
ar
X

iv
:1

21
0.

40
53

v3
 [

cs
.D

S]
 2

2
N

ov
 2

01
2

Joint Cache Partition and Job Assignment on Multi-Core

Processors∗

Avinatan Hassidim1, Haim Kaplan2, Omry Tuval2

1Dept. of Computer Science Bar Ilan University and Google Israel, avinatan@google.com
2Dept. of Computer Science, Tel Aviv University, {haimk, omrytuva}@post.tau.ac.il

Abstract

Multicore shared cache processors pose a challenge for designers of embedded systems who
try to achieve minimal and predictable execution time of workloads consisting of several jobs.
To address this challenge the cache is statically partitioned among the cores and the jobs are
assigned to the cores so as to minimize the makespan. Several heuristic algorithms have been
proposed that jointly decide how to partition the cache among the cores and assign the jobs.
We initiate a theoretical study of this problem which we call the joint cache partition and job
assignment problem.

By a careful analysis of the possible cache partitions we obtain a constant approximation
algorithm for this problem. For some practical special cases we obtain a 2-approximation algo-
rithm, and show how to improve the approximation factor even further by allowing the algorithm
to use additional cache. We also study possible improvements that can be obtained by allowing
dynamic cache partitions and dynamic job assignments.

We define a natural special case of the well known scheduling problem on unrelated machines
in which machines are ordered by “strength”. Our joint cache partition and job assignment
problem generalizes this scheduling problem which we think is of independent interest. We give
a polynomial time algorithm for this scheduling problem for instances obtained by fixing the
cache partition in a practical case of the joint cache partition and job assignment problem where
job loads are step functions.

1 Introduction

We study the problem of assigning n jobs to c cores on a multi-core processor, and simultanously
partitioning a shared cache of size K among the cores. Each job j is given by a non-increasing
function Tj(x) indicating the running time of job j on a core with cache of size x. A solution is a
cache partition p, assigning p(i) cache to each core i, and a job assignment S assigning each job j

to core S(j). The total cache allocated to the cores in the solution is K, that is
c
∑

i=1
p(i) = K. The

makespan of a cache partition p and a job assignment S is maxi
∑

j|S(j)=i Tj(p(i)). Our goal is to
find a cache partition and a job assignment that minimize the makespan.

∗This work was partially supported by the Israel Science Foundation grant no. 822-10. Israeli Centers of Re-
search Excellence (I-CORE) program, (Center No. 4/11). Google Inter-university center for Electronic Markets and
Auctions.

1

http://arxiv.org/abs/1210.4053v3

Multi-core processors are the prevalent computational architecture used today in PC’s, mobile
devices and high performance computing. Having multiple cores running jobs concurrently, while
sharing the same level 2 and/or level 3 cache, results in complex interactions between the jobs,
thereby posing a significant challenge in determining the makespan of a set of jobs. Cache parti-
tioning has emerged as a technique to increase run time predictability and increase performance on
multi-core processors [8, 14]. Theoretic research on online multi-core caching shows that the cache
partition (which may be dynamic) has more influence on the performance than the eviction policy
[5, 12]. To obtain effective cache partitions, methods have been developed to estimate the running
time of jobs as a function of allocated cache, that is the functions Tj(x) (see for example the cache
locking technique of [10]).

Recent empirical research [11, 9] suggests that jointly solving for the cache partition among the
cores and for the job assignment to cores leads to significant improvements over combining separate
algorithms for the two problems. The papers [11, 9] suggest and test heuristic algorithms for the
joint cache partition and job assignment problem. Our work initiates the theoretic study of this
problem.

We study this problem in the context of multi-core caching, but our formulation and results are
applicable in a more general setting, where the running time of a job depends on the availability
of some shared resource (cache, CPU, RAM, budget, etc.) that is allocated to the machines. This
setting is applicable, for example, for users of a public cloud infrastructure like Amazon’s Elastic
Cloud. When a user decides on her public cloud setup, there is usually a limited resource (e.g.
budget), that can be spent on different machines in the cloud. The more budget is spent on a
machine, it runs jobs faster and the user is interested in minimizing the makespan of its set of jobs,
while staying within the given budget.

Related Work: Theoretic study of multi-core caching have shown that traditional online paging
algorithms are not competitive in the multi-core scenario [5, 12]. Both papers [5, 12] show that the
offline decision version of the caching problem is NP-complete, in slightly different models. Much
of the difficulty in designing competitive online algorithms for multi-core caching stems from the
fact that the way in which the request sequences of the different cores interleave is dependent on
the algorithm. An algorithm with good competitive ratio is obtained in [1], when the interleaving
of the request sequences is fixed.
For related work on scheduling see Section 2.

Our results: We present a 36-approximation algorithm for the joint cache partition and job
assignment problem in Section 3. We obtain this algorithm by showing that it suffices to consider
a subset of polynomial size of the cache partitions.

We obtain better approximation guarantees for special cases of the joint cache partition and
job assignment problem.

When each job has a fixed running time and a minimal cache demand, we present , in Sec-
tion 4, a 2-approximation algorithm, a 3

2 -approximation algorithm that uses 2K cache and a 4
3 -

approximation algorithm that uses 3K cache. We call this problem the single load minimal cache
demand problem. Our 4

3 -approximation algorithm is based on an algorithm presented in Section
4.5 that finds a dominant perfect matching in a threshold graph that has a perfect matching. This
algorithm and the existence of such a matching are of independent interest.

We present in Section 4.6 a polynomial time approximation scheme for a special case of the
single load minimal cache demand problem, in which there is a correlation between the jobs’ loads
and cache demands. Such a model is inspired by practical cases where there is an underlying notion

2

of a job’s “hardness” that affects both its load and its cache demand.
We study, in Section 5, the case where the load functions of the jobs, Tj(x), are step functions.

That is, job j takes lj time to run if given at least xj cache, and otherwise it takes hj > lj time.
For the case where there are a constant number of different lj’s and hj ’s we reduce the problem to
the single load minimal cache demand problem and thereby obtain the same approximation results
as for that problem (Section 5).

We define the problem of scheduling on ordered unrelated machines, a natural special case of
the classical job scheduling problem on unrelated machines. In this problem there is a total order
on the machines which captures their relative strength. Each job has a different running time on
each machine and these running times are non-increasing with the strength of the machine. We
show a reduction from this problem to the joint cache partition and job assignment problem. We
also give a polynomial time dynamic programming algorithm for a special case of this problem
that arises when we fix the cache partition in the special case where the number of ljs and hjs is
constant (Section 5).

In section 6 we generalize the joint cache partition and job assignment problem and consider
dynamic cache partitions and dynamic job schedules. We show upper and lower bounds on the
makespan improvement that can be gained by using dynamic partitions and dynamic assignments.

2 The ordered unrelated machines problem

The ordered unrelated machines scheduling problem is defined as follows. There are c machines
and a set J of jobs. The input is a matrix T (i, j) giving the running time of job j on machine i,
such that for each two machines i1 < i2 and any job j, T (i1, j) ≥ T (i2, j). The goal is to assign the
jobs to the machines such that the makespan is minimized.

The ordered unrelated machines scheduling problem is a special case of scheduling on unrelated
machines in which there is a total order on the machines that captures their relative strengths. This
special case is natural since in many practical scenarios the machines have some underlying notion
of strength and jobs run faster on a stronger machine. For example a newer computer typically
dominates an older one in all parameters, or a more experienced employee does any job faster than
a new recruit.

Lenstra et al [7] gave a 2 approximation algorithm for scheduling on unrelated machines based
on rounding an optimal fractional solution to a linear program, and proved that it is NP-hard to
approximate the problem to within a factor better than 3

2 . Shchepin and Vakhania [15] improved
Lenstra’s rounding technique and obtained a 2 − 1

c
approximation algorithm. It is currently an

open question if there are better approximation algorithms for ordered unrelated machines than
the more general algorithms that approximate unrelated machines.

Another well-studied scheduling problem is scheduling on uniformly related machines. In this
problem, the time it takes for machine i to run job j is

lj
si

where lj is the load of job j and si is
the speed of machine i. A polynomial time approximation scheme for related machines is described
in [6]. It is easy to see that the problem of scheduling on related machines is a special case of the
problem of scheduling on ordered unrelated machines, and therefore the ordered unrelated machines
problem is NP-hard.

The ordered unrelated machines problem is closely related to the joint cache partition and
job assignment problem. Consider an instance of the joint cache partition and job assignment
problem with c cores, K cache and a set of jobs J such that Tj(x) is the load function of job

3

j. If we fix the cache partition to be some arbitrary partition p, and we index the cores in non-
decreasing order of their cache allocation, then we get an instance of the ordered unrelated machines
problem, where T (i, j) = Tj(p(i)). Our constant approximation algorithm for the joint cache
partition and job assignment problem, described in Section 3, uses this observation as well as
Lenstra’s 2-approximation for unrelated machines. In the rest of this section we prove that the
joint cache partition and job assignment problem is at least as hard as the ordered unrelated
machines scheduling problem.

We reduce the ordered unrelated machine problem to the joint cache partition and job assign-
ment problem. Consider the decision version of the ordered unrelated scheduling problem, with c
machines and n = |J | jobs, where job j takes time T (i, j) to run on machine i. We want to decide
if it is possible to schedule the jobs on the machines with makespan at most M .

Define the following instance of the joint cache partition and job assignment problem. This
instance has c cores, a total cache K = c(c+1)/2 and n′ = n+ c jobs. The first n jobs (1 ≤ j ≤ n)
correspond to the jobs in the original ordered unrelated machines problem, and c jobs are new jobs
(n+1 ≤ j ≤ n+ c). The load function Tj(x) of job j, where 1 ≤ j ≤ n, equals T (x, j) if x ≤ c and
equals T (c, j) if x > c. The load function Tj(x) of job j, where n+ 1 ≤ j ≤ n+ c, equals M + δ if
x ≥ j − n for some δ > 0 and equals ∞ if x < j − n. Our load functions Tj(x) are non-increasing
because the original T (i, j)’s are non-increasing in the machine index i.

Lemma 2.1. The makespan of the joint cache partition and job assignment instance defined above
is at most 2M + δ if and only if the makespan of the original unrelated scheduling problem is at
most M .

Proof. Assume there is an assignment S′ of the jobs in the original ordered unrelated machines
instance of makespan at most M . We show a cache partition p and job assignment S for the joint
cache partition and job assignment instance with makespan at most 2M + δ.

The cache partition p is defined such that p(i) = i for each core i. The partition p uses exactly
K = c(c+1)/2 cache. The job assignment S is defined such that for a job j > n, S(j) = j −n and
for a job j ≤ n, S(j) = S′(j). The partition p assigns i cache to core i, which is exactly enough for
job n+ i, which is assigned to core i by S, to run in time M + δ. It is easy to verify that p, S is a
solution to the joint cache partition and job assignment instance with makespan at most 2M + δ.

Assume there is a solution p, S for the joint cache partition and job assignment instance, with
makespan at most 2M + δ. Job j, such that n < j ≤ n + c, must run on a core with cache at
least j − n, or else the makespan would be infinite. Moreover, no two jobs j1 > n and j2 > n are
assigned by S the same core, as this would give a makespan of at least 2M + 2δ. Combining these
observations with the fact that the total available cache is K = c(c + 1)/2, we get that the cache
partition must be p(i) = i for each core i. Furthermore, each job j > n is assigned by S to core
j − n and all the other jobs assigned by S to core j − n are jobs corresponding to original jobs in
the ordered unrelated machines instance. Therefore, the total load of original jobs assigned by S
to core i is at most M .

We define S′, a job assignment for the original ordered unrelated machines instance, by setting
S′(j) = S(j) for each j ≤ n. Since S assigns original jobs of total load at most M on each core, it
follows that the makespaen of S′ is at most M .

The following theorem follows immediately from Lemma 2.1

Theorem 2.2. There is a polynomial-time reduction from the ordered unrelated machines schedul-
ing problem to the joint cache partition and job assignment problem.

4

The reduction in the proof of Lemma 2.1 does not preserve approximation guarantees. However
by choosing δ carefully we can get the following result.

Theorem 2.3. Given an algorithm A for the joint cache partition and job assignment problem
that approximates the optimal makespan up to a factor of 1 + ǫ, for 0 < ǫ < 1, we can construct
an algorithm for the ordered unrelated machines scheduling problem that approximates the optimal
makespan up to a factor of 1 + 2ǫ+ 2ǫ2

1−ǫ−χ
for any χ > 0.

Proof. We first obtain a
(

1 + 2ǫ+ 2ǫ2

1−ǫ−χ

)

-approximation algorithm for the decision version of the

ordered unrelated machines scheduling problem. That is, an algorithm that given a value M ,
either decides that there is no assignment of makespan M or finds an assignment with makespan
(

1 + 2ǫ+ 2ǫ2

1−ǫ−χ

)

M .

Given an instance of the ordered unrelated machines scheduling problem, we construct an
instance of the joint cache partition and job assignment as described before lemma 2.1, and set
δ = 2ǫM

1−ǫ−χ
, for an arbitrarily small χ > 0. We use algorithm A to solve the resulting instance of

the joint cache partition and job assignment problem. Let p, S be the solution returned by A. We

define S′(j) = S(j) for each 1 ≤ j ≤ n. If the makespan of S′ is at most
(

1 + 2ǫ+ 2ǫ2

1−ǫ−χ

)

M we

return S′ as the solution and otherwise decide that there is no solution with makespan at most M .
If the makespan of the original instance is at most M , then by lemma 2.1 there is a solution to

the joint cache partition and job assignment instance resulting from the reduction, with makespan
at most 2M + δ. Therefore p, S, the solution returned by algorithm A, is of makespan at most
(1 + ǫ)(2M + δ).

By our choice of δ we have that (1 + ǫ)(2M + δ) < 2M +2δ and therefore each core is assigned
by S at most one job j, such that j > n. In addition, any job j such that n < j ≤ n + c, must
run on a core with cache at least j − n, or else the makespan would be infinite. Combining these
observations with the fact that the total available cache is K = c(c + 1)/2, we get that the cache
partition must be p(i) = i for each core i. Furthermore, each job j > n is assigned by S to core
j − n and all the other jobs assigned by S to core j − n are jobs corresponding to original jobs
in the ordered unrelated machines instance. Therefore, the total load of original jobs assigned by
S to core i is at most (1 + ǫ)(2M + δ) − M − δ. It follows that the makespan of S′ is at most

(1 + ǫ)(2M + δ) −M − δ = M
(

1 + 2ǫ+ 2ǫ2

1−ǫ−χ

)

.

We obtained a
(

1 + 2ǫ+ 2ǫ2

1−ǫ−χ

)

-approximation algorithm for the decision version of the ordered

unrelated machines scheduling problem. In order to approximately solve the optimization problem,
we can perform a binary search for the optimal makespan using the approximation algorithm for

the decision version of the problem and get a
(

1 + 2ǫ+ 2ǫ2

1−ǫ−χ

)

-approximation algorithm for the

optimization problem. We obtain an initial search range for the binary search by using
n
∑

j=1
T (c, j) as

an upper bound on the makespan of the optimal schedule and 1
c

n
∑

j=1
T (c, j) as a lower bound. (See

section 4.4 for a detailed discussion of a similar case of using an approximate decision algorithm in
a binary search framework to obtain an approximate optimization algorithm.)

5

3 A constant approximation algorithm

We first obtain an 18-approximation algorithm that for the joint cache partition and job assignment
problem that uses (1 + 5

2ǫ)K cache for some constant 0 < ǫ < 1
2 . We then show another algorithm

that uses K cache and approximates the makespan up to a factor of 36.
Our first algorithm, denoted by A, enumerates over a subset of cache partitions, denoted by

P (K, c, ǫ). For each partition in this set A approximates the makespan of the corresponding schedul-
ing problem, using Lenstra’s algorithm, and returns the partition and associated job assignment
with the smallest makespan.

Let K ′ = (1 + ǫ)⌈log1+ǫ(K)⌉, the smallest integral power of (1 + ǫ) which is at least K. The set
P (K, c, ǫ) contains cache partitions in which the cache allocated to each core is an integral power
of (1 + ǫ) and the number of different integral powers used by the partition is at most log2(c). We
denote by b the number of different cache sizes in a partition. Each core is allocated K ′

(1+ǫ)lj
cache,

where lj ∈ N and 1 ≤ j ≤ b. The smallest possible cache allocated to any core is the smallest
integral power of (1 + ǫ) which is at least Kǫ

c
and the largest possible cache allocated to a core

is K ′. We denote by σ̂j the number of cores with cache at least K ′

(1+ǫ)lj
. It follows that there are

(σ̂j − σ̂j−1) cores with
K ′

(1+ǫ)lj
cache. We require that σ̂j is an integral power of 2 and that the total

cache used is at most
(

1 + 5
2ǫ
)

K. Formally,

P (K, c, ǫ) = {(l = < l1, . . . , lb >, σ̂ =< σ̂0, σ̂1, . . . , σ̂b >) | b ∈ N, 1 ≤ b ≤ log2 c (1)

∀j, lj ∈ N, 0 ≤ lj ≤ log1+ǫ

(c

ǫ

)

+ 1, ∀j, lj+1 > lj (2)

∀j ∃uj ∈ N s.t. σ̂j = 2uj , σ̂0 = 0, σ̂b ≤ c, ∀j σ̂j+1 > σ̂j (3)

b
∑

j=1

(σ̂j − σ̂j−1)
K ′

(1 + ǫ)lj
≤

(

1 +
5

2
ǫ

)

K} (4)

When the parameters are clear from the context, we use P to denote P (K, c, ǫ). Let M(p, S) denote
the makespan of cache partition p and job assignment S. The following theorem specifies the main
property of P , and is proven in the remainder of this section.

Theorem 3.1. Let p, S be any cache partition and job assignment. There are a cache partition
and a job assignment p̂, Ŝ such that p̂ ∈ P and M(p̂, Ŝ) ≤ 9M(p, S).

An immediate corollary of Theorem 3.1 is that algorithm A described above finds a cache
partition and job assignment with makespan at most 18 times the optimal makespan.

Lemma 3.2 shows that A is a polynomial time algorithm.

Lemma 3.2. The size of P is polynomial in c.

Proof. Let (l, σ̂) ∈ P . The vector σ̂ is a strictly increasing vector of integral powers of 2, where each
power is at most c. Therefore the number of possible vectors for σ̂ is bounded by the number of
subsets of {20, . . . , 2log2(c)} which is O(2log2 c) = O(c). The vector l is a strictly increasing vector of
integers, each integer is at most log1+ǫ(

c
ǫ
)+1. Therefore the number of vectors l is bounded by the

number of subsets of integers that are at most log1+ǫ(
c
ǫ
)+1 which is O(2log1+ǫ(

c
ǫ
)) = O(2

log2(
c
ǫ)

log2(1+ǫ)) =

Poly(c) since ǫ is a constant. Therefore |P | = O(c 2
log2(

c
ǫ)

log2(1+ǫ)).

6

Let (p, S) be a cache partition and a job assignment that use c cores, K cache and have a
makespan M(p, S). Define a cache partition p1 such that for each core i, if p(i) < Kǫ

c
then

p1(i) = Kǫ
c

and if p(i) ≥ Kǫ
c

then p1(i) = p(i). For each core i, p1(i) ≤ p(i) + kǫ
c

and hence the
total amount of cache allocated by p1 is bounded by (1 + ǫ)K. For each core i, p1(i) ≥ p(i) and
therefore M(p1, S) ≤ M(p, S).

Let p2 be a cache partition such that for each core i, p2(i) = (1 + ǫ)⌈log1+ǫ(p1(i))⌉, the smallest
integral power of (1 + ǫ) that is at least p1(i). For each i, p2(i) ≥ p1(i) and thus M(p2, S) ≤
M(p1, S) ≤ M(p, S). We increased the total cache allocated by at most a multiplicative factor of
(1 + ǫ) and therefore the total cache used by p2 is at most (1 + ǫ)2K ≤ (1 + 5

2ǫ)K since ǫ < 1
2 .

Let ϕ be any cache partition that allocates to each core an integral power of (1 + ǫ) cache. We
define the notion of cache levels. We say that core i is of cache level l in ϕ if ϕ(i) = K ′

(1+ǫ)l
. Let

cl(ϕ) denote the number of cores in cache level l in ϕ. The vector of cl’s, which we call the cache
levels vector of ϕ, defines the partition ϕ completely since any two partitions that have the same
cache level vector are identical up to a renaming of the cores.

Let σ(ϕ) be the vector of prefix sums of the cache levels vector of ϕ. Formally, σl(ϕ) =
l
∑

i=0
ci(ϕ).

Note that σl(ϕ) is the number of cores in cache partition ϕ with at least K ′

(1+ǫ)l
cache and that for

each l, σl(ϕ) ≤ c.
For each such cache partition ϕ, we define the significant cache levels li(ϕ) recursively as follows.

The first significant cache level l1(ϕ) is the first cache level l such that cl(ϕ) > 0. Assume we already
defined the i − 1 first significant cache levels and let l′ = li−1(ϕ) then li(ϕ) is the smallest cache
level l > l′ such that σl(ϕ) ≥ 2σl′(ϕ).

Lemma 3.3. Let lj and lj+1 be two consecutive significant cache levels of ϕ, then the total number
of cores in cache levels in between lj and lj+1 is at most σlj (ϕ). Let lb be the last significant cache
level of ϕ then the total number of cores in cache levels larger than lb is at most σlb(ϕ).

Proof. Assume to the contrary that
lj+1−1
∑

f=lj+1

cf (ϕ) ≥ σlj (ϕ). This implies that for l′ = lj+1 − 1,

σl′(ϕ) ≥ 2σlj (ϕ) which contradicts the assumption that there are no significant cache levels in
between lj and lj+1 in ϕ. The proof of the second part of the lemma is analogous.

Let cl = cl(p2). For each core i, Kǫ
c

≤ p2(i) ≤ K ′, so we get that if l is a cache level in p2
such that cl 6= 0 then 0 ≤ l ≤ log1+ǫ(

c
ǫ
) + 1. Let σl = σl(p2) and σ =< σ1, . . . , σb′ >, where

b′ = log1+ǫ(
c
ǫ
) + 1. Let li = li(p2), for 1 ≤ i ≤ b, where b is the number of significant cache levels

in p2.
We adjust p2 and S to create a new cache partition p3 and a new job assignment S3. Cache

partition p3 has cores only in the significant cache levels l1, . . . , lb of p2. We obtain p3 from p2 as
follows. Let f be a non-significant cache level in p2. If there is a j such that lj−1 < f < lj then we
take the cf cores in cache level f in p2 and reduce their cache so they are now in cache level lj in
p3. If f > lb then we remove the cf cores at level f from our solution. It is easy to check that the
significant cache levels of p3 are the same as of p2, that is l1, . . . , lb. Since we only reduce the cache
allocated to some cores, the new cache partition p3 uses no more cache than p2 which is at most
(1 + 5

2ǫ)K.
We construct S3 by changing the assignment of the jobs assigned by S to cores in non-significant

cache levels in p2. As before, let f be a nonsignificant cache level and let lj−1 be the maximal

7

significant cache level such that lj−1 < f . For each core i in cache level f in p2 we move all the
jobs assigned by S to core i, to a target core in cache level lj−1 in p3. Lemma 3.4 specifies the key
property of this job-reassignment.

Lemma 3.4. We can construct S3 such that each core in a significant level of p3 is the target of
the jobs from at most two cores in a nonsignificant level of p2.

Proof. Let c3 denote the cache levels vector of p3 and let σ3 denote the vector of prefix sums of c3.
From the definition of p3 follows that for all j, σ3

lj
= σlj , and that for j > 1, c3lj = σ3

lj
− σ3

lj−1
=

σlj − σlj−1
.

By Lemma 3.3 the number of cores in nonsignificant levels in p2 whose jobs are reassigned to
one of the c3lj cores in level lj in p3 is at most σlj . So for j > 1 the ratio between the number of

cores whose jobs are reassigned to the number of target cores in level lj in p3 is at most
σlj

σlj
−σlj−1

=

1+
σlj−1

σlj
−σlj−1

≤ 2. For j = 1 the number of target cores in level l1 of p3 is c3l1 = σl1 which is at least

as large as the number of cores at nonsignificant levels between l1 and l2 in p2 so we can reassign
the jobs of a single core of a nonsignificant level between l1 and l2 in p2 to each target core.

Corollary 3.5. M(p3, S3) ≤ 3M(p, S)

Proof. In the new cache partition p3 and job assignment S3 we have added to each core at a
significant level in p3 the jobs from at most 2 other cores at nonsignificant levels in p2. The target
core always has more cache than the original core, thus the added load from each original core is
at most M(p2, S). It follows that M(p3, S3) ≤ 3M(p2, S) ≤ 3M(p, S).

Let c3 denote the cache levels vector of p3 and let σ3 denote the vector of prefix sums of c3.
We now define another cache partition p̂ based on p3. Let uj = ⌊log2(σ

3
lj
)⌋. The partition p̂ has

2u1 cores in cache level l1, and 2uj − 2uj−1 cores in cache level lj for 1 < j ≤ b. The cache levels
l1, . . . , lb are the significant cache levels of p̂ and p̂ has cores only in its significant cache levels. Let
ĉlj denote the number of cores in the significant cache level lj in p̂.

Lemma 3.6. 3ĉlj ≥ c3lj

Proof. By the definition of uj, we have that 2uj ≤ σ3
lj
< 2uj+1. So for j > 1

ĉlj
c3lj

=
2uj − 2uj−1

σ3
lj
− σ3

lj−1

>
2uj − 2uj−1

2uj+1 − 2uj−1
=

2uj−uj−1 − 1

2uj−uj−1+1 − 1
(5)

Since lj and lj−1 are two consecutive significant cache levels we have that uj −uj−1 ≥ 1. The ratio
in 5 is an increasing function of uj − uj−1 and thus minimized by uj − uj−1 = 1, yielding a lower

bound of 1
3 . For j = 1,

ĉl1
c3
l1

= 2u1
σ3
l1

> 2u1
2u1+1 = 1

2 .

Lemma 3.6 shows that the cache partition p̂ has in each cache level lj at least a third of the
cores that p3 has at level lj. Therefore, there exists a job assignment Ŝ that assigns to each core
of cache level lj in p̂ the jobs that S3 assigns to at most 3 cores in cache level lj in p3. We only
moved jobs within the same cache level and thus their load remains the same, and the makespan
M(p̂, ŝ) ≤ 3M(p3, S3) ≤ 9M(p, s).

8

Lemma 3.7. Cache partition p̂ is in the set P (K, c, ǫ).

Proof. Let σ̂ be the vector of prefix sums of ĉ. The vectors < l1, . . . , lb >,< σ̂l1 , . . . , σ̂lb > clearly
satisfy properties 1-3 in the definition of P (K, c, ǫ). It remains to show that p̂ uses at most (1+ 5

2ǫ)K
cache (property 4).

Consider the core with the xth largest cache in p̂. Let lj be the cache level of this core. Thus
σ̂lj ≥ x. Since σ̂lj is the result of rounding down σ3

lj
to the nearest integral power of 2, we have

that σ̂lj ≤ σ3
lj
. It follows that σ3

lj
≥ x and therefore the core with the xth largest cache in p3 is in

cache level lj or smaller and thus is it has at least as much cache as the xth largest core in p̂. So p̂
uses at most the same amount of cache as p3 which is at most (1 + 5

2ǫ)K.

This concludes the proof of Theorem 3.1, and establishes that our algorithm A is an 18-
approximation algorithm for the problem, using (1 + 5

2ǫ)K cache.
We provide a variation of algorithm A that uses at most K cache, and finds a 36-approximation

for the optimal makespan. Algorithm B enumerates on r, 1 ≤ r ≤ K, the amount of cache allocated
to the first core. It then enumerates over the set of partitions P = P (K−r

2 , ⌈ c2⌉ − 1, 25). For each
partition in P it adds another core with r cache and applies Lenstra’s approximation algorithm on
the resulting instance of the unrelated machines scheduling problem, to assign all the jobs in J to
the ⌈ c2⌉ cores. Algorithm B returns the partition and assignment with the minimal makespan it
encounters.

Theorem 3.8. If there is a solution of makespan M that uses at most K cache and at most c cores
then algorithm B returns a solution of makespan 36M that uses at most K cache and at most c
cores.

Proof. Let (p, S) be the a solution of makespan M , K cache and c cores. W.l.o.g. assume that the
cores are indexed according to the non-increasing order of their cache allocation in this solution,
that is p(i+ 1) > p(i).

Let J ′ = {j ∈ J | S(j) ≥ 3}. Consider the following job assignment S′ of the jobs in J ′ to the
cores of odd indices greater than 1 in (p, S)/ The assignment S′ assigns to core 2i− 1, for i ≥ 2, all
the jobs that are assigned by S to cores 2i−1 and 2i. Note that all the jobs assigned by S′ to some
core are assigned by S to a core with at most the same amount of cache and thus the makespan of
S′ is at most 2M .

Assume r = p(1). Then K = r+
∑

odd i≥3

p(i)+p(i−1) ≥ r+
∑

odd i≥3

2p(i) since p is non-increasing.

Therefore we get that
∑

odd i≥3

p(i) ≤ K−r
2 . Therefore we can assign the jobs in J ′ to ⌈ c2⌉ − 1 cores

with a total cache of K−r
2 , such that the makespan is at most 2M . By Theorem 3.1, there is a

partition p̂′ ∈ P (K−r
2 , ⌈ c2⌉ − 1, 25) that allocates at most (1 + 5

2
2
5)

K−r
2 = K − r cache to ⌈ c2⌉ − 1

cores, and a job assignment Ŝ′ of the jobs in J ′ to these cores such that the makespan of p̂′, Ŝ′ is
at most 18M .

Let p̂ be a cache partition that adds to p̂′ another core (called “core 1”) with r cache. The total
cache used by p̂ is at most K. Let Ŝ be a job assignment such that Ŝ(j) = Ŝ′(j) for j ∈ J ′ and
for a job j ∈ J \ J ′ (a job that was assigned by S either to core 1 or to core 2), Ŝ(j) = 1. Since
the makespan of (p, S) is M we know that the load on core 1 in the solution p̂, Ŝ is at most 2M . It
follows that the makespan of p̂, Ŝ is at most 18M .

When algorithm B fixes the size of the cache of the first core to be r = p(1), and considers
p̂′ ∈ P (K−r

2 , ⌈ c2⌉ − 1, 25) then it obtains the cache partition p̂. We know that Ŝ is a solution to the

9

corresponding scheduling problem with makespan at most 18M . Therefore Lenstra’s approximation
algorithm finds an assignment with makespan at most 36M .

4 Jobs with a single load and a minimal cache demand

We consider a special case of the general joint cache partition and job assignment problem where
each job has a minimal cache demand xj and single load value aj. Job j must run on a core with
at least xj cache and it contributes a load of aj to the core. We want to decide if the jobs can
be assigned to c cores, using K cache, such that the makespan is at most m? W.l.o.g. we assume
m = 1.

In Section 4.1 we describe a 2-approximate decision algorithm that if the given instance has a
solution of makespan at most 1, returns a solution with makespan at most 2 and otherwise may fail.
In Sections 4.2 and 4.3 we improve the approximation guarantee to 3

2 and 4
3 at the expense of using

2K and 3K cache, respectively. In Section 4.4 we show how to obtain an approximate optimization
algorithm using an approximate decision algorithm and a standard binary search technique.

4.1 2-approximation

We present a 2-approximate decision algorithm, denoted by A2. Algorithm A2 sorts the jobs in a
non-increasing order of their cache demand. It then assigns the jobs to the cores in this order. It
keeps assigning jobs to a core until the load on the core exceeds 1. Then, A2 starts assigning jobs
to the next core. Note that among the jobs assigned to a specific core the first one is the most
cache demanding and it determines the cache allocated to this core by A2. Algorithm A2 fails if
the generated solution uses more than c cores or more than K cache. Otherwise, A2 returns the
generated cache partition and job assignment.

Theorem 4.1. If there is a cache partition and job assignemtn of makespan at most 1 that use c
cores and K cache then algorithm A2 finds a cache partition and job assignment of makespan at
most 2 that use at most c cores and at most K cache.

Proof. Let Y = (p, S) be the cache partition and job assignment with makespan 1 whose existence
is assumed by the lemma. Y has makespan 1 so the sum of the loads of all jobs is at most c. Since
A2 loads each core, except maybe the last one, with more than 1 load it follows that A2 uses at
most c cores.

Since Y has makespan 1 the load of each of the jobs is at most 1. Algorithm A2 only exceeds
a load of 1 on a core by the load of the last job assigned to this core and thus A2 yields a solution
with makespan at most 2.

Assume w.l.o.g that the cores in Y are indexed such that for any core i, p(i+1) ≤ p(i). Assume
that the cores in A2 are indexed in the order in which they were loaded by A2. By the definition
of A2 the cores are also sorted by non-increasing order of their cache allocation. Denote by z(i)
the amount of cache A2 allocates to core i. We show that for all i ∈ {1, . . . , c}, z(i) ≤ p(i). This
implies that algorithm A2 uses at most K cache.

A2 allocates to the first core the cache required by the most demanding job so z(1) = maxj xj .
This job must be assigned in Y to some core and therefore z(1) ≤ p(1). Assume to the contrary
that z(i) > p(i) for some i. Each job j with cache demand xj > p(i) must be assigned in Y to one
of the first (i− 1) cores, because all the other cores don’t have enough cache to run this job. Since

10

Y has makespan 1 we know that
∑

j|xj>p(i)

aj ≤ (i − 1). Consider all the jobs with cache demand

at least z(i). Algorithm A2 failed to assign all these jobs to the first (i − 1) cores, and we know
that A2 assigns more than 1 load to each core. So

∑

j|xj≥z(i)

aj > (i− 1). Since z(i) > p(i) and there

is a job with cache demand z(i), we have
∑

j|xj≥z(i)

aj <
∑

j|xj>p(i)

aj which leads to a contradiction.

Therefore z(i) ≤ p(i) for all i and algorithm A2 uses at most K cache.

4.2 3
2
-approximation with 2K cache

We define a job to be large if aj > 1
2 and small otherwise. Our algorithm A 3

2
assigns one large

job to each core. Let si be the load on core i after the large jobs are assigned. Let ri = 1 − si.
We process the small jobs by non-increasing order of their cache demand xj, and assign them to
the cores in non-increasing order of the cores’ ri’s. We stop assigning jobs to a core when its load
exceeds 1 and start loading the next core. Algorithm A 3

2
allocates to each core the cache demand

of its most demanding job. Algorithm A 3
2
fails if the resulting solution uses more than c cores or

more than 2K cache.

Theorem 4.2. If there is a cache partition and job assignment of makespan at most 1 that use c
cores and K cache then A 3

2
finds a cache partition and job assignment that use at most 2K cache,

at most c cores and have a makespan of at most 3
2 .

Proof. Let Y = (p, S) be the cache partition and job assignment with makespan 1 whose existence
is assumed by the lemma. The existence of Y implies that there are at most c large jobs in our
input and that the total volume of all the jobs is at most c. Therefore algorithm A 3

2
uses at most

c cores to assign the large jobs. Furthermore, when A 3
2
assigns the small jobs it loads each core,

except maybe the last one, with a load of at least 1 and thus uses at most c cores. Algorithm A 3
2

provides a solution with makespan at most 3
2 since it can only exceed a load of 1 on any core by

the load of a single small job.
Let z be the cache partition generated by A 3

2
. Let Cl be the set of cores whose most cache

demanding job is a large job and Cs be the set of cores whose most cache demanding job is a
small job. For core i ∈ Cl, Let ji be the most cache demanding job assigned to core i, so we have
z(i) = xji . The solution Y = (p, S) is a valid solution thus xji ≤ p(S(ji)) so z(i) ≤ p(S(ji)). If

j1, j2 are two large jobs then S(j1) 6= S(j2) and we get that
∑

i∈Cl

z(i) ≤
∑

i∈Cl

p(S(ji)) ≤
c
∑

i=1
p(i) = K.

In the rest of the proof we index the cores in the solution of A 3
2
such that r1 ≥ r2 . . . ≥ rc.This

is the same order in which A 3
2
assigns small jobs to the cores. In Y we assume that the cores are

indexed such that p(i) ≥ p(i + 1). We now prove the z(i) ≤ p(i) for any core i ∈ Cs. Assume, to
the contrary, that for some i, z(i) > p(i). Let α be the cache demand of the most cache demanding
small job on core i in Y . Let J1 = {j | aj ≤

1
2 , xj ≥ z(i)} and let J2 = {j | aj ≤

1
2 , xj > α)}. Since

α ≤ p(i) and by our assumption p(i) < z(i) we get that α < z(i) and therefore J1 ⊆ J2.
A 3

2
does not assign all the jobs of J1 to its first (i− 1) cores and therefore the total load of the

jobs in J1 is greater than
i−1
∑

l=1

rl. On the other hand we know that in Y , assignment S assigns all

the jobs in J2 on its first i − 1 cores while not exceeding a load of 1. Thus the total load of jobs

11

in J2 is at most the space available for small jobs on the first (i − 1) cores in solution Y . Since

r1 ≥ r2 . . . ≥ rc, and since in any solution each core runs at most one large job, we get that
i−1
∑

l=1

rl is

at least as large as the space available for small jobs in any subset of (i− 1) cores in any solution.
It follows that the total load of jobs in J2 is smaller than in J1. This contradicts the fact that
J1 ⊆ J2.

We conclude that for every i ∈ Cs, z(i) ≤ p(i). This implies that the total cache allocated to
cores in Cs is at most K. We previously showed that the total cache allocated to cores in Cl is at
most K and thus the total cache used by algorithm A 3

2
is at most 2K.

4.3 4
3
-approximation with 3K cache, using dominant matching

We present a 4
3 approximate decision algorithm, A 4

3
, that uses at most 3K cache. The main

challenge is assigning the large jobs, which here are defined as jobs of load greater than 1
3 .

There are at most 2c large jobs in our instance, because we assume there is a solution of
makespan at most 1 that uses c cores. Algorithm A 4

3
matches these large jobs into pairs, and

assigns each pair to a different core. In order to perform the matching, we construct a graph G
where each vertex represents a large job j of weight aj > 1

3 . If needed, we add artificial vertices
of weight zero to have a total of exactly 2c vertices in the graph. Each two vertices have an edge
between them if the sum of their weights is at most 1. The weight of an edge is the sum of the
weights of its endpoints.

A perfect matching in a graph is a subset of edges such that every vertex in the graph is
incident to exactly one edge in the subset. We note that there is a natural bijection between
perfect matchings in the graph G and assignments of makespan at most 1 of the large jobs to the
cores. The c edges in any perfect matching define the assignment of the large jobs to the c cores as
follows: Let (a, b) be an edge in the perfect matching. If both a and b correspond to large jobs, we
assign both these jobs to the same core. If a corresponds to a large job and b is an artificial vertex,
we assign the job corresponding to a to its own core. If both a and b are artificial vertices, we leave
a core without any large jobs assigned to it. Similarly we can injectively map any assignment of
the larges jobs of makespan at most 1 to a perfect matching in G: For each core that has 2 large
jobs assigned to it, we select the edge in G corresponding to these jobs, for each core with a single
large job assigned to it, we select an edge between the corresponding real vertex and an arbitrary
artificial vertex, and for each core with no large jobs assigned to it we select an edge in G between
two artificial vertices.

A dominant perfect matching in G is a perfect matching Q such that for every i, the i heaviest
edges in Q are a maximum weight matching in G of i edges. The graph G is a threshold graph
[13], and in Section 4.5 we provide a polynomial time algorithm that finds a dominant perfect
matching in any threshold graph that has a perfect matching. If there is a solution for the given
instance of makespan at most 1 then the assignment of the large jobs in that solution correspond
to a perfect matching in G and thus algorithm A 4

3
can apply the algorithm from Section 4.5 and

find a dominant perfect matching, Q, in G.
Algorithm A 4

3
then assigns the small jobs (load ≤ 1

3) similarly to algorithms A2 and A 3
2
described

in Sections 4.1 and 4.2, respectively. It greedily assigns jobs to a core, until the core’s load exceeds 1.
Jobs are assigned in a non-increasing order of their cache demand and the algorithm goes through

12

the cores in a non-decreasing order of the sum of loads of the large jobs on each core. Once all
the jobs are assigned, the algorithm allocates cache to the cores according to the cache demand of
the most demanding job on each core. Algorithm A 4

3
fails if it does not find a dominant perfect

matching in G or if the resulting solution uses more than c cores or more than 3K cache.

Theorem 4.3. If there is a solution that assigns the jobs to c cores with makespan 1 and uses K
cache then algorithm A 4

3
assigns the jobs to c cores with makespan at most 4

3 and uses at most 3K

cache.

Proof. Let Y = (p, S) be a solution of makespan at most 1, that uses c cores and K cache.
Algorithm A 4

3
provides a solution with makespan at most 4

3 since it may only exceed a load of

1 on any core by the load of a single small job.
Algorithm A 4

3
uses at most c cores to assign the large jobs because the assignment is based on

a perfect matching of size c in G. The existence of Y implies that the total load of all jobs is at
most c. When A 4

3
assigns the small jobs it exceeds a load of 1 on all cores it processes, except

maybe the last one, and therefore we get that A 4
3
uses at most c cores.

Let z be the cache partition generated by A 4
3
. Let Cl be the set of cores whose most demanding

job is a large job and Cs be the set of cores whose most demanding job is a small job.
Consider any core i ∈ Cl. Let j be the most cache demanding large job assigned to core i. Job

j runs in solution Y on some core S(j). Therefore z(i) = xj ≤ p(S(j)). Since each core in Y runs
at most two large jobs, we get that the total cache allocated by our algorithm to cores in Cl is at
most 2K.

Consider the large jobs assigned to cores according to the dominant perfect matching Q. Denote
by si the load on core i after the large jobs are assigned (and before the small jobs are assigned)
and let ri = 1 − si. W.l.o.g. we assume the cores in A 4

3
are indexed such that r1 ≥ . . . ≥ rc. For

every i,
c
∑

l=i

sl is at least as large than this sum in any assignment of the large jobs of makespan at

most 1 because any such assignment defines a perfect matching in graph G and if
c
∑

l=i

sl is larger in

some other assignment then Q is not a dominant perfect matching in G. Since the total volume
of all large jobs is fixed, we get that for every core i the amount of free volume on cores 1 till i,
i
∑

l=1

rl, is maximal and can not be exceeded by any other assignment of the large jobs of makespan

at most 1.
W.l.o.g we assume that the cores in solution Y = (p, S) are indexed such that p(i) ≥ p(i + 1).

Let i be any core in Cs. We show that z(i) ≤ p(i). Assume, to the contrary, that z(i) > p(i).
Let α be the cache demand of the most demanding small job assigned to core i in solution Y . Let
J1 = {j | aj ≤ 1

3 , xj ≥ z(i)} and J2 = {j | aj ≤ 1
3 , xj > α}. Since α ≤ p(i) < z(i), we get that

J1 ⊆ J2.
Solution Y assigns all the jobs in J2 to its first (i− 1) cores, without exceeding a makespan of

1. Therefore the total volume of jobs in J2 is at most the total available space solution Y has on

its first (i− 1) cores after assigning the large jobs. Since we know that for every i,
i
∑

l=1

rl is maximal

and can not be exceeded by any assignment of the large jobs of makespan at most 1, we get that

the total volume of jobs in J2 is at most
i
∑

l=1

rl. Algorithm A 4
3
does not assign all the jobs in J1

13

to its first (i − 1) cores, and since A 4
3
loads each of the first (i − 1) cores with at least 1, we get

that the total volume of jobs in J1 is greater than
i
∑

l=1

rl. So we get that the total volume of jobs in

J2 is less than the total volume of jobs in J1 but that is a contradiction to the fact that J1 ⊆ J2.
Therefore we get that z(i) ≤ p(i), for every i ∈ Cs. It follows that the total cache allocated by our
algorithm to cores in Cs is at most K and this concludes the proof that our algorithm allocates a
total of at most 3K cache to all cores.

4.4 Approximate optimization algorithms for the single load, minimal cache

model

We presented approximation algorithms for the decision version of the joint cache partition and job
assignment problem in the single load and minimal cache demand model. If there is a solution with
makespan m, algorithms A2, A 3

2
and A 4

3
find a solution of makespan 2m, 3m

2 and 4m
3 , that uses K,

2K and 3K cache, respectively. We now show how to transform these algorithms into approximate
optimization algorithms using a standard binary search technique [7].

Lemma 4.4. Given m, K and c, assume there is a polynomial time approximate decision algorithm
that if there is a solution of makespan m, K cache and c cores, returns a solution of makespan
αm, βK cache and c cores, where α and β are at least 1. Then, there is a polynomial time
approximation algorithm that finds a solution of makespan αmopt, βK cache and c cores, where
mopt is the makespan of the optimal solution with K cache and c cores.

Proof. Let’s temporarily assume that the loads of all jobs are integers. This implies that for any
cache partition and job assignment the makespan is an integer.

Our approximate optimization algorithm performs a binary search for the optimal makespan

and maintains a search range [L,U]. Initially, U =
n
∑

j=1
aj and L =

⌈

1
c
U
⌉

. Clearly these initial

values of L and U are a lower and an upper bound on the optimal makespan, respectively. Let
A be the approximate decision algorithm whose existence is assumed in the lemma’s statement.
In each iteration, we run algorithm A with parameters K, c and m = ⌊L+U

2 ⌋. If A succeeds and
returns a solution with makespan at most αm we update the upper bound U := m. If A fails, we
know there is no solution of makespan at most m, and we update the lower bound L := m+ 1. It
is easy to see that the binary search maintains the invariant that after any iteration, if the search
range is [L,U] then mopt ∈ [L,αU] and we have a solution of makespan at most αU . The binary
search stops when L = U .

The makespan of the solution when the binary search stops is at most αU = αL ≤ αmopt.

The binary search stops after O(log2(
n
∑

j=1
aj)) iterations, and since A runs in polynomial time, we

get that our algorithm runs in polynomial time. This shows that our binary search algorithm is a
polynomial time α-approximation algorithm.

If the loads in our instance are not integers, let 1
2φ

be the precision in which the loads are given.

By multiplying all loads by 2φ we get an equivalent instance where all the loads of the jobs are
integers. Note that this only adds φ iterations to the binary search and our algorithm still runs in
polynomial time.

The following theorem follows immediately from Lemma 4.4.

14

Theorem 4.5. Using the approximate decision algorithms presented in this section, we obtain
polynomial time approximate optimization algorithms for the single load, minimal cache demand
problem with approximation factors 2, 3

2 and 4
3 that use K, 2K and 3K cache, respectively.

4.5 Dominant perfect matching in threshold graphs

Let G = (V,E) be an undirected graph with 2c vertices where each vertex x ∈ V has a weight
w(x) ≥ 0. The edges in the graph are defined by a threshold t > 0 to be E = {(x, y) | w(x)+w(y) ≤
t, x 6= y}. Such a graph G is known as a threshold graph [2, 13]. We say that the weight of an edge
(x, y) is w(x, y) = w(x) + w(y).

A perfect matching A in G is a subset of the edges such that every vertex in V in incident to
exactly one edge in A. Let Ai denote the i-th heaviest edge in A. We assume, w.l.o.g, that there
is some arbitrary predefined order of the edges in E that is used, as a secondary sort criteria, to
break ties in case several edges have the same weight. In particular, this implies that Ai is uniquely
defined.

Definition 4.6. A perfect matching A dominates a perfect matching B if for every x ∈ {1, . . . , c}
x
∑

i=1
w(Ai) ≥

x
∑

i=1
w(Bi)

Definition 4.7. A perfect matching A is a dominant matching if A dominates any other perfect
matching B.

Let A and B be two perfect matchings in G. We say that A and B share a prefix of length l if
Ai = Bi for i ∈ {1, . . . , l}. The following greedy algorithm finds a dominant perfect matching in a
threshold graph G that has a perfect matching. We start with G0 = G. At step i, the algorithm
selects the edge (x, y) with maximum weight in the graph Gi. If there are several edges of maximum
weight, then (x, y) is the first by the predefined order on E. The graph Gi+1 is obtained from Gi

by removing vertices x, y and all edges incident to x or y. The algorithm stops when it selected c
edges and Gc is empty.

Lemma 4.8. For every x ∈ {0, . . . , c−1}, If graph Gx has a perfect matching, then the graph Gx+1

has a perfect matching.

Proof. Let Mx denote the perfect matching in graph Gx. Let (a, b) be the edge of maximum weight
in Gx that we remove, with its vertices and their incident edges, to obtain Gx+1. If (a, b) ∈ Mx

then clearly Mx \ {(a, b)} is a perfect matching in Gx+1. If (a, b) 6∈ Mx, and since Mx is a perfect
matching of Gx, there are two vertices c and d such that (a, c) and (b, d) are in Mx. The edge (a, b)
is the maximum weight edge in Gx and thus w(b) ≥ w(c) and w(a) ≥ w(d). Therefore (c, d) must
be an edge in Gx because w(c) + w(d) ≤ w(a) + w(b) ≤ t the threshold defining the edges in our
threshold graph. Let Mx+1 = Mx \ {(a, c), (b, d)} ∪ {(c, d)}. It is easy to see that Mx+1 is a perfect
matching of graph Gx+1.

Theorem 4.9. If G is a threshold graph with 2c vertices that has a perfect matching, then the
greedy algorithm described above finds a dominant perfect matching.

Proof. Lemma 4.8 implies that our greedy algorithm is able to select a set of c edges that is a
perfect matching in G. Denote this matching by Q.

15

Assume, to the contrary, that Q is not a dominant perfect matching in G. Let A be a perfect
matching that is not dominated by Q sharing the longest possible prefix with Q. Let x denote the
length of the shared prefix of Q and A. Let Gx denote the graph obtained from G by removing
the x edges that are the heaviest in both A and Q, their vertices and all edges incident to these
vertices.

Let (a, b) = Qx+1. Since A and Q share a maximal prefix of length x, Ax+1 6= (a, b) . Since
(a, b) is of maximum weight in Gx, it follows that (a, b) 6∈ A (otherwise, it would have been Ax+1).
The set of edges {Ax+1, . . . , Ac} form a perfect matching of Gx so there must be two edges and two
indices l1 > x and l2 > x, such that Al1 = (a, d), Al2 = (b, c). We assume w.l.o.g. that l1 < l2. The
edge (a, b) is of maximum weight in Gx therefore w(a) ≥ w(c) and w(b) ≥ w(d). It follows that
w(c, d) ≤ w(a, b) ≤ t, and therefore (c, d) ∈ Gx. Let A

′ = A\{(a, d), (b, c)}∪{(a, b), (c, d)}. Clearly,
A′ is a perfect matching in G, A′

x+1 = (a, b) and therefore A′ shares a prefix of length x+ 1 with
Q. If A′ dominates A, then since Q does not dominate A, it follows that Q does not dominate A′.
Thus A′ is a perfect matching that shares a prefix of length x+ 1 with Q and is not dominated by
Q. This is a contradiction to the choice of A. We finish the proof by showing that A′ dominates A.

Let l3 be the index such that A′
l3
= (c, d). Since w(b) ≥ w(d), l3 > l2. Let ∆(l) =

l
∑

i=1
w(A′

i)−

l
∑

i=1
w(Ai). The matchings A′ and A share a prefix of length x, so for every 1 ≤ l ≤ x, ∆(l) = 0.

For x + 1 ≤ l < l1, ∆(l) = w(a, b) − w(Al) ≥ 0 since (a, b) is the edge of maximum weight in
Gx. For l1 ≤ l < l2, ∆(l) = w(a, b) − w(a, d) ≥ 0 also by the maximality (a, b). For l2 ≤ l < l3,
∆(l) = w(A′

l)− w(c) − w(d) which is non-negative because l < l3 and therefore w(A′
l) ≥ w(A′

l3
) =

w(c) + w(d). For l ≥ l3, ∆(l) = 0. This shows that A′ dominates A and concludes our proof that
Q is a dominant perfect matching in G.

4.5.1 On dominant perfect matchings in d-uniform hypergraphs

The problem of finding a dominant perfect matching in a d-uniform threshold hypergraph1 that
has a perfect matching is interesting in the context of the single load, minimal cache version of
the joint cache partition and job assignment problem. If we can find such a matching then an
algorithm similar to Algorithm A 4

3
in Section 4.3 would give a solution that uses (d + 1)K cache

and approximates the makespan up to a factor of d+2
d+1 .

However, the following example shows that in a 3-uniform threshold hypergraph that has a
perfect matching, a dominant perfect matching does not necessarily exist. Let ǫ > 0 be an arbitrarily
small constant. Consider a hypergraph with 12 vertices, 3 vertices of each weight in {1

3 ,
2
9 ,

4
9 − ǫ, ǫ}.

Each triplet of vertices is an edge if the sum of its weights is at most 1. This hypergraph has a
perfect matching. In fact, let’s consider two perfect matchings in this hypergraph. Matching A
consists of the edges (13 ,

1
3 ,

1
3), (

4
9 −ǫ, 49 −ǫ, ǫ), (49 −ǫ, 29 ,

2
9) and (29 , ǫ, ǫ). Matching B consists of three

edges of the form (13 ,
2
9 ,

4
9 − ǫ) and one edge of the form (ǫ, ǫ, ǫ). It is easy to check that A and B

are valid perfect matchings in this hypergraph. Any dominant perfect matching in this hypergraph
must contain the edge (13 ,

1
3 ,

1
3) in order to dominate A, since this is the only edge of weight 1 in

this hypergraph. The sum of the two heaviest edges in matching B is 2 − 2ǫ and therefore any

1 A d-uniform threshold hypergraph is defined on a set of vertices, V , each with a non-negative weight w(v). The
set of edges, E, contains all the subsets S ⊂ V of size d such that the sum of the weights of the vertices in S is at
most some fixed threshold t > 0.

16

dominant perfect matching must have an edge of weight at least 1− 2ǫ, as otherwise the matching
will not dominate matching B. But, if the edge (13 ,

1
3 ,

1
3) is in the dominant matching, then all

edges disjoint from (13 ,
1
3 ,

1
3) have a weight smaller than 1−2ǫ. Thus no dominant perfect matching

exists in this hypergraph.
Matching A in the example above is the perfect matching found by applying the greedy algorithm

to this hypergraph. It is interesting to note that in a 3-uniform threshold hypergraph, the greedy
algorithm does not necessarily find a perfect matching at all. This is because Lemma 4.8 does not
extend to 3-uniform threshold hypergraphs. Let ǫ > 0 be an arbitrarily small constant. Consider
a hypergraph with 9 vertices, 3 vertices of each weight in {1

3 ,
2
9 ,

4
9 − ǫ}. Each triplet of vertices is

an edge if the sums of its weights is at most 1. This hypergraph has a perfect matching since the
3 edges of the form (13 ,

2
9 ,

4
9 − ǫ) are a perfect matching in this hypergraph. However the greedy

algorithm first selects the edge (13 ,
1
3 ,

1
3) and then selects an edge of the form (29 ,

2
9 ,

4−ǫ
9). The

remaining hypergraph now contains three vertices and no edges, so the greedy algorithm is stuck
and fails to find a perfect matching.

4.6 PTAS for jobs with correlative single load and minimal cache demand

The main result in this section is a polynomial time approximation scheme for instances of the single
load minimal cache demand problem, where there is a correlation between the load and the cache
demand of jobs with non-zero cache demand. This special case is motivated by the observation
that often there is some underlying notion of a job’s “hardness” that affects both its load and its
minimal cache demand.

Consider an instance of the single load minimal cache demand problem such that for any two
jobs j, j′ such that xj and xj′ are non-zero, aj ≤ aj′ ⇐⇒ xj ≤ xj′. We call a job j such that
xj > 0 a demanding job and a job j such that xj = 0 a non-demanding job. We consider the
following decision problem: We want to decide if there is a cache partition of K cache to c cores
and an assignment of jobs to the cores such that the job’s minimal cache demand is satisfied and
that the resulting makespan is at most m? By scaling down the loads of the jobs by m, we assume
w.l.o.g that m = 1.

Let ǫ > 0. We present an algorithm that if there is a cache partition and a job assignment
with makespan at most 1, returns a cache partition and a job assignment with makespan at most
(1 + 2ǫ). Otherwise, our algorithm either decides that there is no solution of makespan at most 1
or returns a solution of makespan at most (1+2ǫ). Combining this algorithm with a binary search,
we obtain a PTAS.

If there is a job j such that aj > 1 then our algorithm decides that there is no solution of
makespan at most 1. Thus we assume that for any j, aj ≤ 1.

Let J = J1 ∪ J2, J1 = {j ∈ J | aj ≥ ǫ}, J2 = J\J1. In the first phase, we deal only with jobs in
J1. For each j ∈ J1 let uj = max{u ∈ N | ǫ+ uǫ2 ≤ aj}. We say that ǫ+ ujǫ

2 is the rounded-down
load of job j.

Let UD = {uj | j ∈ J1, xj > 0} and UND = {uj | j ∈ J1, xj = 0}. An assignment pattern
of a core is a table that indicates for each u ∈ UD how many demanding jobs of rounded-down
load ǫ + uǫ2 are assigned to the core and for each u ∈ UND how many non-demanding jobs of
rounded-down load ǫ + uǫ2 are assigned to the core. Note that an assignment pattern of a core
does not identify the actual jobs assigned to the core. We only consider assignment patterns whose
rounded-down load is at most 1.

17

A configuration of cores is a table indicating how many cores we have of each possible assignment
pattern. A configuration of cores T is valid if for every u ∈ UD, the number of demanding jobs in
J1 whose uj = u equals the sum of the numbers of demanding jobs with uj = u in all assignment
patterns in T and, similarly, for every u ∈ UND, the number of non-demanding jobs in J1 whose
uj = u equals the sum of the numbers of non-demanding jobs with uj = u in all assignment patterns
in T .

The outline of our algorithm is as follows. The algorithm enumerates over all valid configurations
of cores. For each valid configuration T , we find an actual assignment of the jobs in J1 that matches
T and minimizes the total cache used. We then proceed to assign the jobs in J2, in a way that
guarantees that if there a solution of makespan 1 and K cache that matches this configuration
of cores, then we obtain a solution of makespan at most (1 + 2ǫ) and at most K cache. If our
algorithm does not generate a solution of makespan at most (1 + 2ǫ) and at most K cache, for all
valid configurations of cores, then our algorithm decides that no solution of makespan at most 1
exists.

Let T be a valid configuration of cores. For each core i ∈ {1, . . . , c}, let qi be the maximal
rounded-down load of a demanding job assigned to core i according to the assignment pattern of
core i in T . Let αi be the number of demanding jobs of rounded-down load qi on core i, according to
T . We assume w.l.o.g that the cores are indexed such that qi ≥ qi+1. Let Q = {qi | i ∈ {1, . . . , c}}.
For each q ∈ Q, let s(q) be the index of the first core i with qi = q and let e(q) be the index of the last
core i with qi = q. Assume that the cores s(q), . . . , e(q) are indexed such that αs(q) ≥ . . . ≥ αe(q).
Let J1(q) = {j ∈ J1 | xj 6= 0, ǫ + ujǫ

2 = q}, the set of all demanding jobs in J1 whose rounded

down load is q. Let Y (q) be the set of the
e(q)
∑

i=s(q)

αi jobs of smallest cache demands in J1(q).

Our algorithm builds an assignment matching T of minimal cache usage among all assignments
matching T . To do so, our algorithm goes over Q in a decreasing order and distributes the jobs
in Y (q) to the cores s(q), . . . , e(q) in this order of the cores such that core i ∈ [s(q), e(q)], in
turn, gets the αi most cache demanding jobs in Y (q) that are not yet assigned. After we assign
the demanding jobs with the maximal rounded-down load on each core, our algorithm arbitrarily
chooses the identity of all other jobs in the configuration T . These are non-demanding jobs and
demanding jobs whose rounded-down load is not of the maximal rounded-down load on their core.
Each core is allocated cache according to the cache demand of the most cache demanding job that
is assigned to it.

The algorithm continues with the jobs in J2. It first assigns the demanding jobs in J2, in the
following greedy manner. Order these jobs from the most cache demanding to the least cache
demanding. For each core, we consider two load values: its actual load which is the sum of the
actual loads of jobs in J1 assigned to the core, and its rounded down load which is the sum of
rounded down loads of jobs in J1 assigned to the core. We order the cores such that first we have
all the cores that already had some cache allocated to them in the previous phase of the algorithm,
in an arbitrary order. Following these cores, we order the cores with no cache allocated to them,
from the least loaded core to the most loaded core, according to their rounded down loads. These
cores are either empty or have only non demanding jobs, from J1, assigned to them. The algorithm
assigns the jobs to the cores in these orders (of the jobs and of the cores) and stops adding more
jobs to a core and moves to the next one when the core’s actual load exceeds 1 + ǫ. After all
these jobs are assigned, the algorithm adjusts the cache allocation of the cores whose most cache
demanding job is now a job of J2.

18

Finally, it assigns the non-demanding jobs in J2. Each such job is assigned arbitrarily to a core
whose actual load does not already exceed 1 + ǫ.

Lemma 4.10. The number of valid configurations of cores is O(cO(1)).

Proof. We first consider the number of assignment patterns with rounded-down load at most 1.
Since for each job j, aj ≤ 1, the size of UD and the size of UND are at most

⌊

1−ǫ
ǫ2

⌋

= O(1
ǫ2
) = O(1).

In an assignment pattern of load at most 1, there are at most 1
ǫ
jobs in J1 assigned to each core

and thus we get that the number of possible assignment patterns is at most O((1
ǫ
)(

1
ǫ2

)) = O(1).
Since the number of assignment patterns we consider is O(1), it follows that the number of possible
configurations of cores is O(cO(1)).

Since our algorithm spends a polynomial time per configuration of cores then Lemma 4.10
implies that our algorithm runs in polynomial-time.

Lemma 4.11. For any configuration of cores T there is an assignment matching T of minimal

cache usage among all assignments matching T , that for each q ∈ Q assigns the
e(q)
∑

i=s(q)

αi least cache

demanding jobs in J1(q) (i.e. the set of jobs Y(q)) to the cores s(q), . . . , e(q).

Proof. Consider a job assignment S of minimal cache usage that matches T . Assume that for some
q ∈ Q assignment S does not assign all the jobs in Y (q) to the cores s(q), . . . , e(q). So there is a
core i ∈ [s(q), e(q)] that runs a job j ∈ J1(q) \ Y (q).

Since S assigns
e(q)
∑

i=s(q)

αi jobs from J1(q) to cores s(q), . . . , e(q) and since jobs in J1(q) cannot

be assigned to cores i′ > e(q), it follows that there is a core i′ < s(q) and a job j′ ∈ Y (q) such
S(j′) = i′. Suppose we switch the assignment of jobs j and j′ and run job j on core i′ and job j′ on
core i. Let S′ denote the resulting assignment. The cache required by core i′ does not increase, as
it runs demanding jobs of rounded down load greater than q and therefore of cache demand greater
than the cache demand of job j. By the choice of the jobs j and j′ we know that xj′ ≤ xj and
therefore the cache required by core i in S′ can only decrease compared to the cache required by
core i in S. It follows that the cache usage of S′ is at most that of S and since S is of the minimal
cache usage of all assignments that match T , we get that the cache usage of S′ must be the same
as of S.

By repeating this argument as long as there is a job that violates Lemma 4.11, we obtain an
assignment as required.

Lemma 4.12. For any configuration of cores T , Let S be an assignment matching T such that
for each q ∈ Q and for each core i ∈ [s(q), e(q)], if we index the jobs in Y (q) from the most
cache demanding to the least cache demanding, assignment S assigns to core i the jobs in Y (q) of

indices
i−1
∑

j=s(q)

αj +1, . . . ,
i
∑

j=s(q)

αj . Assignment S is of minimal cache usage, among all assignments

matching T .

Proof. Assume to the contrary that assignment S is not of minimal cache usage, among all assign-
ments matching T . Let S′ be an assignment whose existence is guaranteed by Lemma 4.11. Since S
and S′ have different cache usages, there exists q ∈ Q such that S and S′ differ on their assignment

19

of the jobs in Y (q). We index the jobs in Y (q) from the most cacn demanding to the least cache
demanding. Let j ∈ Y (q) be the first job (most cache demanding) in Y (q) such that S(j) 6= S′(j).
We select S′ such that it maximizes j among all assignments satisfying Lemma 4.11 that disagree
with S on the assignment of the jobs in Y (q).

Denote i = S(j) and i′ = S′(j). Since S and S′ both assign αi jobs from Y (q) to core i and
since j is the first job in Y (q) on which S and S′ disagree, then there is a job j2 ∈ Y (q), j2 > j
such that S′(j2) = i.

We first assume that there is a job j1 < j such that S(j1) = i. Let S′′ be the assignment such
that S′′(j) = i, S′′(j2) = i′ and for any job h 6∈ {j,j2}, S

′′(h) = S′(h). The cache required by core
i′ in S′′ is at most the cache required by core i′ in S′, since j < j2. Since j1 < j and S(j1) = i,
we know that S′(j1) = i and also S′′(j1) = i. This implies that in S′′, core i requires the same
amount of cache as in S′. It follows that S′′ is also an assignment of minimal cache usage, and
that it satisfies Lemma 4.11. Since S′′(j) = S(j), we get a contradiction to the way we selected S′.
Thus S is of minimal cache usage, among all assignments matching T .

We now assume that j is the first job in Y (q) such that S(j) = i. Let S′′ be the following
assignment. Any job that is assigned by S′ to a core different than i and i′ is assigned by S′′ to the
same core. For any job x such that S′(x) = i′, S′′(x) = i. All the αi′ least cache demanding jobs
assigned by S′ to core i are assigned by S′′ to core i′. Note that αi ≥ αi′ and therefore assignment
S′′ is well defined.

Since S and S′ agrees on the assignment of jobs ĵ < j in Y (q) and assign them to cores l < i,
then job j is the most cache demanding job assigned to cores l ≥ i by S′ and S′′. Therefore in
assignment S′, core i′ requires xj cache and in assignment S′′ core i requires xj cache. In assignment
S′′, core i′ is assigned a set of jobs that is a subset of the jobs assigned to core i by S′. Thus the
cache required by core i′ in assignment S′′, is at most the cache required by core i in assignment
S′. It follows that S′′ is also an assignment of minimal cache usage, and that it satisfies Lemma
4.11. This contradicts the choice of S′ and concludes the proof that assignment S is of minimal
cache usage, among all assignments matching T .

Corollary 4.13. For each configuration of cores T our algorithm builds an actual assignment of
minimal cache usage of the jobs in J1 that matches T .

Proof. The assignment returned by our algorithm is an assignment S, as in the statement of Lemma
4.12.

Lemma 4.14. Consider an instance of the correlative single load minimal cache demand problem.
If there is a cache partition and job assignment that schedules the jobs on c cores, uses at most
K cache and has a makespan of at most 1 then our algorithm finds a cache partition and job
assignment that schedules the jobs on c cores, uses at most K cache and has a makespan of at most
(1 + 2ǫ).

Proof. Let A be a solution of makespan at most 1 with c cores and K cache, whose existence is
assumed by the lemma. Let TA be the configuration of the cores corresponding to the assignment
of the jobs in J1 by solution A and assume our algorithm currently considers TA in its enumeration.

We show that our algorithm succeeds in assigning all the jobs to c cores. Let’s assume to the
contrary that it fails. It can only fail if all cores are assigned an actual load of more than (1 + ǫ)
and there are still remaining jobs to assign. This indicates that the total volume to assign is larger

20

than c(1 + ǫ), which contradicts the fact that assignment A is able to assign the jobs to c cores
with makespan at most 1.

Let S denote the assignment of all jobs on c cores that out algorithm returns when it considers
TA. We know that S matches TA for jobs in J1. We now show that in S each core has an actual
load of at most 1+2ǫ. When we restrict S to J1 we know that the rounded down load on each core
is at most 1 and that each core has at most 1

ǫ
jobs from J1 assigned to it. Since the actual load of

any job in J1 is at most ǫ2 larger than its rounded down load, we get that if we restrict assignment
S to J1, the actual load on each core is at most 1 + ǫ2

ǫ
= 1+ ǫ. The way our algorithm assigns the

jobs in J2 implies that the actual load of a core in assignment S can only exceed 1 + ǫ by the load
of a single job from J2. Therefore the actual load on any core in assignment S is at most 1 + 2ǫ.

We show that assignment S uses at most K cache. Cache is allocated by our algorithm in
two steps: when it decides on the actual assignment of the jobs in J1 that matches TA and when
it assigns the demanding jobs in J2. Lemma 4.13 shows that S restricted to J1 is of minimal
cache usage of all assignments matching TA and thus uses at most the same amount of cache as
assignment A restricted to J1.

We show that when we also take into account the demanding jobs in J2, S uses at most the
same amount of cache as A. Assume the cores in S are indexed according to the order in which
our algorithm assigns demanding jobs from J2 to them. Assume the cores in A are indexed such
that core i in S and core i in A have the same assignment pattern. For any core in S, we say that
its free space is (1 + ǫ) minus the sum of the actual loads of all jobs in J1 assigned to it by S. For
any core in A, we say that its free space is 1 minus the sum of the actual loads of all jobs in J1
assigned to it by A. For any i, core i in S has the same rounded down load as core i in A and the
actual load of core i in S is at most ǫ larger than the actual load of core i in A. Therefore, by the
definition of free space, the free space of core i in solution S is at least the free space of core i in
solution A.

Let i2 be the number of cores in S that have a demanding job from J1 assigned to them. When
our algorithm assigns jobs in J2 to a core i ≤ i2, it does not increase the cache required by core i
since any job in J1 is at least as cache demanding as any job in J2. It follows that the total cache
required by cores 1, . . . , i2 in S is at most the total cache required by cores 1, . . . , i2 in A.

Let i > i2 be a core in S whose cache demand is determined by a job from J2. We now show
that core i in S requires no more cache than core i in A. This will conclude the proof that S uses
at most K cache.

The total load of demanding jobs in J2 that S assigns to cores 1, . . . , i − 1 is at least the sum
of the free space of these cores, since our algorithm exceeds an actual load of 1 + ǫ on each core
before moving the next. The sum of the free space of cores 1, . . . , i − 1 in S is at least the sum of
the free space of the cores 1, . . . , i − 1 in A, which in turn is an upper bound on the total load of
demanding jobs from J2 that are assigned in A to cores 1, . . . , i − 1. Since our algorithm assigns
the demanding jobs in J2 in a non-increasing order of their cache demand we get that the cache
demand of the most cache demanding job from J2 on core i in S is at most the cache demand of
the most cache demanding job in J2 on core i in A.

Lemma 4.14 shows that for any ǫ′ > 0, we have a polynomial time (1 + 2ǫ′)-approximate
decision algorithm. Given ǫ > 0, by applying our algorithm with ǫ′ = ǫ/2 we obtain a polynomial
time (1 + ǫ)-approximate decision algorithm.

By using a binary search similar to the one in Lemma 4.4 we obtain an (1 + ǫ)-approximation
for the optimization problem, using our (1 + ǫ)-approximate decision algorithm. To conclude, we

21

have proven the following theorem.

Theorem 4.15. There is a polynomial time approximation scheme for the joint cache partition and
job assignment problem, when the jobs have a correlative single load and minimal cache demand.

5 Step functions with a constant number of load types

Empirical studies [3] suggest that the the load of a job, as a function of available cache, is often
similar to a step-function. The load of the job drops at a few places when the cache size exceeds the
working-set required by some critical part. In between these critical cache sizes the load of the job
decreases negligibly with additional cache. The problems we consider in this section are motivated
by this observation.

Formally, each job j ∈ J is described by two load values lj < hj and a cache demand xj ∈
{0, . . . ,K}. If job j is running on a core with at least xj cache then it takes lj time and otherwise
it takes hj time. If a job is assigned to a core that meets its cache demand, xj, we say that it is
assigned as a small job. If it is assigned to a core that doesn’t meet its cache demand we say that
it is assigned as a large job. At first we study the case where the number of different load types is
constant and then we show a polynomial time scheduling algorithm for the corresponding special
case of the ordered unrelated machines scheduling problem.

Let L = {lj | j ∈ J} and H = {hj | j ∈ J}, the sets of small and large loads, respectively. Here
we assume that |L| and |H| are both bounded by a constant.

For each α ∈ L, β ∈ H, we say that job j is of small type α if lj = α and we say that job j
is of large type β if hj = β. If job j is of small type α and large type β we say that it is of load
type (α, β). Note that jobs j1, j2 of the same load type may have different cache demands xj1 6= xj2
and thus if we take cache demands into account the number of different job types is Ω(K) and not
O(1).

We reduce this problem to the single load minimal cache demand problem studied in Section
4. For each load type (α, β), we enumerate on the number, x(α, β), of the jobs of load type (α, β)
that are assigned as small jobs. For each setting of the values x(α, β) for all load types, we create
an instance of the single load minimal cache demand problem in which each job corresponds to a
job in our original instance. For each job j which is one of the x(α, β) most cache demanding jobs
of load type (α, β) we create a job of load β and cache demand 0. For each job j of load type
(α, β) which is not one of the x(α, β) most cache demanding job of this load type, we create a
job of load α and cache demand xj. We solve each of the resulting instances using any algorithm
for the single load minimal cache demand problem presented in Section 4, and choose the solution
with the minimal makespan. We transform this solution back to a solution of the original instance,
by replacing each job with its corresponding job in the original instance. Note that this does not
affect the makespan or the cache usage.

Lemma 5.1. Given a polynomial time α-approximation algorithm for the single load minimal cache
demand problem that uses at most βK cache, the reduction described above gives a polynomial
time α-approximation algorithm for the problem where job loads are step functions with a constant
number of load types, that uses at most βK cache.

Proof. Consider an instance of the joint cache partition and job assignment problem with load
functions that are step functions with a constant number of load types. Assume there is a solution

22

A for this instance of makespan m that uses at most K cache. Let x(α, β) be the number of jobs
of load type (α, β) that are assigned in A as large jobs. W.l.o.g we can assume that that for each
(α, β), the x(α, β) jobs that are assigned as large jobs are the x(α, β) most cache demanding jobs of
load type (α, β). The existence of A implies that when our algorithm considers the same values for
x(α, β), for each (α, β), it generates an instance of the single load cache demand problem that has
a solution of makespan at most m and at most K cache. Applying the α-approximation algorithm
for the single load minimal cache demand problem, whose existence in assumed by the lemma, on
this instance yields a solution of makespan at most αm that uses at most βK cache. This solution
is transformed to a solution of our original instance without affecting the makespan or the cache
usage.

Our algorithm runs in polynomial time since the size of the enumeration is O(n|L||H|).

Corollary 5.2. For instances in which the load functions are step functions with a constant number
of load types there are polynomial time approximation algorithms that approximate the makespan
up to a factor of 2, 3

2 and 4
3 and use at most K, 2K and 3K, respectively.

5.1 The corresponding special case of ordered unrelated machines

Recall that if we fix the cache partition in an instance of the joint cache partition and job assignment
problem then we obtain an instance of the ordered unrelated machines scheduling problem. For
the case where the load functions are step functions with a constant number of load types, the
resulting ordered unrelated machines instance can be solved in polynomial time using the dynamic
programming algorithm described below. The dynamic program follows a structure similar to the
one used in [4], where polynomial time approximation schemes are obtained for several variants of
scheduling with restricted processing sets.

In this special case of the ordered unrelated scheduling problem job j runs in time lj on some
prefix of the machines, and in time hj on the suffix (we assume that the machines are ordered in
non-increasing order of their strength/cache allocation). For simplicity, we assume xj is given as
the index of the first machine on which job j has load hj . If job j takes the same amount of time
to run regardless of cache, we assume xj = c+ 1 and its load on any machine is lj. As before, we
assume that L = {lj | j ∈ J} and H = {hj | j ∈ J} are of constant size.

We design a polynomial time algorithm that finds a job assignment that minimizes the makespan.
The algorithm does a binary search for the optimal makespan, as in Section 4.4, using an algorithm
for the following decision problem: Is there an assignment of the jobs J to the c machines with
makespan at most M? By scaling the loads, we assume that M = 1.

For every machine m, we define Sm = {j ∈ J | xj = m+ 1}, the set of all jobs that are large
on machine m+1 and small on any machine i ≤ m. Let Sm(α, β) = {j ∈ Sm | lj = α, hj = β} and
bm(α, β) = |Sm(α, β)|. It is convenient to think of bm as a vector in {0, . . . , n}L×H .

Let a ∈ {0, . . . , n}L×H , δ ∈ {0, . . . , n}H and m be any machine. Let J(m,a) be a set of jobs
which contains all the jobs in

⋃m
i=1 Si together with additional a(α, β) jobs of load type (α, β) from

c
⋃

i=m+1
Si, for each load type (α, β). Let πm(a, δ) be 1 if we can schedule all the jobs in J(m,a),

except for δ(β) jobs of each large load type β, on the first m machines. Note that since the
additional jobs specified by a are small on all machines 1, . . . ,m, πm(a, δ) does not depend on the
additional jobs’ identity. Our original decision problem has a solution if and only if πc(~0,~0) = 1.

23

Consider the decision problem π1(a, δ). We want to decide if it is possible to schedule the jobs in
J(1, a), except for δ(β) jobs of each large load type β, on machine 1. To decide this, our algorithm
chooses the δ(β) jobs of each large job type β that have the largest small loads and removes them
from J(1, a). If the sum of the small loads of the remaining jobs is at most 1, then π1(a, δ) = 1,
and otherwise π1(a, δ) = 0.

To solve πm(a, δ) we enumerate, for each load type (α, β), on ξ(α, β), the number of jobs in
J(m,a) of this load type that are assigned as small jobs to machine m. Note that these jobs are
either in Sm(α, β) or in the additional set of a(α, β) jobs of type (α, β). For each β ∈ H, we
enumerate on the number λ(β) of jobs in J(m,a) of large load type β that are assigned as large
jobs to machine m. The following lemma is the basis for our dynamic programming scheme. Its
proof is straightforward.

Lemma 5.3. We can schedule all the jobs in J(m,a) except for δ(β) jobs of large load type β (for
each β ∈ H) on machines 1, . . . ,m with makespan at most 1 such that ξ(α, β) jobs of load type
(α, β) are assigned to machine m as small jobs and λ(β) jobs of large load type β are assigned to
machine m as large jobs if and only if the following conditions hold:

• For each (α, β) ∈ L×H, ξ(α, β) ≤ a(α, β) + bm(α, β): The number of jobs of each load type
that we assign as small jobs to machine m is at most the number of jobs in J(m,a) of this
load type that are small on machine m.

•
∑

β∈H

λ(β)β +
∑

(α,β)∈L×H

ξ(α, β)α ≤ 1. The total load of the jobs assigned to machine m is at

most 1.

• Let a′ = a + bm − ξ and δ′ = δ + λ then πm−1(a
′, δ′) = 1. The jobs in J(m − 1, a′), except

for δ′(β) jobs of large load β for each β ∈ H, can be scheduled on machines 1, . . . ,m− 1 with
makespan at most 1.

The algorithm for solving πm(a, δ) sets πm(a, δ) = 1 if it finds λ and ξ such that the conditions
in Lemma 5.3 are met. If the conditions are not met for all λ and ξ then πm(a, δ) = 0.

Our dynamic program solves πm(a, δ) in increasing order of m from 1 to c and returns the result
of πc(~0,~0). The correctness of the dynamic program follows from Lemma 5.3 and from the fact
that for m = 1, our algorithm chooses the jobs that it does not assign to machine 1 such that the
remaining load on machine 1 is minimized. Therefore we set π1(a, δ) = 1 if and only if there is a
solution of makespan at most 1.

By adding backtracking links, our algorithm can also construct a schedule with makespan at
most 1. We maintain links between each πm(a, δ) that is 1 to a corresponding πm−1(a

′, δ′) that is
also 1, according to the last condition in Lemma 5.3. Tracing back the links from πc(~0,~0) gives us an
assignment with makespan at most 1 as follows. Consider a link between πm(a, δ) and πm−1(a

′, δ′).
This defines λ = δ′ − δ and ξ = a + bm − a′. For each (α, β) we assign to machine m, ξ(α, β)

arbitrary jobs of load type (α, β) from
c
⋃

i=m

Si that we have not assigned already, and we reserve

λ(β) slots of load β on machine m to be populated with jobs later. Our algorithm guarantees that
the load on machine m is at most 1. When we reach π1(a, δ), for some a and δ, in the backtracking
phase, we have δ(β) slots of size β allocated on machines 2, . . . ,m. The δ(β) jobs of large load β
with the largest small loads in J(1, a) are assigned to these slots. Note that these jobs may be large

24

on their machine and have a load of β or they may be small and have a load smaller than β. In
any case, the resulting assignment assigns all the jobs in J and has a makespan of at most 1.

The number of problems πm(a, δ) that our dynamic program solves is O(cn|L||H|) = O(cnO(1)).
To solve each problem, we check the conditions in Lemma 5.3 for O(n|L||H|) possible λ’s and ξ’s.
This takes O(1) per λ and ξ since we already computed πm−1(a

′, δ′) for every a′ and δ′. Thus the
total complexity of this algorithm is polynomial. This concludes the proof of the following theorem.

Theorem 5.4. Our dynamic programming algorithm is a polynomial-time exact optimization al-
gorithm for the special case of the ordered unrelated machines scheduling problem, where each job
j has load lj on some prefix of the machines, and load hj ≥ lj on the corresponding suffix.

6 Joint dynamic cache partition and job scheduling

We consider a generalization of the joint cache partition and job assignment problem that allows
for dynamic cache partitions and dynamic job assignments. We define the generalized problem as
follows. As before, J denotes the set of jobs, there are c cores and a total cache of size K. Each
job j ∈ J is described by a non-increasing function Tj(x).

A dynamic cache partition p = p(t, i) indicates the amount of cache allocated to core i at time

unit t2. For each time unit t,
c
∑

i=1
p(t, i) ≤ K. A dynamic assignment S = S(t, i) indicates for each

core i and time unit t, the index of the job that runs on core i at time t. If no job runs on core
i at time t then S(t, i) = −1. If S(t, i) = j 6= −1 then for any other core i2 6= i, S(t, i2) 6= j.
Each job has to perform 1 work unit. If job j runs for α time units on a core with x cache, then
it completes α

Tj(x)
work. A partition and schedule p, S are valid if all jobs complete their work.

Formally, p, S are valid if for each job j,
∑

<t,i>∈S−1(j)

1
Tj(p(t,i))

= 1. The load of core i is defined as

the maximum t such that S(t, i) 6= −1. The makespan of p, S is defined as the maximum load on
any core. The goal is to find a valid dynamic cache partition and dynamic job assignment with a
minimal makespan.

It is easy to verify that dynamic cache partition and dynamic job assignment, as defined above,
generalize the static partition and static job assignment. The partition is static if for every fixed
core i, p(t, i) is constant with respect to t. The schedule is a static assignment if for every job j,
there are times t1 < t2 and a core i such that S−1(j) = {< t, i >| t1 ≤ t ≤ t2}.

We consider four variants of the joint cache partition and job assignment problem. The static
partition and static assignment variant studied so far, the variant in which the cache partition is
dynamic and the job assignment is static, the variant in which the job assignment is dynamic and
the cache partition is static and the variant in which both are dynamic.

Note that in the variant where the cache partition is dynamic but the job assignment is static
we still have to specify for each core, in which time units it runs each job that is assigned to this
core. That is, we have to specify a function S(t, i) for each core i. This is due to the fact that
different schedules of the same set of jobs assigned to a particular core, when the cache partition
is dynamic, may have different loads, since jobs may run with different cache allocations. When
the cache partition is also static, the different schedules of the same set of jobs on a particular core
have the same load, and it suffices to specify which jobs are assigned to which core.

2To simplify the presentation we assume that time is discrete.

25

We study the makespan improvement that can be gained by allowing a dynamic solution. We
show that allowing a dynamic partition and a dynamic assignment can improve the makespan by
a factor of at most c, the number of cores. We also show an instance where by using a dynamic
partition and a static assignment we achieve an improvement factor arbitrarily close to c. We show
that allowing a dynamic assignment of the jobs, while keeping the cache partition static, improves
the makespan by at most a factor of 2, and that there is an instance where an improvement of 2− 2

c

is achieved, for c ≥ 2.
Given an instance of the joint cache partition and job assignment problem, we denote by OSS

the optimal static cache partition and static job assignment, by ODS the optimal dynamic cache
partition and static job assignment, by OSD the optimal static cache partition and dynamic job
schedule and by ODD the optimal dynamic cache partition and dynamic job schedule. For any
solution A we denote its makespan by M(A).

Lemma 6.1. For any instance of the joint cache partition and job assignment problem, M(OSS) ≤
cM(ODD).

Proof. Let A be the trivial static partition and schedule, that assigns all jobs to the first core and
allocates all the cache to this core. Let’s consider any job j that takes a total of α time to run
in the solution ODD. Whenever a fraction of job j runs on some core with some cache partition,
it has at most K cache available to it. Therefore, in solution A, when we run job j continuously
on one core with K cache, it take at most α time. Since the total running time of all the jobs in
solution ODD is at most cM(ODD), we get M(OSS) ≤ M(A) ≤ cM(ODD).

Corollary 6.2. For any instance of the joint cache partition and job assignment problem, M(OSS) ≤
cM(ODS).

Proof. Clearly, M(ODS) ≥ M(ODD) for any instance. Combine this with Lemma 6.1 and we get
that M(OSS) ≤ cM(ODS)

Lemma 6.3. For any ǫ > 0 there is an instance of the joint cache partition and job assignment
problem, such that M(OSS) > (c− ǫ)M(ODS).

Proof. Let b be an arbitrary constant. Let’s consider the following instance with two types of jobs.
There are c jobs of type 1, such that for each such job j, Tj(x) = ∞, for x < K and Tj(K) = 1.
There are bc jobs of type 2, such that for each such job j, Tj(x) = bc if x < K

c
and Tj(x) = 1 if

x ≥ K
c
.

Consider the following solution. The static job assignment runs b jobs of type 2 on each core.
After b time units, it runs the c jobs of type 1 on core 1. The dynamic cache partition starts with
each core getting K

c
cache. The cache partition changes after b time units and core 1 gets all the

cache. This solution has a makespan of b+ c and therefore M(ODS) ≤ b+ c.
There is an optimal static cache partition and static job assignment that allocates to each core

0, K
c
or K cache, because otherwise we can reduce the amount of cache allocated to a core without

changing the makespan of the solution. This implies that there are only two static cache partitions
that may be used by this solution optimal static solution: the partition in which p(i) = K

c
for each

core i, and the partition that gives all the cache to a single core. It is easy to see that if we use the
cache partition where p(i) = K

c
we get a solution with an infinite makespan because of the jobs of

type 1. Therefore this optimal static solution uses a cache partition that gives all the cache to a
single core. Given this partition, the optimal job assignment is to run all the c jobs of type 1 on

26

the core with all the cache, and assign to that core additional bc− (c− 1) jobs type 2. So the load
on that core is bc+ 1. Each of the c− 1 cores with no cache is assigned exactly one job of type 2,
and each such core has a load of bc. Therefore the ratio M(OSS)

M(ODS)
≥ bc+1

b+c
. The lower bound on this

ratio approaches c as b approaches infinity. Since b is an arbitrarily chosen constant, we can choose
it large enough such that we get a lower bound that is greater than c− ǫ, for any ǫ > 0.

Corollary 6.4. For any ǫ > 0 there is an instance of the joint cache partition and job assignment
problem, such that M(OSS) > (c− ǫ)M(ODD).

Proof. Consider the same instance as in the proof of Lemma 6.3. For that instance, M(OSS) >
(c − ǫ)M(ODS). It follows that M(OSS) > (c − ǫ)M(ODD) for the instance in Lemma 6.3 , since
M(ODS) ≥ M(ODD).

Lemma 6.5. For any instance of the joint cache partition and job assignment problem, M(OSS) ≤
2M(OSD).

Proof. Consider any instance of the joint cache partition and job assignment problem and let
OSD = (p, S). Let xij be the fraction of job j’s work unit that is carried out by core i. Formally,

xij = |{t|(t,i)∈S−1(j)}|
Tj(p(i))

. Let’s consider the instance of scheduling on unrelated machines where job

j runs on core i in time Tj(p(i)). Since for every job j,
c
∑

i=1
xij = 1 then xij is a fractional

assignment for that instance of the unrelated machines scheduling problem. The makespan of this
fractional solution is M(OSD). Let y be the optimal fractional assignment of the defined instance
of unrelated machines. We know that if we apply Lenstra’s rounding theorem [7] to y, we get an
integral assignment for the unrelated machines scheduling instance, denoted by z, such that the
makespan of z is at most twice the makespan of y and therefore at most twice the makespan of x.
Assignment z is a static job assignment and therefore (p, z) is a solution to the joint static cache
partition and static job assignment problem of our original instance, with makespan at most twice
M(OSD). It follows that M(OSS) ≤ 2M(OSD).

Lemma 6.6. For c ≥ 2, there is an instance of the joint partition and scheduling problem such
that M(OSS)

M(OSD) = 2− 2
c
.

Proof. Consider the following instance. There are c jobs, where each takes 1 − 1
c
time regardless

of the cache allocation, and one job that takes 1 time unit, regardless of cache. The optimal static
schedule for this instance assigns two jobs of size 1 − 1

c
to the first core, assigns one job of size

1 − 1
c
to each of the cores 2, . . . , c − 1, and assigns the unit sized job to the last core. This yields

a makespan of 2 − 2
c
. The optimal dynamic assignment assigns one job of size 1 − 1

c
fully to each

core, and then splits the unit job equally among the cores, to yield a makespan of 1. Notice that
this can be scheduled in a way the the unit job will never run simultaneously on more than one
core. This is achieved by running the ith fraction of size 1

c
of the unit job on core i at time i−1

c
.

The other jobs, that are fully assigned to a single core, are paused and resumed later, if necessary,
to accommodate the fractions of the unit sized job. Therefore in this instance the ratio M(OSS)

M(OSD) is

exactly 2− 2
c
.

27

References

[1] R. D. Barve, E. F. Grove, and J. S. Vitter. Application-controlled paging for a shared cache.
SIAM J. Comput., 29(4):1290–1303, February 2000.

[2] V. Chvátal and P. L. Hammer. Set-packing problems and threshold graphs. Technical Report
CORR 73-21, Dep. of Combinatorics and Optimization, Waterloo, Ontario, 1973.

[3] U. Drepper. What every programmer should know about memory, 2007.
http://people.redhat.com/drepper/cpumemory.pdf.

[4] L. Epstein and A. Levin. Scheduling with processing set restrictions: PTAS results for several
variants. Int. J. Prod. Econ., 133(2):586 – 595, 2011.

[5] A. Hassidim. Cache replacement policies for multicore processors. In ICS, pages 501–509,
2010.

[6] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on
uniform processors: Using the dual approximation approach. SIAM J. Comput., 17(3):539–
551, 1988.

[7] J. K. Lenstra, D. B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46:259–271, 1990.

[8] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights into multicore
cache partitioning: Bridging the gap between simulation and real systems. In HPCA, pages
367–378, 2008.

[9] T. Liu, M. Li, and C. J. Xue. Instruction cache locking for multi-task real-time embedded
systems. Real-Time Systems, 48(2):166–197, 2012.

[10] T. Liu, Y. Zhao, M. Li, and C. J. Xue. Task assignment with cache partitioning and locking
for WCET minimization on MPSoC. In ICPP, pages 573–582. IEEE Computer Society, 2010.

[11] T. Liu, Y. Zhao, M. Li, and C. J. Xue. Joint task assignment and cache partitioning with cache
locking for WCET minimization on MPSoC. J. Parallel Distrib. Comput., 71(11):1473–1483,
2011.

[12] A. López-Ortiz and A. Salinger. Paging for multi-core shared caches. In ITCS, pages 113–127.
ACM, 2012.

[13] N. V. R. Mahadev and U. N. Peled. Threshold graphs and related topics, volume 56 of Annals
of Discrete Mathematics. Elsevier, 1995.

[14] A. M. Molnos, S. D. Cotofana, M. J. M. Heijligers, and J. T. J. van Eijndhoven. Throughput
optimization via cache partitioning for embedded multiprocessors. In ICSAMOS, pages 185–
192, 2006.

[15] E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for
scheduling unrelated machines. Oper. Res. Lett., 33(2):127–133, March 2005.

28

	1 Introduction
	2 The ordered unrelated machines problem
	3 A constant approximation algorithm
	4 Jobs with a single load and a minimal cache demand
	4.1 2-approximation
	4.2 32-approximation with 2K cache
	4.3 43-approximation with 3K cache, using dominant matching
	4.4 Approximate optimization algorithms for the single load, minimal cache model
	4.5 Dominant perfect matching in threshold graphs
	4.5.1 On dominant perfect matchings in d-uniform hypergraphs

	4.6 PTAS for jobs with correlative single load and minimal cache demand

	5 Step functions with a constant number of load types
	5.1 The corresponding special case of ordered unrelated machines

	6 Joint dynamic cache partition and job scheduling

