPTAS of mostly theoretical interest,
and practical approximation algorithms that slice rectangles only a few times.

The main remaining open problem is to find practical algorithms with better
approximation factors. For example we conjecture that First Fit Decreasing is
actually a 4/3-approximation. Without the stacking constraint, this follows from
Graham’s 4/3-approximation bounds for multiprocessor scheduling [8], but with
the stacking constraint the best bound we can prove is 3/2. Also, can we find a
%-approximation (or even %—approximation) that slices every rectangle at most
once? Finally, is there a simple PTAS for strip packing with slicing (with or
without the stacking constraint)?

11

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

B. S. Baker, E. G. Coffman, and R. L. Rivest. Orthogonal packings in two dimen-
sions. SIAM Journal on Computing, 9(4):846-855, 1980.

M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram. Approximating
the non-contiguous multiple organization packing problem. In Theoretical Com-
puter Science - 6th IFIP TCS, volume 323 of IFIP Advances in Information and
Communication Technology, pages 316—-327. Springer, 2010.

. B. Chen, C. N. Potts, and G. J. Woeginger. A review of machine scheduling:

complexity, algorithms and approximability. In Handbook of combinatorial opti-
mization, Vol. 3, pages 21-169. Kluwer Acad. Publ., Boston, MA, 1998.

E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput.,
9(4):808-826, 1980.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman & Co Ltd, 1979.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-
stock problem. Operations Res., 9:849-859, 1961.

P. Giudice. Our energy future and smart grid communications. Testimony be-
fore the FCC Field Hearing on Energy and Environment. www.broadband.gov/
fieldevents/fh_energy_environment/giudice.pdf, 2009.

R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:416-429, 1969.

R. Harren, K. Jansen, L. Pridel, and R. van Stee. A (5/3 + ¢)-approximation for
strip packing. In Algorithms and Data Structures Symposium, WADS 2011, volume
6844 of Lecture Notes in Computer Science, pages 475—487. Springer, August 2011.
D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. J. Assoc. Comput. Mach.,
34(1):144-162, 1987.

K. Jansen and R. Solis-Oba. New approximability results for 2-dimensional packing
problems. In Mathematical Foundations of Computer Science 2007, volume 4708
of Lecture Notes in Computer Science, pages 103—114. Springer, 2007.

N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In Symposium on Foundations of Computer
Science, pages 312-320. IEEE, 1982.

C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting
stock problem. Math. Oper. Res., 25(4):645-656, 2000.

A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A survey.
European Journal of Operational Research, 141(2):241 — 252, 2002.

S. K. Sahni. Algorithms for scheduling independent tasks. J. Assoc. Comput.
Mach., 23(1):116-127, 1976.

I. Schiermeyer. Reverse-Fit: A 2-optimal algorithm for packing rectangles. In
European Symp. Algorithms, volume 855 of Lecture Notes in Computer Science,
pages 290-299. Springer, 1994.

D. D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions.
Information Processing Letters, 10(1):37-40, Feb. 1980.

P. Srikantha, C. Rosenberg, and S. Keshav. An analysis of peak demand reductions
due to elasticity of omestic appliances. In Proc. Energy-Efficient Computing and
Networking (e-Energy ’12), page 28. ACM, 2012.

A. Steinberg. A strip-packing algorithm with absolute performance bound 2. STAM
Journal on Computing, 26(2):401-409, 1997.

12

www.broadband.gov/fieldevents/fh_energy_environment/giudice.pdf
www.broadband.gov/fieldevents/fh_energy_environment/giudice.pdf

	Smart-grid Electricity Allocation via Strip Packing with Slicing

