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Abstract

We investigate the implications of the exponential time hypothesis on al-
gorithms for scheduling and packing problems. Our main focus is to show
tight lower bounds on the running time of these algorithms. For exact algo-
rithms we investigate the dependence of the running time on the number 𝑛

of items (for packing) or jobs (for scheduling). We show that many of these
problems, including SUBSETSUM, KNAPSACK, BINPACKING, ⟨P2 | | 𝐶max⟩, and
⟨P2 | |

∑︀
𝑤𝑗𝐶𝑗⟩, have a lower bound of 2o(𝑛) × ‖𝐼‖O(1). We also develop an

algorithmic framework that is able to solve a large number of scheduling and
packing problems in time 2O(𝑛) × ‖𝐼‖O(1). Finally, we show that there is no PTAS
for MULTIPLEKNAPSACK and 2D-KNAPSACK with running time 2o( 1

𝜀 ) × ‖𝐼‖O(1)

and 𝑛o( 1
𝜀 ) × ‖𝐼‖O(1).

1 Introduction

Classical complexity theory allows us to rule out polynomial time algorithms for
decision and optimization problems. Often the preferred way for dealing with NP-
hard problems are approximate algorithms and heuristics. In recent years however,
the interest in super-polynomial exact algorithms has increased. A big problem is
that, under the usual assumption P ̸= NP, we cannot know what super-polynomial
running times are possible for these problems.

A stronger assumption was introduced by Impagliazzo, Paturi, and Zane, the
Exponential Time Hypothesis (ETH). The subject of the ETH is the satisfiability problem
3-SAT In contrast to classical complexity theory the running time assumed in the
ETH not only depends on the length ‖𝜙‖ of the instance, but on a special parameter
of the instance, the number 𝑛 of variables.

Conjecture 1.1 (Exponential Time Hypothesis [15]). There is positive real 𝛿 such that
3-SAT cannot be decided in time 2𝛿𝑛 × ‖𝜙‖O(1).

Another way to formulate the conjecture is that 3-SAT with parameter 𝑛 has no
sub-exponential algorithm. Here, we follow the notation of Flum and Grohe [7]:
a function 𝑓 is called sub-exponential if 𝑓(𝑛) = o(𝑛), where 𝑓 = o(𝑔) if there is a
non-decreasing, unbounded function 𝜇 such that 𝑔(𝑛) ≤ 𝑓(𝑛)

𝜇(𝑛) .
The ETH can be used to show lower bounds on the running time of algorithms

for other problems by the use of strong reductions, i.e. reductions which increase
the parameter at most linearly [15]. Another important result is implied by the
Sparsification Lemma due to Impagliazzo, Paturi, and Zane [16]: Under assumption
of the ETH there is no algorithm that decides 3-SAT with 𝑚 clauses in time 2o(𝑚) ×
‖𝜙‖O(1). This allows us to parametrize by the number of clauses.

Our main focus in this paper are consequences of the ETH for scheduling and
packing problems. We investigate the dependence of the running time on the number
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of jobs respectively the number of items, which we will denote by 𝑛. We also develop
algorithms that are able to solve a broad class of scheduling and packing problems
and whose running time matches the lower bound for many problems. We will first
concentrate on SUBSETSUM and related problems. These will then be used to show
bounds on other problems.

Notation We use the notation 𝑓(𝑆) = ∑︀
𝑠∈𝑠 𝑓(𝑠) for any function 𝑓 and any subset 𝑆

of the domain of 𝑓 throughout the paper. For a minimization or maximization
problem and 𝛼 > 1, an algorithm 𝐴 is called 𝛼-approximate if 𝐴(𝐼) ≤ 𝛼OPT(𝐼) or
𝐴(𝐼) ≥ 1

𝛼
OPT(𝐼) holds for each instance 𝐼 , respectively.

Known Results. There is a large number of lower bounds based on the ETH,
mostly in the area of graph problems. For example it is known that CLIQUE (and
the equivalent INDEPENDENTSET) cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1) [16].
For a good survey of these results and useful techniques we refer to the work of
Lokshtanov, Marx, and Saurabh [23]. Only few lower bounds have been obtained
for scheduling and packing problems: Chen et al. [3] showed that precedence
constrained scheduling on 𝑚 machines cannot be decided in time 𝑓(𝑚)‖𝐼‖o(𝑚) and
set packing cannot be decided in time 𝑓(𝑘)‖𝐼‖o(𝑘), where 𝑘 is the size of the packing.
Kulik and Shachnai [19] observed that sized subset sum, where 𝑘 is the size of set to
be found, cannot be decided in time 𝑓(𝑘)‖𝐼‖o(√

𝑘) and used this result to show that
there is no PTAS for the 2-dimensional vectorial knapsack problem with running
time 𝑓(𝜀)‖𝐼‖o(

√
1
𝜀

). These results are actually based on the assumption that not all
problems in SNP are solvable in sub-exponential time. Since 3-SAT ∈ SNP, this
assumption in weaker than the ETH [27]. Pătraşcu and Williams [28] showed a lower
bound of 𝑛o(𝑘) for sized subset sum, even when the encoding length of the item
sizes is bounded by O(𝑑 log 𝑛). Finally, Jansen et al. [18] proved that bin packing into
𝑚 bins cannot be solved in time 𝑓(𝑚)‖𝐼‖o(𝑚/ log 𝑚) when the item sizes are encoded
in unary.

Exact algorithms for ⟨P𝑚 | |𝐶max⟩ with 2 ≤ 𝑚 ≤ 4 that have running times
√

2𝑛
,√

3𝑛
and (1 +

√
2)𝑛 were developed by Lenté et al. [22]. BINPACKING can be

solved in time 𝑛𝐵2𝑛 [8] or 𝑛O(𝑚)2O(𝑚
√

‖𝐼‖) [25], where 𝑚 is the number of bins.
SUBSETSUM, PARTITION and KNAPSACK can all be solved in time 2𝑛

2 × ‖𝐼‖O(1) [8,

14] and 2O
(︁√

‖𝐼‖
)︁

[25, 26].

New Results and Organization In Sect. 2 we investigate exact algorithms for
SUBSETSUM and related problems, including PARTITION, BINPACKING, and MULTI-
PROCESSORSCHEDULING. We prove the lower bounds 2o(𝑛) × ‖𝐼‖O(1) and 2o(

√
‖𝐼‖)

for these problems. In Sect. 3 we give a lower bound of 2o(𝑛) × ‖𝐼‖O(1) for different
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types of scheduling problems. We present an algorithmic framework in Sect. 4 that is
able to solve nearly all problems mentioned in Sects. 2 and 3 in time 2O(𝑛) × ‖𝐼‖O(1),
showing that the corresponding bounds are tight. Finally, in Sect. 5 we consider
approximation schemes for knapsack problems. We prove that there are no PTAS
for MULTIPLEKNAPSACK and 2D-KNAPSACK with running times 2o( 1

𝜀 ) × ‖𝐼‖O(1)

and 𝑛o( 1
𝜀 ) × ‖𝐼‖O(1), respectively.

2 The Subset Sum Family

In this section we will prove tight lower bounds on the running time of algorithms
for several problems related to SUBSETSUM and PARTITION, when parametrized by
the number 𝑛 of items or the input size ‖𝐼‖.

2.1 Lower Bounds for Subset Sum and Partition

Wegener [30] presented a chain of reductions from 3-SAT to PARTITION via the
subset sum problem. We will omit the proofs of correctness (they can be found in
Appendix B.1) and only give a brief description of the construction.

From 3-SAT to SUBSETSUM. Denote the variables by 𝑥1, . . . , 𝑥𝑛 and the clauses
by 𝐶1, . . . , 𝐶𝑚. For each variable 𝑥𝑖 we create two items 𝑎𝑖 and 𝑏𝑖 with

s(𝑎𝑖) =
∑︁

𝑗∈[𝑚]
𝑥𝑖∈𝐶𝑗

10𝑛+𝑗−1 + 10𝑖−1 and s(𝑏𝑖) =
∑︁

𝑗∈[𝑚]
𝑥̄𝑖∈𝐶𝑗

10𝑛+𝑗−1 + 10𝑖−1.

These numbers have at most 𝑛 + 𝑚 digits when encoded in base 10. Additionally
we create two dummy items 𝑐𝑗 and 𝑑𝑗 for each clause 𝐶𝑗 with s(𝑐𝑗) = s(𝑑𝑗) = 10𝑛+𝑗−1.
The item set is 𝐴 = {𝑎𝑖, 𝑏𝑖 | 𝑖 ∈ [𝑛]} ∪ {𝑐𝑗, 𝑑𝑗 | 𝑗 ∈ [𝑚]} The target value is

𝐵 =
𝑚∑︁

𝑗=1
3 × 10𝑛+𝑗−1 +

𝑛∑︁
𝑖=1

10𝑖−1.

In total the instance 𝐼 = (𝐴,𝐵) has 2𝑛+ 2𝑚 items, hence the reduction is strong.

From SUBSETSUM to PARTITION. Let (𝐴,𝐵) be an instance of SUBSETSUM. First
assume that s(𝐴) ≥ 𝐵, otherwise we can output a trivial no-instance. We introduce
two new items 𝑝 and 𝑞 with s(𝑝) = 2 s(𝐴) −𝐵 and s(𝑞) = s(𝐴) +𝐵. The instance of
PARTITION is 𝐴′ = 𝐴 ∪ {𝑝, 𝑞}. Note that s(𝑝) ∈ N because s(𝐴) ≥ 𝐵.

Theorem 2.1 (A proof can be found in Appendix B.1). The problems PARTITION and
SUBSETSUM cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.
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The above bounds are asymptotically tight: A naïve enumeration algorithm solves
both problems by testing all 2𝑛 subsets of 𝐴 in time 2𝑛 × ‖𝐼‖O(1). The fastest known
algorithms have asymptotic running time 2𝑛

2 × ‖𝐼‖O(1) [14].

2.2 Implications for Scheduling and Packing

2.2.1 Packing in One Bin.

A generalization of SUBSETSUM is the well-known knapsack problem.

Theorem 2.2 (A proof can be found in Appendix B.2). There is no algorithm deciding
0-1-INTEGERPROGRAMMING (even for one constraint and only positive coefficients) or
KNAPSACK in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

These results are again asymptotically tight.

2.2.2 Bin Packing and Multiprocessor Scheduling.

Another fundamental packing problem is BINPACKING. The decision problem asks
if the given items fit into a given number of bins and is known to be strongly NP-
hard [10]. Even the case where the number 𝑚 of bins is a fixed constant, called
𝑚-BINPACKING, remains weakly NP-hard [21]. This result originates from the hard-
ness of PARTITION, which is equivalent to 2-BINPACKING with𝐵 = 1

2 s(𝐴). Marx [24]
observed that the gap creation technique that is commonly used to show inapprox-
imability can be used in context of the ETH. In combination with Theorem 2.1 we
obtain:

Theorem 2.3. For 𝛼 < 2 there is no 𝛼-approximate algorithm for BINPACKING and no
exact algorithm for 2-BINPACKING with running time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH
fails.

The simplest variant of scheduling is the multiprocessor scheduling problem
MPS. It asks if there is a schedule of the given jobs on 𝑚 machines that finishes
within a given deadline 𝐷 and is equivalent to BINPACKING.

Theorem 2.4. There is no algorithm deciding MPS in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH
fails. This also holds for a fixed number 𝑚 ≥ 2 of machines.

We present algorithms for MPS and BINPACKING with running time 2O(𝑛) ×
‖𝐼‖O(1) in Sect. 4, which closes the gap between upper and lower bounds.
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2.3 Input Length as Complexity Measure

When the running time is measured in the encoding length of the input the fastest
known algorithms for SUBSETSUM, PARTITION, KNAPSACK and 𝑚-BINPACKING

have running time 2O(
√

‖𝐼‖) [25, 26].

Theorem 2.5. SUBSETSUM, PARTITION, KNAPSACK and 𝑚-BINPACKING with 𝑚 ≥ 2
cannot be decided in time 2o(

√
‖𝐼‖), unless the ETH fails.

Proof. Consider an instance of SUBSETSUM as constructed by the reduction for The-
orem 2.1. It contains 2𝑛+ 2𝑚 numbers, and each can be encoded (in base 10) with at
most 𝑛+𝑚 digits. Because we can assume that 𝑛 = O(𝑚) we know that ‖𝐼‖ = O(𝑚2).
If an algorithm for SUBSETSUM with running time 2o(

√
‖𝐼‖) existed, one could use it

to solve 3-SAT in time 2o(𝑚) × ‖𝜙‖O(1). The reductions to the other problems do not
increase the encoding length of the instance significantly.

2.4 Special Cases with Size Restrictions

If 𝜙 is some predicate on the instances of SUBSETSUM or PARTITION, we denote the
problem restricted to instances for which the predicate is TRUE by SUBSETSUM-𝜙 or
PARTITION-𝜙, respectively.

We first restrict SUBSETSUM to instances (𝐴,𝐵) with the following property: If a
subset 𝑆 ⊆ 𝐴 with s(𝑆) = 𝐵 exists, then it contains exactly half of the elements, or
more formally the following predicate 𝜙 holds:

𝜙((𝐴,𝐵)) ⇐⇒ ∀𝑆 ⊆ 𝐴:
(︂

s(𝑆) = 𝐵 =⇒ |𝑆| = |𝐴|
2

)︂
.

Lemma 2.6 (A proof can be found in Appendix B.3). There is no algorithm that decides
SUBSETSUM-𝜙 in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Proofsketch. We give a strong reduction from SUBSETSUM. Let (𝐴,𝐵) be an instance
of SUBSETSUM. For each item 𝑎 ∈ 𝐴 we construct two items 𝑎1 and 𝑎2 with s(𝑎1) =
2𝑛 s(𝑎)+1 and s(𝑎2) = 1, and let𝐴′ = {𝑎1, 𝑎2 | 𝑎 ∈ 𝐴} and𝐵′ = 2𝑛𝐵+𝑛. It remains to
prove that (𝐴′, 𝐵′) satisfies 𝜙 and (𝐴,𝐵) is a yes-instance iff (𝐴′, 𝐵′) is a yes-instance.
For this, partition the elements of a solution of (𝐴′, 𝐵′) into the elements of form 𝑎1

and 𝑎2. The items 𝑎 ∈ 𝐴 for which 𝑎1 is in the solution correspond to a solution of
(𝐴,𝐵) and vice-versa.

We can transform the instances of SUBSETSUM-𝜙 to PARTITION using the same
construction as for Theorem 2.1. Recall that we added two items 𝑝 and 𝑞. In every
feasible partition the added items are in different sets of the partition. Thus the
constructed instance 𝐴′ has a property similar to the instances of SUBSETSUM-𝜙: If a
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Table 1: Summary of obtained bounds. Parenthesis around job characteristics denote
that the bound holds with and without these. An asterisk (*) after the citation shows
that the reduction was modified. The polynomial terms ‖𝐼‖O(1) in the bounds are
omitted. A value in the column Approx. denotes that the bound also holds for
approximate algorithms with a strictly better approximation ratio than the given
number.

Problem Reduced from Source Bound Approx.

⟨1 | r(𝑗), d(𝑗) | any⟩ PARTITION [10] 2o(𝑛)

⟨1 | r(𝑗) |
∑︀

𝑤𝑗𝐶𝑗⟩ SUBSETSUM [29] 2o(𝑛)

⟨P2 | |
∑︀

𝑤𝑗𝐶𝑗⟩ PARTITION [21] 2o(𝑛)

⟨P | prec, t(𝑗) = 1 | 𝐶max⟩ CLIQUE [20] 2o(√
𝑛) 3/2

⟨R | t(𝑗, 𝑘) ∈ {t(𝑗), ∞}, (pmtn) | 𝐶max⟩ 3-SAT [6] 2o(𝑛) 3/2

⟨P2 | para, (pmtn) | 𝐶max⟩ PARTITION [10] 2o(𝑛)

⟨P | para, (pmtn|migr) | 𝐶max⟩ PARTITION [4] 2o(𝑛) 3/2
⟨P2 | mall, (pmtn) | 𝐶max⟩ PARTITION [10]* 2o(𝑛)

⟨P | mall, (pmtn|migr) | 𝐶max⟩ PARTITION [4]* 2o(𝑛) 3/2

⟨O3 | | 𝐶max⟩ MONOTONE-NAE-SAT [31] 2o(𝑛) 5/4
⟨O2 | |

∑︀
𝑤𝑗𝐶𝑗⟩ 4-PARTITION [1]* 2o(𝑛)

⟨O2 | pmtn |
∑︀

𝐶𝑗⟩ BALANCEDPARTITION [5] 2o(𝑛)

⟨O | (pmtn) |
∑︀

𝐶𝑗⟩ 3-SAT [13]* 2o(𝑛)

⟨F3 | (pmtn) | 𝐶max⟩ PARTITION [11] 2o(𝑛)

⟨F2 | |
∑︀

𝑤𝑗𝐶𝑗⟩ 4-PARTITION [9] 2o(𝑛)

⟨F | (pmtn) |
∑︀

𝐶𝑗⟩ 3-SAT [13]* 2o(𝑛)

⟨J2 | (pmtn) | 𝐶max⟩ PARTITION [11] 2o(𝑛)

partition 𝐴 = 𝐴1 ∪̇ 𝐴2 with s(𝐴1) = s(𝐴2) exists, then |𝐴1| = |𝐴2|, or more formally
they fulfill the predicate 𝜙′ defined by

𝜙′(𝐴) ⇐⇒ ∀𝐴1, 𝐴2 ⊆ 𝐴:
(︁
𝐴 = 𝐴1 ∪̇ 𝐴2 ∧ s(𝐴1) = s(𝐴2) =⇒ |𝐴1| = |𝐴2|

)︁
.

Lemma 2.7. There is no algorithm that solves PARTITION-𝜙′ in time 2o(𝑛) × ‖𝐴‖O(1),
unless the ETH fails.

Interestingly, the restriction SUBSETSUM-𝜙 is a special case of the so called
SIZEDSUBSETSUM, for which the cardinality of the set to be found is given as part of
the instance, and PARTITION-𝜙′ is a special case of BALANCEDPARTITION, for which
only partitions 𝐴 = 𝐴1 ∪̇ 𝐴2 are feasible that satisfy |𝐴1| = |𝐴2|.

Corollary 2.8. The problems SIZEDSUBSETSUM and BALANCEDPARTITION cannot be
solved in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.
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3 More Scheduling Problems

We conducted a review of existing reductions in the scheduling area. Our findings
are summarized in Table 1. We had to modify some of the existing reductions,
in particular those starting from 3-PARTITION, for which no strong reduction is
known. We have been able to tweak the reduction to 3D-MATCHING by Garey
and Johnson [10], and utilized it to obtain a lower bound of 2o(𝑛) × ‖𝐼‖O(1) for
4-PARTITION on 4𝑛 numbers. Most reductions from 3-PARTITION can be altered to
start from 4-PARTITION instead. Detailed descriptions of the reductions and our
modifications can be found in Appendix C.

4 Exact Solution in 2O(𝑛)

We now present an algorithmic framework that can optimally solve many scheduling
and packing problems in time 2O(𝑛)×‖𝐼‖O(1). The algorithms optimize general classes
of objective functions that include the popular choices 𝐶max and

∑︀
𝑤𝑗𝐶𝑗 . Here, a

schedule 𝜎 is a pair of functions 𝜎m : 𝐽 → [𝑚], 𝜎s : 𝐽 → N0 that assign to each job its
machine and starting time, respectively.

4.1 Sequencing on a Constant Number of Machines

We start with an algorithm that can solve problems that involve precedence or
exclusion constraints (e.g. for open shop). We require that the objective function is of
the form 𝑓(𝜎) = Op𝑗∈𝐽 𝑔𝑗(𝜎m(𝑗), 𝜎s(𝑗)), where Op is one of

∑︀
, min, and max. Assume

that we want to minimize or maximize 𝑓 and all functions 𝑔𝑗(𝑘, ·) are non-decreasing
or non-increasing, respectively. Then for any feasible schedule there is an equivalent
compact schedule, i.e a schedule in which all jobs start as early as possible. Further
define Op’ to be min if we minimize 𝑓 and max if we maximize 𝑓 .

Our algorithm is loosely based on the dynamic programming approach of Held
and Karp [12] for sequencing jobs on one machine. In contrast to their setting,
we must allow idle time, because it may be beneficial (or even required) to wait
for a job to finish on another machine. For this, we create a set 𝑇 containing all
possible starting and finishing times of jobs. A small addition allows our algorithm
to deal with job-specific release times, which the algorithm by Held and Karp can
not handle.

Lemma 4.1 (A proof can be found in Appendix D.1). We can compute a set 𝑇 that
contains the starting and finishing times of jobs in all compact schedules in time 2O(𝑛) ×
‖𝐼‖O(1) and |𝑇 | = 2O(𝑛).

The basic idea of the algorithm is to examine possible outlines of schedules.
Consider a schedule 𝜎 for a subset 𝑆 ⊆ 𝐽 of jobs. For each machine 𝑘 ∈ [𝑚] there is a
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job ℓ𝑘 that is scheduled last, unless it has no jobs. The outline of 𝜎 is the restriction 𝜎|𝐿

of 𝜎 to the jobs 𝐿(𝜎) = {ℓ𝑘 | 𝑘 ∈ [𝑚], machine 𝑘 has jobs}. We denote by ℓ(𝜎) the job
in 𝐿(𝜎) that starts last with respect to 𝜎 (ties may be broken arbitrarily). An 𝑆-outline
is a schedule 𝜏 for 𝐿 ⊆ 𝑆 that is its own outline such that the placement of ℓ(𝜏)
is feasible and 𝑆 contains no successor of ℓ(𝜏). Note that there may be 𝑆-outlines
that are not the outline of any feasible schedule for 𝑆. We denote by 𝑂𝑆(𝜏) the
set of (𝑆 ∖ {ℓ(𝜏)})-outlines 𝜏 ′ such that 𝜏 ′ agrees with 𝜏 on 𝐿(𝜎) ∖ {ℓ(𝜏)}, the jobs
in 𝐿(𝜏 ′) ∖ 𝐿(𝜏) finish before 𝜏s(ℓ(𝜏)), and 𝜏 ′ only uses machines that are used by 𝜏 .

We use a dynamic program to calculate, for each set 𝑆 ⊆ 𝐽 and 𝑆-outline 𝜏 , the
best objective value B[𝑆, 𝑜] of a feasible schedule for 𝑆 with outline 𝜏 . See details in
Appendix D.1. This is possible because of the following lemma.

Lemma 4.2 (A proof can be found in Appendix D.1). Let 𝑆 ⊆ 𝐽 be a nonempty set of
jobs and 𝜏 be an 𝑆-outline. Then the following recurrence equation holds:

B[𝑆, 𝑜] = Op’
𝜏 ′∈𝑂𝑆(𝜏)

Op
{︁
B[𝑆 ∖ {ℓ(𝜏)}, 𝜏 ′], 𝑔ℓ(𝜏)(𝜎m(ℓ(𝜏)), 𝜎s(ℓ(𝜏)))

}︁
.

There are at most |𝑇 |𝑚 × (|𝑆| + 1)𝑚 = 2O(𝑛) 𝑆-outlines and 2𝑛 subsets 𝑆 ⊆ 𝐽 , so our
dynamic program runs in 2O(𝑛) iterations. The objective value of an optimal schedule
for all jobs then is Op’𝜏 𝐽-outline B[𝐽, 𝜏 ].

Our algorithm can solve a broad class of problems, including ⟨O𝑚 | | 𝑓⟩, ⟨J𝑚 | | 𝑓⟩,
⟨F𝑚 | | 𝑓⟩, and ⟨R𝑚 | prec, r(𝑗), d(𝑗) | 𝑓⟩, in time 2O(𝑛) ×‖𝐼‖O(1). It can also be extended
for parallel and malleable tasks. For 𝑓 ∈ {𝐶max,

∑︀
𝑤𝑗𝐶𝑗}, the problems ⟨O3 | | 𝑓⟩,

⟨J3 | | 𝑓⟩, ⟨F3 | | 𝑓⟩, and ⟨P2 | | 𝑓⟩ cannot be solved asymptotically faster, unless the
ETH fails (see Sect. 3).

4.2 Scheduling on an Arbitrary Number of Machines

We now describe an exact algorithm for scheduling on arbitrary many machines. For
a schedule 𝜎 and 𝑘 ∈ [𝑚] we denote by J𝜎,𝑘 the set 𝜎−1

m (𝑘) of jobs to be processed on
machine 𝑘. Furthermore we denote by 𝜎(𝑘) : J𝜎,𝑘 → N0, 𝑗 ↦→ 𝜎t(𝑗) the schedule on
machine 𝑘.

The main idea is again to use dynamic programming over subsets of jobs. For
each 𝑆 ⊆ 𝐽 and 𝑘 ∈ [𝑚] we denote by B[𝑆, 𝑘] the best possible objective value when
scheduling the jobs 𝑆 on the first 𝑘 machines. For each machine 𝑘 and set 𝑆 of
jobs the algorithm finds and sequences the jobs 𝑆 ′ ⊆ 𝑆 that should be processed
on machine 𝑘. It does not look back and modify the schedule on the previously
filled machines 1, . . . , 𝑘 − 1. Thus we demand that there are no constraints on the
starting or finishing times of jobs on different machines (e.g. precedence constraints).
We must further assume that the objective function of the whole schedule can be
calculated iteratively when adding a new machine with jobs to the current schedule,
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i.e. the objective function is of the form 𝑓(𝜎) = Op𝑘∈[𝑚] 𝑔𝑘

(︁
J𝜎,𝑘, 𝜎

(𝑘)
)︁

, where Op is one
of

∑︀
, min, and max, and the functions 𝑔𝑘 can be computed in time 2O(𝑛) × ‖𝐼‖O(1). If

the functions 𝑔𝑘 are of the form as in Sect. 4.1 we can also use the algorithm presented
there to sequence the jobs on each machine. We use dynamic programming to
calculate the values B[𝑆, 𝑘] (see Appendix D.2) by utilizing the recurrence equation

B[𝑘, 𝑆] =

⎧⎨⎩𝑔1(𝑆) if 𝑘 = 1

Op’𝑆′⊆𝑆 Op
{︁
B[𝑘 − 1, 𝑆 ∖ 𝑆 ′], 𝑔𝑘

(︁
𝑆 ′, 𝜎*

𝑆′,𝑘

)︁}︁
otherwise,

where 𝜎*
𝑆′,𝑘 : 𝑆 ′ → N0 denotes the optimal schedule of 𝑆 ′ on machine 𝑘. After com-

puting all values the objective value of an optimal schedule can be read from B[𝑚, 𝐽 ].
The dynamic program needs at most 4𝑛 ×𝑚 iterations.

We have to be careful with the dependence of the running time on𝑚. On identical
machines, i.e. 𝑔1 = · · · = 𝑔𝑚 we can assume 𝑚 ≤ 𝑛, because an optimal schedule uses
at most 𝑛 machines. For different machines (e.g. scheduling on uniform or unrelated
machines) this does not work. However, the 𝑚 functions (or some parameters to
distinguish them) then have to be encoded in the input, so we have ‖𝐼‖ = Ω(𝑚).
Thus, our algorithm has a total running time of 2O(𝑛) × ‖𝐼‖O(1).

Our algorithm is able to solve the general problem ⟨R | 𝑟𝑗, 𝑑𝑗 | 𝑓⟩. This contains
⟨1 | 𝑟𝑗 | ∑︀

𝑤𝑗𝐶𝑗⟩, ⟨P2 | | ∑︀
𝑤𝑗𝐶𝑗⟩, ⟨1 | 𝑟𝑗, 𝑑𝑗 | 𝑓⟩, and ⟨P2 | |𝐶max⟩ as special cases. In

Sect. 3 we have shown that none of them can be solved asymptotically faster un-
der assumption of the ETH. The algorithm can also be adapted to packing prob-
lems with multiple containers, e.g. BINPACKING and MULTIPLEKNAPSACK (see
Appendix D.3).

5 Approximation Schemes for Knapsack problems

5.1 The Multiple Knapsack Problem

In contrast to the regular knapsack problem instances of MULTIPLEKNAPSACK

(MKS) may contain multiple knapsacks with individual capacities.

Theorem 5.1. There is no approximation scheme for MULTIPLEKNAPSACK with running
time 2o( 1

𝜀 ) × ‖𝐼‖O(1), unless ETH fails. This bound even holds for 𝑚 = 2 knapsacks of equal
capacity and when either

(i) all items have the same profit, or

(ii) the profit of each item equals its size.

The case of condition (i) is a natural one: by scaling, we can assume that the
profit of each item is 1, i.e. we are maximizing the number of packed items. With
condition (ii) we maximize the size of the packed items, which is known as the
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multiple subset sum problem. The fastest known PTAS for the general case has a
running time of 2O( 1

𝜀
log4 1

𝜀 ) + ‖𝐼‖O(1) [17].
Also note that both problem restrictions contain PARTITION as special case. Thus

the lower bound 2o(𝑛) × ‖𝐼‖O(1) applies to exact algorithms. The running time of the
algorithm described in Sect. 4.2 matches this bound.

5.1.1 Instances with a Special Profit Structure.

To prove Theorem 5.1 we embed PARTITION into MKS. We then show that an
approximation scheme for MKS can be used to decide PARTITION.

Note that for an instance 𝐼 = (𝐴,𝐵) of MKS, we can regard 𝐴 as an instance of
PARTITION by ignoring the profits. For each set ℐ of instances of MKS we define ℐP =
{𝐴 | (𝐴,𝐵) ∈ ℐ} as the set of corresponding instances of PARTITION.

Lemma 5.2. Let ℐ be a set of instances of MKS, and 𝛼 ≥ 1 such that for every instance 𝐼 =
(𝐴,𝐵) ∈ ℐ there is a 𝐶 ∈ N with

(i) 𝐼 has 𝑚 = 2 knapsacks of capacity 1
2 s(𝐴) (note that s(𝐴) must be even)

(ii) |𝐶| = ‖𝐴‖O(1),

(iii) p(𝐴) ≤ 𝑛𝛼𝐶, and

(iv) p(𝑎) ≥ 𝐶 for each item 𝑎 ∈ 𝐴.

Unless each instance𝐴 ∈ ℐP can be decided in time 2o(𝑛) ×‖𝐴‖O(1), there is no approximation
scheme that approximates all instances 𝐼 ∈ ℐ within (1 + 𝜀) of the optimum in time 2o( 1

𝜀 ) ×
‖𝐼‖O(1).

Proof. Assume there is an approximation scheme 𝑃 that finds an (1+ 𝜀)-approximate
solution for every instance 𝐼 ∈ ℐ in time 2o( 1

𝜀 ) × ‖𝐼‖O(1). Let an arbitrary instance 𝐼 =
(𝐴,𝐵) ∈ ℐ be given. First we point out that a packing that packs all items into the
two knapsacks exists if and only if 𝐴 is a yes-instance of PARTITION. Now let 𝜀 = 1

𝑛𝛼

and solve 𝐼 approximately using 𝑃𝜀.

CLAIM 1. The approximate packing successfully packs all items if possible.

Proof of Claim 1. Recall that p(𝐴) ≤ 𝑛𝛼𝐶, thus 1
𝑛𝛼

p(𝐴) ≤ 𝐶. If all items can be packed,
the packing found by 𝑃𝜀 has profit at least

1
1 + 𝜀

× OPT(𝐼) =
(︂

1 − 𝜀

1 + 𝜀

)︂
× p(𝐴) = p(𝐴) − 1

𝑛𝛼 + 1 × p(𝐴)

> p(𝐴) − 1
𝑛𝛼

× p(𝐴) ≥ p(𝐴) − 𝐶.

Since the profit of all items is at least 𝐶, there is no unpacked item. (Claim 1)
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Therefore one can decide whether 𝐴 admits a partition by testing if a (1 + 𝜀)-
approximate packing packs all items. Because condition (ii) implies ‖𝐼‖ = ‖𝐴‖O(1),
the required running time is 2o( 1

𝜀 ) × ‖𝐼‖O(1) = 2o(𝑛) × ‖𝐴‖O(1). A contradiction, since
not all instances in ℐP can be decided in this running time. (Lemma 5.2)

We can now prove the first part of Theorem 5.1. Let ℐ be the set of all instances
of MULTIPLEKNAPSACK that satisfy condition (i) and have items of the same profit.
Let 𝐼 = (𝐴,𝐵) ∈ ℐ and 𝑝 ∈ N such that the profit p(𝑎) = 𝑝 for each item 𝑎 ∈ 𝐴.
By scaling we can assume that 𝑝 = 1. Then conditions (ii) to (iv) hold for 𝐶 = 1
and 𝛼 = 1. Furthermore, the set ℐP actually contains every instance of the PARTITION

with even s(𝐴). However, this restriction does not simplify the problem because
instances with odd s(𝐴) must always be no-instances. By Theorem 2.1 we can apply
Lemma 5.2 to get the desired result.

5.1.2 The Multiple Subset Sum Problem.

We have to find a set ℐ of instances of the multiple subset sum problem that satisfies
the preconditions of Lemma 5.2. First, we can restrict ourselves to instances that
satisfy the knapsack condition (i). Any set ℐ of such instances is unambiguously
determined by ℐP. Therefore we only need to give the set ℐP and 𝛼. The conditions (ii)
to (iv) can be equivalently expressed as: For each instance 𝐴 ∈ ℐP there is a 𝐶 ∈ N
with

(ii) |𝐶| = ‖𝐴‖O(1),

(iii) s(𝐴) ≤ 𝑛𝛼𝐶, and

(iv) s(𝑎) ≥ 𝐶 for each item 𝑎 ∈ 𝐴.

By a linear reduction from PARTITION-𝜙′ (see Sect. 2.4), we will show that there is
such a set ℐP and not every instance 𝐴 ∈ ℐP can be solved in time 2o(𝑛) × ‖𝐴‖O(1) if
the ETH holds true. For this, transform the instances of PARTITION-𝜙′ such that the
sizes of all items are similar, i.e. every instance 𝐴 fulfills the predicate 𝜓(𝐴):

𝜓(𝐴) ⇐⇒ ∃𝐶 ∈ N ∀ 𝑎 ∈ 𝐴:𝐶 ≤ s(𝑎) ≤ 3𝐶.

Lemma 5.3 (A proof can be found in Appendix E.1). There is no algorithm that decides
PARTITION-𝜓 in time 2o(𝑛) × ‖𝐴‖O(1), unless the ETH fails.

Proofsketch. Add a suitably large value 𝐶 to the size of all items. Since a solution
contains exactly 𝑛

2 elements the target 𝐵 must be increased by 𝑛
2𝐶.

We are now able to prove the second part of Theorem 5.1. Let ℐP be the
set of instances of PARTITION-𝜓 for which s(𝐴) is even. Observe that 𝜓(𝐴) im-
plies s(𝐴) ≤ 𝑛3𝐶 for any instance 𝐴 ∈ ℐP. The set ℐ = {(𝐴,𝐵𝐴) | 𝐴 ∈ ℐP} with 𝐵𝐴 =
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(︁
1
2 s(𝐴), 1

2 s(𝐴)
)︁

will therefore satisfy the preconditions of Lemma 5.2 for 𝛼 = 3.
Combining Lemma 5.3 with Lemma 5.2 yields the desired result.

5.2 Multi-dimensional Knapsack

Theorem 5.4 (A proof can be found in Appendix E.2). There cannot exist PTAS for
2D-KNAPSACK with running time 𝑛o( 1

𝜀 ) × ‖𝐼‖O(1), unless the ETH fails.

Proofsketch. Pătraşcu and Williams [28] showed that, under assumption of the ETH,
SIZEDSUBSETSUM with 𝑛 items and solution size 𝑘 cannot be decided in time 𝑛o(𝑘).
Combined with the reduction to 2D-KNAPSACK by Kulik and Shachnai [19] this
yields the proposed bound on the running time.

This bound asymptotically matches the running time 𝑛O( 1
𝜀 ) × ‖𝐼‖O(1) of known

approximation schemes [2].
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A Description of Problems

In this section we describe decision problems discussed in this paper. For each
problem we give the parameter(s) that are used to measure the running time of
algorithms.

Problem 2D-KNAPSACK

Given: A set 𝐴 of items with with vectorial sizes s(𝑎) ∈ N2 and profits p(𝑎) ∈ N,
𝑎 ∈ 𝐴, a knapsack capacity 𝐵 ∈ N2, and a target profit 𝐷.

Parameter: Number 𝑛 of items
Decide: Is there a subset 𝑆 ⊆ 𝐴 of items such that the knapsack capacity is not

exceeded and the target profit is met, i.e. s(𝑆) ≤ 𝐵 (addition and comparison is
component-wise) and p(𝑆) ≥ 𝐷?

Problem 3-SAT

Given: A formula in 3-CNF
Parameter: Number 𝑛 of variables, number 𝑚 of clauses
Decide: Is there a satisfying truth assignment?

Problem 3-SAT’
Given: A formula in 3-CNF where each variable appears exactly three times and

each literal appears at most twice.
Parameter: Number 𝑛 of variables, number of clauses 𝑚
Decide: Is there a satisfying truth assignment?

Problem 3D-MATCHING

Given: Three disjoint sets 𝑋 , 𝑌 and 𝑍 with equal cardinality 𝑝 and a set 𝑇 ⊆ 𝑋 ×
𝑌 × 𝑍 of 𝑞 triples.

Parameter: Number 𝑝 of points, number 𝑞 of triples
Decide: Is there a set 𝑀 ⊆ 𝑇 (the matching) such that every element of 𝑋 ∪ 𝑌 ∪ 𝑍 is

contained in exactly one triple in 𝑀?

Problem BALANCEDPARTITION

Given: A set 𝐴 of items with sizes s(𝑎) ∈ N, 𝑎 ∈ 𝐴.
Parameter: Number 𝑛 of items
Decide: Is there a partition 𝐴 = 𝐴1 ∪̇ 𝐴2 such that |𝐴1| = |𝐴2| and s(𝐴1) = s(𝐴2)?

Problem BINPACKING

Given: A set 𝐴 of items with sizes s(𝑎) ∈ N, 𝑎 ∈ 𝐴, a bin capacity 𝐵 ∈ N and a
number 𝑚 of bins.

Parameter: Number 𝑛 of items
Decide: Is there an assignment 𝑓 : 𝐼 → [𝑚] of items such that the capacity of no bin is

exceeded, i.e. s(𝑓−1(𝑖)) ≤ 𝐵 for all 𝑖 ∈ [𝑚]?
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Problem 𝑚-BINPACKING

Given: A set 𝐴 of items with sizes s(𝑎) ∈ N, 𝑎 ∈ 𝐴, and a bin capacity 𝐵 ∈ N.
Parameter: Number 𝑛 of items
Decide: Is there an assignment 𝑓 : 𝐼 → [𝑚] of items such that the capacity of no bin is

exceeded, i.e. s(𝑓−1(𝑖)) ≤ 𝐵 for all 𝑖 ∈ [𝑚]?

Problem KNAPSACK

Given: A set 𝐴 of items with with sizes s(𝑎) ∈ N and profits p(𝑎) ∈ N, 𝑎 ∈ 𝐴, a
knapsack capacity 𝐵 − 𝑖𝑛−𝑁 , and a target profit 𝐷

Parameter: Number 𝑛 of items
Decide: Is there a subset 𝑆 ⊆ 𝐴 of items such that the knapsack capacity is not

exceeded and the target profit is met, i.e. s(𝑆) ≤ 𝐵𝑖 for all 𝑖 ∈ [𝑚] and p(𝑆) ≥ 𝐷?

Problem MONOTONE-NAE-3-SAT

Given: A formula in 3-CNF that contains no negated literals.
Parameter: Number 𝑛 of variables, number 𝑚 of clauses
Decide: Is there a truth assignment that satisfies at least one but not all literals of

each clause?

Problem MULTIPLEKNAPSACK (MKS)
Given: A set 𝐴 of items with with sizes s(𝑎) ∈ N and profits p(𝑎) ∈ N, 𝑎 ∈ 𝐴, a

vector 𝐵 = (𝐵1, . . . , 𝐵𝑚) of knapsack capacities, and a target profit 𝐷.
Parameter: Number 𝑛 of items
Decide: Is there a subset 𝑆 ⊆ 𝐴 of items and an assignment 𝑓 : 𝑆 → [𝑚] such that the

capacities are not exceeded and the target profit is met, i.e. s(𝑓−1(𝑖)) ≤ 𝐵𝑖 for all
𝑖 ∈ [𝑚] and p(𝑆) ≥ 𝐷?

Problem MULTIPROCESSORSCHEDULING (MPS)
Given: A set 𝐽 of jobs with processing times t(𝑗) ∈ N, 𝑗 ∈ 𝐽 , a number𝑚 of machines,

and a target makespan 𝐷.
Parameter: Number 𝑛 of jobs
Decide: Is there an assignment 𝜎 : 𝐽 → [𝑚] of jobs to machines (the schedule), such

that the finishing time of the last job (the makespan) is less than 𝐷, i.e 𝐶max =
max𝑖∈[𝑚] t(𝜎−1(𝑖)) ≤ 𝐷? For calculating 𝐶max we here exploit the fact that the jobs
on one machine can be processed in an arbitrary order.

Problem PARTITION

Given: A set 𝐴 of items with sizes s(𝑎) ∈ N, 𝑎 ∈ 𝐴.
Parameter: Number 𝑛 of items
Decide: Is there a partition 𝐴 = 𝐴1 ∪̇ 𝐴2 such that s(𝐴1) = s(𝐴2)?

Problem 𝑘-PARTITION

15



Given: A set𝐴 of 𝑘𝑛 items, a bound𝐵 ∈ N, and item sizes s(𝑎) ∈ N with 𝐵
𝑘+1 ≤ s(𝑎) ≤

𝐵
𝑘−1 for each 𝑎 ∈ 𝐴.

Parameter: Number 𝑛 of items
Decide: Is there a partition 𝐴 = 𝐴1 ∪̇ · · · ∪̇𝐴𝑛 into 𝑛 subsets such that for each 𝑖 ∈ [𝑛]

we have s(𝐴𝑖) = 𝐵? The constraints on the item sizes imply that |𝐴𝑖| = 𝑘 for
𝑖 ∈ [𝑛].

Problem SIZEDSUBSETSUM

Given: A set 𝐴 of items with sizes s(𝑎) ∈ N, 𝑎 ∈ 𝐴, a size parameter 𝑘, and a target
value 𝐵 ∈ N.

Parameter: Number 𝑛 of items
Decide: Is there a subset 𝐴* ⊆ 𝐴 with |𝐴*| = 𝑘 and s(𝐴*) = 𝐵?

Problem SUBSETSUM

Given: A set 𝐴 of items with sizes s(𝑎) ∈ N, 𝑎 ∈ 𝐴, and a target value 𝐵 ∈ N.
Parameter: Number 𝑛 of items
Decide: Is there a subset 𝐴* ⊆ 𝐴 with s(𝐴*) = 𝐵?

B Deferred Proofs of Sect. 2

B.1 Proof of Theorem 2.1

Because it is of fundamental importance for our paper we give a detailed proof of
Theorem 2.1.

Since we already gave a description of the reductions due to Wegener [30] in
Sect. 2.1, we describe his proofs of correctness. We also argue that his reductions
are strong. The example depicted in Fig. 1 can help understanding the reduction to
SUBSETSUM.

CLAIM 1. The reduction from 3-SAT to SUBSETSUM is correct, i.e. (𝐴,𝐵) is a yes-
instance if and only if 𝜙 is satisfiable.

Proof [30]. First, we consider the 𝑛 least significant positions 1, . . . , 𝑛 of the con-
structed numbers. For each position 𝑖, there are exactly two numbers with a ‘1’ at
that position, namely 𝑎𝑖 and 𝑏𝑖. Since we cannot have a carry in these positions, a
solution must choose exactly one of the items 𝑎𝑖 and 𝑏𝑖. The choice of 𝑎𝑖 represents
𝑥𝑖 = TRUE and the choice of 𝑏𝑖 represents 𝑥𝑖 = FALSE.

We now consider the 𝑚 most significant positions 𝑛+ 1, . . . , 𝑛+𝑚, each of which
is associated to a clause. If a clause 𝐶𝑗 contains the literal 𝑥𝑖, then there is a ‘1’ at
position 𝑛 + 𝑗 of 𝑎𝑖, and if 𝐶𝑗 contains 𝑥̄𝑖, then there is a 1 at position 𝑛 + 𝑗 of 𝑏𝑖.
There is a ‘0’ in these positions otherwise. If we have a truth assignment and select
between the 𝑎𝑖 and 𝑏𝑖 accordingly, then the sum in position 𝑛+ 𝑗 equals the number
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𝑎1 0 1 0 0 1
𝑎2 1 0 0 1 0
𝑎3 1 0 1 0 0
𝑏1 1 0 0 0 1
𝑏2 0 1 0 1 0
𝑏3 0 0 1 0 0
𝑐1 0 1 0 0 0
𝑐2 1 0 0 0 0
𝑑1 0 1 0 0 0
𝑑2 1 0 0 0 0
𝐵 3 3 1 1 1

Figure 1: The instance of SUBSETSUM constructed from (𝑥1 ∨ 𝑥̄2) ∧ (𝑥̄1 ∨𝑥2 ∨𝑥3). The
subset {𝑎1, 𝑎3, 𝑏2, 𝑐1, 𝑐2, 𝑑2} corresponds to the satisfying truth assignment 𝑥1 = 𝑥3 =
TRUE, 𝑥2 = FALSE and its values sum to 𝐵.

of TRUE literals in clause 𝐶𝑗 . Note that we can also have no carry in these positions:
since each clause contains at most three literals, there are at most five ‘1’s at each
position, three from literals and two from the dummy elements 𝑐𝑗 and 𝑑𝑗 .

So 𝜙 is satisfiable if and only if there is a subset of the 𝑎𝑖 and 𝑏𝑖 that sums to 1
in the 𝑛 least significant positions, and to one of 1, 2, and 3 in each of the 𝑚 most
significant positions. If the sum at position 𝑛 + 𝑗 is one of 1, 2, and 3, we can add
a subset of elements 𝑐𝑗 and 𝑑𝑗 such that the sum at that position is 3. This is not
possible if 𝐶𝑗 is not satisfied.

CLAIM 2. The reduction is strong, i.e. |𝐴| = O(𝑚).

Proof. We can assume that 𝑛 ≤ 3𝑚: since there are at most 3𝑚 occurrences of vari-
ables in the formula, 𝑛 > 3𝑚 can only hold if there are unused variables that can be
removed. We have |𝐴| = 2𝑛+ 2𝑚 ≤ 8𝑚 = O(𝑚).

Lemma B.1. SUBSETSUM with parameter 𝑛 (the number of items) cannot be decided in
time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Proof. The existence of an algorithm that decides SUBSETSUM in time 2o(𝑛) × ‖𝐼‖O(1)

implies that 3-SAT with parameter 𝑚 (the number of clauses) can be decided in time
2o(𝑚) × ‖𝜙‖O(1). This contradicts the ETH [16].

We now discuss the reduction to PARTITION. Again the proof of correctness
follows that of Wegener [30].

CLAIM 3. The reduction from SUBSETSUM to PARTITION is correct, i.e. (𝐴,𝐵) is a
yes-instance if and only if 𝐴′ is.
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Proof [30]. The total size of all items is s(𝐴′) = 4 s(𝐴) and the components of a valid
partition have size 2 s(𝐴) each. Assume there is a partition 𝐴′ = 𝐴1 ∪̇𝐴2 with s(𝐴1) =
s(𝐴2) = 2 s(𝐴). Without restriction we can assume that 𝑝 ∈ 𝐴1. Then s(𝐴1 ∖ {𝑝}) =
2 s(𝐴)−(2 s(𝐴)−𝐵) = 𝐵. Since s(𝑝)+s(𝑞) = (2 s(𝐴)−𝐵)+(s(𝐴)+𝐵) = 3 s(𝐴)> 2 s(𝐴)
and negative sizes are not allowed, we know that 𝑝 and 𝑞 are in different components
of a partition, i.e. 𝑞 ∈ 𝐴2 and thus 𝐴1 ∖ {𝑝} ⊆ 𝐴 is a solution of the subset sum
instance.

On the other hand, if 𝑆 ⊆ 𝐴 is a subset with s(𝑆) = 𝐵, then 𝐴′ = (𝑆 ∪ {𝑝}) ∪̇ (𝐴 ∖
𝑆 ∪ {𝑞}) is a valid partition.

CLAIM 4. The reduction is strong, i.e. |𝐴′| = O(|𝐴|).

Proof. Because we created two new items we have |𝐴′| = |𝐴| + 2 = O(|𝐴|).

Lemma B.2. PARTITION with parameter 𝑛 (the number of items) cannot be decided in
time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Proof. The existence of an algorithm that decides PARTITION in time 2o(𝑛) × ‖𝐼‖O(1)

implies that SUBSETSUM with parameter 𝑛 (the number of items) can be decided in
time 2o(𝑛) × ‖𝐼‖O(1). According to Lemma B.1 this is not possible, unless the ETH
fails.

B.2 Details for Theorem 2.2

We generalize SUBSETSUM to a simple packing problem: Given a bin of capacity 𝐵
and a set of items we have to fill the bin as much as possible. A further generaliza-
tion yields the well-known knapsack problem, where one seeks to maximize the
profits p(𝑎), a value independent from the size, of the packed items. We give the ILP
formulations of these problems, which only differ in the objective function.

max
∑︁
𝑎∈𝐴

𝑥𝑎 s(𝑎)
∑︁
𝑎∈𝐴

𝑥𝑎 s(𝑎) ≤ 𝐵

𝑥𝑎 ∈ {0, 1} for all 𝑎 ∈ 𝐴

max
∑︁
𝑎∈𝐴

𝑥𝑎 p(𝑎)
∑︁
𝑎∈𝐴

𝑥𝑎 s(𝑎) ≤ 𝐵

𝑥𝑎 ∈ {0, 1} for all 𝑎 ∈ 𝐴

Interestingly, above instances do not seem to be solvable faster than instances of
the general 0-1-INTEGERPROGRAMMING, although they are rather simple (only one
constraint, no negative coefficients).

B.3 Proof of Lemma 2.6

Recall the construction for an instance (𝐴,𝐵) of SUBSETSUM. For each item 𝑎 ∈ 𝐴

we construct two items 𝑎1 and 𝑎2 with s(𝑎1) = 2𝑛 s(𝑎) + 1 and s(𝑎2) = 1. We create a
new instance from 𝐴′ = {𝑎1, 𝑎2 | 𝑎 ∈ 𝐴} and 𝐵′ = 2𝑛𝐵 + 𝑛.
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CLAIM 1. (𝐴′, 𝐵′) is an instance of SUBSETSUM-𝜙.

Proof. Let (𝐴′, 𝐵′) be a yes-instance. There is 𝑆 ′ ⊆ 𝐴′ with s(𝑆 ′) = 𝐵′. By partitioning
the elements of 𝑆 ′ into those of form 𝑎1 and 𝑎2, 𝑎 ∈ 𝐴, we get

2𝑛𝐵 + 𝑛 = 𝐵′ =
∑︁
𝑎∈𝑆′

s(𝑎) = 2𝑛
∑︁
𝑎∈𝐴

𝑎1∈𝑆′

s(𝑎) + |𝑆 ′|

and thus

2𝑛
(︂
𝐵 −

∑︁
𝑎∈𝐴

𝑎1∈𝑆′

s(𝑎)
)︂

= |𝑆 ′| − 𝑛 = 0. (1)

Equation (1) holds since 2𝑛 divides |𝑆 ′| − 𝑛 and 0 ≤ |𝑆 ′| ≤ |𝐴′| = 2𝑛.

CLAIM 2. The reduction is correct, i.e. (𝐴,𝐵) is a yes-instance if and only if (𝐴′, 𝐵′)
is.

Proof. Let (𝐴,𝐵) be a yes-instance and 𝑆 ⊆ 𝐴 with s(𝑆) = 𝐵. Then

∑︁
𝑎∈𝑆

s(𝑎1) +
∑︁

𝑎∈𝐴∖𝑆

s(𝑎2) = 2𝑛𝐵 + |𝑆| + (𝑛− |𝑆|) = 2𝑛𝐵 + 𝑛 = 𝐵′,

hence {𝑎1 | 𝑎 ∈ 𝑆} ∪̇ {𝑎2 | 𝑎 ∈ 𝐴 ∖ 𝑆} ⊆ 𝐴′ is a solution for (𝐴′, 𝐵′).
Let now (𝐴′, 𝐵′) be a yes-instance. As in the proof of Claim 1, (1) holds. This also

implies s({𝑎 ∈ 𝐴 | 𝑎1 ∈ 𝑆 ′}) = 𝐵, which means that (𝐴,𝐵) is a yes-instance.

Also, the number of items in the instance (𝐴′, 𝐵′) is linearly bounded in 𝑛. The
lemma follows from Theorem 2.1.

C Details for Sect. 3

C.1 Approximating on Unrelated Machines

In this section we consider the restricted assignment problem. This is a scheduling
problem where each job 𝑗 has a set M(𝑗) of feasible machines, and 𝑗 can only be
processed on these machines. The restricted assignment problem is actually a special
case of unrelated scheduling, where the processing time of each job 𝑗 arbitrarily
depends on the machine it is processed on.

It was shown by Ebenlendr, Křćal, and Sgall [6] that, unless P = NP, this problem
cannot be approximated within a factor 𝛼 < 3

2 , even when each job 𝑗 has at most two
feasible machines on which its running time is 1 or 2. In the standard scheduling
notation this problem can be denoted by ⟨R | t(𝑗, 𝑖) ∈ {t(𝑗),∞}, t(𝑗) ∈ {1, 2}, |M(𝑗)| ≤
2 |𝐶max⟩. The restrictions are somewhat minimal: If we reduce the number of allowed
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processing times or the number of feasible machines further the problem becomes
trivial. Under assumption of the ETH we can extend this result to rule out sub-
exponential 𝛼-approximate algorithms for 𝛼 < 3

2 .

Theorem C.1. For 𝛼 < 3
2 , there is no 𝛼-approximate algorithm for ⟨R | t(𝑗, 𝑖) ∈ {t(𝑗),∞},

t(𝑗) ∈ {1, 2}, |M(𝑗)| ≤ 2 |𝐶max⟩ with running time 2o(𝑛) × |𝐼|O(1), unless the ETH fails.

On the other hand, our algorithm from Sect. 4, can solve the unrestricted variant
of unrelated scheduling in time 2O(𝑛) × |𝐼|O(1), so this result is tight.

Proof of Theorem C.1. It is sufficient to find a strong reduction from 3-SAT to the
problem⟨R | t(𝑗, 𝑖) ∈ {t(𝑗),∞}, t(𝑗) ∈ {1, 2}, |M(𝑗)| ≤ 2 |𝐶max⟩ that has a gap of 3

2 ,
i.e. the scheduling instance admits a makespan of 2 if the formula is satisfiable and
has makespan at least 3 otherwise. The reduction by Ebenlendr, Křćal, and Sgall
to the equivalent graph balancing problem serves this purpose well. We will describe
their reduction transferred to the context of unrelated scheduling.

The Construction. The reduction starts from a special case of 3-SAT which we call
3-SAT’, where each variable occurs exactly three times and each literal occurs at
most twice. Any formula in 3-CNF can be converted to this form [43]: suppose
we are given a formula with 𝑛 variables and 𝑚 clauses. Let 𝑥 be a variable that
appears 𝑘 times in the formula. We replace all appearances of 𝑥 by new, distinct
variables 𝑥(1), . . . , 𝑥(𝑘). Next, we enforce that those variables have the same truth
value for every satisfying truth assignment with additional clauses 𝑥(𝑖) ∨ 𝑥̄(𝑖+1),
𝑖 ∈ [𝑘 − 1], and 𝑥(𝑘) ∨ 𝑥̄(1). Because there are at most 3𝑛 occurrences of literals in the
original formula, the resulting formula has at most 3𝑛 variables and 𝑚+ 3𝑛 clauses.
This shows that the reduction is linear in 𝑛+𝑚.

We now transform this problem to the unrelated scheduling problem, see Fig. 2
for a complete example of the construction. Again, we denote by 𝑛 and 𝑚 the
number of variables and clauses of a formula 𝜙, respectively. For each variable 𝑥 we
construct two literal machines 𝑚𝑥 and 𝑚𝑥̄ that correspond to the two literals of 𝑥. We
also add an assignment job 𝑗𝑥 with processing time t(𝑗𝑥) = 2 and M(𝑗𝑥) = {𝑚𝑥,𝑚𝑥̄},
i.e. 𝑗𝑥 can be processed on the two literal machines.

In addition we create jobs and a machine for each clause 𝐶. Let 𝐶 = (𝑦𝐶,1 ∨ · · · ∨
𝑦𝐶,𝑘) (note that 𝑘 ≤ 3). Then, add a clause machine 𝑚𝐶 , and for each literal 𝑦𝐶,𝑖 appear-
ing in 𝐶 add a literal job 𝑗𝐶,𝑖 with t(𝑗𝐶,𝑖) = 1 and M(𝑗𝐶,𝑖) = {𝑚𝐶 ,𝑚𝑦𝐶,𝑖

}. Observe that,
since each literal can appear twice in the formula, there can be two distinct literal
jobs corresponding to the same literal. Finally, if 𝑘 < 3 we add a dummy job 𝑗𝐶,d

with M(𝑗𝐶,d) = {𝑚𝐶} and t(𝑗𝐶,d) = 3 − 𝑘.
It is easy to see that the constructed instance of the restricted assignment problem

indeed satisfies |M(𝑗)| ≤ 2 for each job 𝑗. Furthermore, it contains 𝑛+ 3𝑚+𝑚 jobs,
so the reduction is strong.
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𝑚𝑥1 𝑚𝑥̄1 𝑚𝑥2 𝑚𝑥̄2 𝑚𝑥3 𝑚𝑥̄3 𝑚𝐶1 𝑚𝐶2

𝑗𝐶1,1

𝑗𝑥1
𝑗𝐶2,2

𝑗𝑥2
𝑗𝐶2,3

𝑗𝑥3
𝑗𝐶1,d

𝑗𝐶1,2

𝑗𝐶2,1

𝑚𝑥1 𝑚𝑥̄1 𝑚𝑥2 𝑚𝑥̄2 𝑚𝑥3 𝑚𝑥̄3 𝑚𝐶1 𝑚𝐶2

𝑗𝑥1
𝑗𝐶2,1 𝑗𝐶2,2

𝑗𝑥2
𝑗𝐶2,3

𝑗𝑥3
𝑗𝐶1,d

𝑗𝐶1,1

𝑗𝐶1,2

Figure 2: Example of the reduction for the formula 𝐶1 ∧𝐶2 = (𝑥1 ∨ 𝑥̄2) ∧ (𝑥̄1 ∨𝑥2 ∨𝑥3).
The first schedule was obtained from the satisfying truth assignment 𝛽(𝑥1) = 𝛽(𝑥2) =
𝛽(𝑥3) = TRUE and has makespan 2. The second (partial) schedule arises from the
non-satisfying assignment 𝛽(𝑥1) = FALSE, 𝛽(𝑥2) = 𝛽(𝑥3) = TRUE and does not admit
an assignment of the job 𝑗𝐶1,2 with makespan 2.

The Correctness. We will now argue that the constructed instance admits a sched-
ule with makespan 2 if and only if 𝜙 is satisfiable. For a more formal proof we refer
to the work of Ebenlendr, Křćal, and Sgall [6].

The idea behind the assignment jobs is that the machines used to process them in
a schedule correspond to a truth assignment 𝛽: For each variable 𝑥, the assignment
job 𝑗𝑥 is processed on 𝑚𝑥 if and only if 𝛽(𝑥) = FALSE. Otherwise 𝑗𝑥 is processed
on 𝑚𝑥̄ and 𝛽(𝑥) = TRUE. In order to obtain a schedule of makespan 2, we cannot
place any literal jobs on the literal machines occupied by the assignment jobs. This
means that all literal jobs corresponding to literals that have the truth value FALSE

according to 𝛽 get pushed to their clause machines. Now consider that the formula
is not satisfied if and only if at least one clause is not satisfied, and that a clause is
not satisfied precisely when all its literals are FALSE. So if a clause is not satisfied
by 𝛽, all its literal jobs get pushed to the corresponding clause machine, causing a
load of 3. The dummy jobs enforce this property for clauses containing less than
three literals. See Fig. 2 for an illustration.

C.2 3D-MATCHING and 4-PARTITION

We now consider the 3-dimensional matching problem. The classical reduction from
3-SAT to 3D-MATCHING due to Garey and Johnson produces instances with 𝑝 =
|𝑋| = |𝑌 | = |𝑍| = Θ(𝑛𝑚) and 𝑞 = |𝑇 | = Θ(𝑝2), where 𝑛 and 𝑚 are the number of
variables and clauses in the input formula, respectively [10]. This yields a 2o( 4√𝑞) ×
‖𝐼‖O(1) bound on the running time of exact algorithms.

We will modify this reduction such that 𝑝 = Θ(𝑚) and 𝑞 = Θ(𝑝). This implies a
better running time bound.
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Theorem C.2. There is no algorithm that decides 3D-MATCHING in time 2o(𝑞) × ‖𝐼‖O(1),
unless the ETH fails.

This bound is tight, since finding a matching is trivially possible in time 2O(𝑞) ×‖𝐼‖O(1)

by enumerating and testing all subsets 𝑀 ⊆ 𝑇 .
We describe the original construction [10] and our modifications briefly. Let

𝐶1, . . . , 𝐶𝑚 be the clauses of an arbitrary formula in 3-CNF. We will use a convenient
set notation for literals and clauses: let |𝐶| ≤ 3 be the number of literals in the
clause 𝐶. Instead of 𝐶 = (ℓ1 ∨ · · · ∨ ℓ|𝐶|) we write 𝐶 = {ℓ1, . . . , ℓ|𝐶|} and consequently
ℓ1, . . . , ℓ|𝐶| ∈ 𝐶 as well as ℓ /∈ 𝐶 for any literal ℓ /∈ {ℓ1, . . . , ℓ|𝐶|}. The constructed
instance consists of different types of gadgets, the variable gadgets, the clause gadgets
and the cleanup gadgets.

Variable Gadgets. For each variable 𝑣 a variable gadget is created whose purpose
it to model the two possible truth assignments for 𝑣: For each clause 𝐶 there are
the four Elements 𝑥𝐶

𝑣 , 𝑥
𝐶
𝑣 ∈ 𝑋 , 𝑦𝐶

𝑣 ∈ 𝑌 and 𝑧𝐶
𝑣 ∈ 𝑍, as well as the two triples 𝑡𝐶𝑣 =

(𝑥𝐶
𝑣 , 𝑦

𝐶
𝑣 , 𝑧

𝐶
𝑣 ) and 𝑡𝐶𝑣 = (𝑥𝐶

𝑣 , 𝑦
𝐶′
𝑣 , 𝑧𝐶

𝑣 ). Here 𝐶 ′ is the next clause in a cycle, e.g. if 𝐶 = 𝐶𝑖

then 𝐶 ′ = 𝐶𝑖+1 mod 𝑚.
There will be no more triples in the other gadgets that contain 𝑦𝐶

𝑣 or 𝑧𝐶
𝑣 . Therefore

any matching must contain either all triples from 𝑇𝑣 = {𝑡𝐶𝑣 | 𝐶 clause} or all triples
from 𝑇𝑣 = {𝑡𝐶𝑣 | 𝐶 clause}. We imagine that the choice of 𝑇ℓ, ℓ ∈ {𝑣, 𝑣} reflects the
assignment of TRUE or FALSE to 𝑣, where selecting the triples from 𝑇ℓ means that ℓ is
TRUE. This leaves exactly the elements 𝑥𝐶

ℓ unmatched.
In total, the variable gadgets contain 2𝑛𝑚 elements from both 𝑋 and 𝑇 and

𝑛𝑚 elements from both 𝑌 and 𝑍. Our first modification is a reduction of the size
of the variable gadgets: For any clause 𝐶 for which neither 𝑣 ∈ 𝐶 nor 𝑣 ∈ 𝐶 we
omit 𝑥𝐶

𝑣 , 𝑥𝐶
𝑣 , 𝑦𝐶

𝑣 , 𝑧𝐶
𝑣 , 𝑡𝐶𝑣 and 𝑡𝐶𝑣 . After our modification the variable gadgets contribute

2 × ∑︀𝑚
𝑖=1|𝐶𝑖| ≤ 6𝑚 elements to both 𝑋 and 𝑇 and at most 3𝑚 elements to both 𝑌

and 𝑍. Also note that the other gadgets do not contain any elements from 𝑋 .

Clause Gadgets. There is a clause gadget for each clause 𝐶 = {ℓ1, . . . , ℓ|𝐶|}. It
contains two elements 𝑦𝐶 ∈ 𝑌 and 𝑧𝐶 ∈ 𝑍. It also contains triples (𝑥𝐶

ℓ𝑖
, 𝑦𝐶 , 𝑧𝐶),

𝑖 ∈ [|𝐶|]. The elements 𝑦𝐶 and 𝑧𝐶 can only be matched when the triples chosen in
the variable gadgets correspond to a truth assignment that satisfies the clause 𝐶.

The clause gadgets contribute at most 3𝑚 triples to 𝑇 and exactly 𝑚 elements to
both 𝑌 and 𝑍.

Cleanup Gadgets. Considering only the elements of the variable and clause gad-
gets every matching must leave 1

2 |𝑋| −𝑚 elements of 𝑋 unmatched, even when the
formula is satisfiable. Thus there are 1

2 |𝑋| −𝑚 cleanup gadgets. A cleanup gadget is
a pair of elements 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 that can each match with any element 𝑥𝐶

ℓ ∈ 𝑋 .
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The cleanup gadgets contribute 1
2 |𝑋| − 𝑚 elements to both 𝑌 and 𝑍 and |𝑋| ×

(1
2 |𝑋| − 𝑚) triples to 𝑇 . Our second modification reduces the number of triples in

the cleanup gadgets by having a cleanup gadget dedicated to each clause. Let 𝐶 =
{ℓ1, . . . , ℓ|𝐶|} be a clause. There are 2 |𝐶| elements of 𝑋 associated with 𝐶 (if the
modification of the variable gadgets is applied). Exactly half of them can be matched
within the variable gadgets and up to one can be matched by the clause gadget.
Thus it is sufficient to have |𝐶| − 1 pairs of elements 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 that can each
match with any of the 2 |𝐶| elements 𝑥𝐶

ℓ𝑖
∈ 𝑋 , 𝑖 ∈ [|𝐶|]. This requires 2 |𝐶| (|𝐶| − 1) ≤

12 triples. In total the modified cleanup gadgets contain at most 12𝑚 triples.
With both modifications we get 𝑝 = |𝑋| = |𝑌 | = |𝑍| ≤ 6𝑚 and 𝑞 = |𝑇 | ≤ 21𝑚 and

the theorem follows. An interesting consequence is a lower bound for 4-PARTITION,
which can be reduced from 3D-MATCHING [10].

Corollary C.3. There is no algorithm deciding 𝑘-PARTITION for 𝑘 ≥ 4 with 𝑘𝑛 items in
time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Proof. We describe the reduction due to Garey and Johnson [10]. Consider an
instance of 3D-MATCHING consisting of 𝑋 = {𝑥1, . . . , 𝑥𝑝}, 𝑌 = {𝑦1, . . . , 𝑦𝑝}, 𝑍 =
{𝑧1, . . . , 𝑧𝑝}, and 𝑇 . We can assume that 𝑞 ≥ 𝑝, otherwise we can output a triv-
ial no-instance. Create an item for each occurrence of an item in a triple. For
𝑎 ∈ 𝑋 ∪ 𝑌 ∪ 𝑍 denote by 𝑛𝑎 ∈ N the number of triples in which 𝑎 occurs. We create
the items 𝑎1, . . . , 𝑎𝑛𝑎 . The sizes of the items are gives as follows:

s
(︁
𝑎ℓ

)︁
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10𝑟4 + 𝑖𝑟 + 1 if 𝑎 = 𝑥𝑖 and ℓ = 1
11𝑟4 + 𝑖𝑟 + 1 if 𝑎 = 𝑥𝑖 and ℓ ̸= 1
10𝑟4 + 𝑗𝑟2 + 2 if 𝑎 = 𝑦𝑗 and ℓ = 1
11𝑟4 + 𝑗𝑟2 + 2 if 𝑎 = 𝑦𝑗 and ℓ ̸= 1
10𝑟4 + 𝑘𝑟3 + 2 if 𝑎 = 𝑧𝑘 and ℓ = 1
8𝑟4 + 𝑘𝑟3 + 2 if 𝑎 = 𝑧𝑘 and ℓ ̸= 1,

where 𝑟 = 32𝑝. In addition there is one item 𝑡 for each triple 𝑡 = (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇

with s(𝑡) = 10𝑟4 − 𝑘𝑟3 + 𝑗𝑟2 + 𝑖𝑟 + 8. The target number 𝐵 is 40𝑟4 + 15.
In total the number of items is 3𝑞 + 𝑞 = 4𝑞, as there are 3𝑞 occurrences of items

in triples (three for each of the 𝑞 triples) and 𝑞 triples. Recall that an instance of
4-PARTITION contains 4𝑛 items, hence we set 𝑛 = 𝑞. The reduction is strong and the
statement follows from Theorem C.2.
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C.3 Parallel and Malleable Task Scheduling

C.3.1 Parallel Tasks.

An extension to multiprocessor scheduling are parallel tasks [32]. A parallel task 𝑗 has
a value size(𝑗) ∈ [𝑚] that denotes how many machines are required simultaneously
to process 𝑗.

Theorem C.4. There is no exact algorithm for ⟨P2 | para |𝐶max⟩ with running time 2o(𝑛) ×
‖𝐼‖O(1), unless the ETH fails.

Proof. ⟨P2 | para |𝐶max⟩ contains ⟨P2 | |𝐶max⟩ as a special case where size(𝑗) = 1 for
every task 𝑗. The theorem follows from Theorem 2.4.

We can also obtain an inapproximability result from a reduction due to Droz-
dowski [4]

Theorem C.5. The problem ⟨P | para, t(𝑗) = 1 |𝐶max ≤ 2⟩ cannot be approximated within
any factor 𝛼 < 3

2 in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Proof. Consider some instance 𝐴 of PARTITION. Create a job 𝑗 for each item 𝑎 ∈ 𝐴

with t(𝑗) = 1 and size(𝑗) = 𝑎. Then there is a schedule with makespan 2 if and only
if 𝐴 admits a partition. An 𝛼-approximate algorithm with 𝛼 < 3

2 can distinguish
between these two cases. The theorem follows from Theorem 2.1.

Due to the used reduction the bound only holds if the number 𝑚 of machines
is allowed to be exponential in 𝑛. On the other hand there is a PTAS by Jansen
and Thöle [37] for the problem if 𝑚 is bounded by a polynomial in 𝑛. We can
close the remaining gap: the detailed analysis shows that the running time of the
approximation scheme is polynomial in 𝑚 and 𝑛 [37]. So if 𝑚 is sub-exponential
in 𝑛, i.e. 𝑚 = 2o(𝑛), then 𝑚𝑐 = (2o(𝑛))𝑐 = 2o(𝑛)𝑐 = 2o(𝑛) for any constant 𝑐. Therefore
the approximation scheme has sub-exponential running time.

C.3.2 Malleable Tasks.

A further generalization is the use of malleable tasks [34]. A malleable task 𝑗 can be
parallelized arbitrarily: For any number 𝑘 ∈ [𝑚] of machines the value t(𝑗, 𝑘) denotes
the running time of 𝑗 when executed on 𝑘 machines. In a schedule the number of
machines has to be fixed once and cannot be changed later1. It is usually required
that the function t(𝑗, ·) is non-increasing for each job 𝑗.

Theorem C.6. There is no exact algorithm for ⟨P2 | mall |𝐶max⟩ with running time 2o(𝑛) ×
‖𝐼‖O(1), unless the ETH fails.

1Some authors call such tasks moldable. Malleable tasks in that notion are allowed to migrate to an
arbitrary set of machines of possibly different size.
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Proof. We can model any instance of ⟨P2 | para |𝐶max⟩ by setting t(𝑗, 𝑘) = t(𝑗) if 𝑘 ≥
size(𝑗) and t(𝑗, 𝑘) = ∞ (or some sufficiently large value) otherwise. The theorem
follows from Theorem C.4.

We have to be more careful with the second reduction: if we encode the instance
by listing the running time for each possible number of machines, the length ‖𝐼‖ of
the encoding will be Ω(𝑛𝑚). The PTAS by Jansen and Thöle can be adapted for the
malleable case and, as for parallel tasks, its running time is polynomial in 𝑛 and 𝑚

which is also polynomial in the encoding length – thus we have no hope of showing
any inapproximability result in that case.

To extend Theorem C.5 to malleable tasks we must use an encoding such that
the encoding length remains subexponential in 𝑛 even if the number of machines is
strongly exponential.

Theorem C.7. The problem ⟨P | mall |𝐶max ≤ 2⟩ cannot be approximated within any
factor 𝛼 < 3

2 in time 2o(𝑛) × ‖𝐼‖O(1) if a compact encoding of running times is used and the
ETH holds.

Proof. We can exploit the simple structure of the functions t(𝑗, ·) described in the
proof of Theorem C.6 (their value only changes once) and use a more compact
encoding. One possible encoding with this property would only specify when and
to which value the functions change.

C.3.3 Monotone Tasks.

A further property that is often assumed is monotony of all tasks 𝑗, i.e. the work
function w(𝑗, 𝑘) = 𝑘× t(𝑗, 𝑘) is non-decreasing in 𝑘. When t(𝑗, ·) is strictly decreasing
and w(𝑗, ·) is strictly increasing for every job 𝑗 we speak of strictly monotone tasks.
While these special cases received some attention in the literature [38, 40, 41, 42]
their complexity status has not been explicitly discussed yet.

Theorem C.8. Even for strictly monotone tasks, ⟨P2 | mall,monotone |𝐶max⟩ is weakly
NP-hard and cannot be solved in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Proof. We slightly modify the reduction to ⟨P2 | mall |𝐶max⟩ to obtain strict monotony.
Let 𝐴 be an instance of PARTITION. For each item 𝑎 ∈ 𝐴 create a job 𝑗𝑎 with t(𝑗𝑎, 1) =
4 s(𝑎) and t(𝑗𝑎, 2) = 2 s(𝑎) + 1. Then t(𝑗𝑎, ·) is strictly decreasing. Furthermore
w(𝑗𝑎, 1) = t(𝑗𝑎, 1) = 4 s(𝑎) and w(𝑗𝑎, 2) = 2 t(𝑗𝑎, 2) = 4 s(𝑎) + 2, so w(𝑗𝑎, ·) is strictly
increasing. Our jobs are 𝐽 = {𝑗𝑎 | 𝑎 ∈ 𝐴}.

CLAIM 3. There is a schedule for (𝐽, 2) with makespan 2 s(𝐴) if and only if 𝐴 is a
yes-instance.
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Proof of Claim 3. Let first 𝐴 be a yes-instance, i.e. there is a partition 𝐴 = 𝐴1 ∪̇ 𝐴2

with s(𝐴1) = s(𝐴2) = 1
2 s(𝐴). For each 𝑎 ∈ 𝐴, schedule 𝑗𝑎 on machine 1 if 𝑎 ∈ 𝐴1, and

on machine 2 otherwise. The resulting schedule has makespan 2 s(𝐴).
Now let 𝜎 : 𝐽 → 2[2] be a schedule2 with makespan 2 s(𝐴).

CLAIM 4. 𝜎 schedules each job 𝑗 on one machine, i.e. |𝜎(𝑗)| = 1.

Proof of Claim 4. The load of machine 𝑘 is defined as

load(𝑘) =
∑︁

𝑗∈𝐽,𝑘∈𝜎(𝑗)
t(𝑗, |𝜎(𝑗)|).

Assume there is a job 𝑗 with |𝜎(𝑗)| > 1. Then, because w(𝑗, ·) is strictly increasing,
we have

2∑︁
𝑘=1

load(𝑘) =
∑︁
𝑗∈𝐽

w(𝑗, |𝜎(𝑗)|) >
∑︁
𝑗∈𝐽

w(𝑗, 1) = 4 s(𝐴).

By the pigeonhole principle, the load of at least one machine is larger than 2 s(𝐴), a
contradiction.

From Claim 4 we gather that

2∑︁
𝑘=1

load(𝑘) =
∑︁
𝑗∈𝐽

w(𝑗, 1) = 4 s(𝐴),

thus load(1) = load(2) = 2 s(𝐴). Therefore the sets 𝐴1 = {𝑎 ∈ 𝐴 | 𝑗𝑎 ∈ 𝜎−1({1})}
and 𝐴2 = {𝑎 ∈ 𝐴 | 𝑗𝑎 ∈ 𝜎−1({2})} form the desired partition.

The reduction shows that, since PARTITION is NP-hard][30], ⟨P2 | mall |𝐶max⟩ is
also NP-hard. Because the reduction is strong, we get the bound on the running time
from Lemma 2.7. (Theorem C.8)

It is unknown whether scheduling monotone malleable tasks is strongly NP-hard
for any fixed or arbitrary 𝑚 and whether it admits an approximation ratio better
than 3

2 .

C.3.4 Preemptions and Migrations.

All of the above results also hold when preemptions are allowed, as preemptions do
not allow improved schedules for the constructed instances.

If migration is also allowed there is an exact algorithm by Jansen and Porko-
lab [36] whose running time is polynomial in 𝑛 and 𝑚. Thus both parallel and
malleable task scheduling are solvable in sub-exponential time 2o(𝑛) × ‖𝐼‖O(1) when

2For malleable task scheduling, a schedule 𝜎 assigns for each job 𝑗 a set 𝜎(𝑗) ⊆ [𝑚] of jobs.
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𝑚 is sub-exponential in 𝑛, i.e. 𝑚 = 2o(𝑛). For exponentially many machines the inap-
proximability of ⟨P | para, (pmtn) |𝐶max ≤ 2⟩ and ⟨P | mall, (pmtn) |𝐶max ≤ 2⟩ within
time 2o(𝑛) × ‖𝐼‖O(1) still holds.

C.4 Shop Scheduling

In this section we will consider the different shop scheduling variants open shop [35],
job shop [33] and flow shop [33], each with and without preemption and with respect
to makespan minimization and flow time minimization.

In open shop scheduling there are 𝑚 different machines. Each job 𝑗 consists of
𝑚 operations 𝑜𝑗,1, . . . , 𝑜𝑗,𝑚, and each operation 𝑜𝑗,𝑘 has to be executed on machine 𝑘 in
time t(𝑜𝑗,𝑘). No two operations of the same job may be executed at the same time. It
is allowed that t(𝑜𝑗,𝑘) = 0.

We will show that most shop problems cannot be solved in time 2o(𝑛) × ‖𝐼‖O(1). In
Sect. 4 we presented an algorithm with running time 2O(𝑛) × ‖𝐼‖O(1) for the discussed
nonpreemptive problems when the number 𝑚 of machines is bounded by a constant.

C.4.1 Flow Shop.

In flow shop scheduling the operations 𝑜𝑗,1, . . . , 𝑜𝑗,𝑚 of each job 𝑗 have to be processed
in exactly this order.

Makespan Minimization. The problems ⟨F2 | |𝐶max⟩ and ⟨F2 | pmtn |𝐶max⟩ are
solvable in polynomial time by the Johnson’s algorithm [39]. Gonzalez and Sahni [11]
also presented a strong reduction from PARTITION to the problems ⟨F3 | |𝐶max⟩ and
⟨F3 | pmtn |𝐶max⟩.

Theorem C.9. The problems ⟨F3 | |𝐶max⟩ and ⟨F3 | pmtn |𝐶max⟩ cannot be decided in
time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

Flow Time Minimization. The problem ⟨F2 | | ∑︀
𝐶𝑗⟩ is strongly NP-hard by a

reduction from 3-PARTITION [9]. The reduction can be easily changed to a strong
reduction from 4-PARTITION to ⟨F2 | | ∑︀

𝑤𝑗𝐶𝑗⟩.

Theorem C.10. The problem ⟨F2 | | ∑︀
𝑤𝑗𝐶𝑗⟩ cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1),

unless the ETH fails.

Proof. We modify the reduction of Garey, Johnson, and Sethi [9]. Their basic idea is
as follows: there are three types of jobs that enforce a certain structure in optimal
schedules, 𝑛 jobs of type 𝑇 and a super-linear number of types 𝑉 and 𝑋 . The jobs of
each type are identical except for 𝑇0, which has no operation on machine 1. These
jobs should leave 𝑛 free blocks of 3𝑣 +𝐵 time units each on machine 2 (see Fig. 3).
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(a) Overview of the schedule.
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1 (𝑛 − 3)𝑣 3𝑣 + 𝐵

(b) Detailed view of one block.

Figure 3: Schedule of the structure jobs.

For each item 𝑎 of the instance of 3-PARTITION there is a job of type 𝑊 with only one
operation on machine 2 with processing time 𝑣 + s(𝑎). The number and length of the
jobs is chosen such that no job of type 𝑇 , 𝑋 , or 𝑉 can be delayed even by 1 time unit
without significantly increasing the flow time. There is a number 𝐷 such that the
constructed instance has a schedule with flow time ≤ 𝐷 if and only if the instance of
3-PARTITION is a yes-instance.

We have to overcome two problems with this reduction. First, we need to
reduce the number of jobs to a linear term. Second, the reduction should start with
4-PARTITION.

Bounding the Number of Jobs Since in every optimal schedule the jobs of type 𝑋
are scheduled directly after each other, we can replace them with a single job: assume
there are 𝑛 jobs of type 𝑋 with length 𝑙 each. When we schedule these directly after
each other, starting at time 𝑡, they have a total flow time

∑︀𝑛
𝑖=1(𝑡+ 𝑖𝑙) = 𝑛𝑡+ 𝑙𝑛(𝑛+1)

2 . If
we schedule a job with length 𝑛𝑙 and weight 𝑛 at time 𝑡, it has a weighted flow time
of 𝑛(𝑡 + 𝑛𝑙) = 𝑛𝑡 + 𝑙𝑛2. Regardless of the value 𝑡 the difference remains constant,
namely 𝑙𝑛(𝑛−1)

2 . We can subtract this difference from 𝐷, and the reduction remains
correct. The same modification be applied to replace the jobs of type 𝑉 with 𝑛 large
jobs. Then the number of jobs is 6𝑛+ 2.

Reducing from 4-PARTITION Because we are reducing from 4-PARTITION instead
of 3-PARTITION, we have to fit 4 jobs into the gaps of size 3𝑣 + 𝐵. We give the job
corresponding to item 𝑎 the length 3

4𝑣 + s(𝑎) and weight 3
4 . Since the ratio of length

and weight remain similar, we do not need to change 𝐷 further.

Next, we give a strong reduction from 3-SAT’ (see Appendix C.1) to ⟨F | | ∑︀
𝐶𝑗⟩.

The idea of the reduction is due to Hoogeveen, Schuurman, and Woeginger [13],
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who presented a similar L-reduction from BOUNDEDMAX-2-SAT to ⟨F | | ∑︀
𝐶𝑗⟩.

Let 𝐴 and 𝐵 be minimization problems. An L-reduction from 𝐴, to 𝐵 is a pair
of functions 𝑅 and 𝑆 that can be computed in polynomial times and have two
additional properties:

(i) There is a constant 𝛼 such that, for any instance 𝐼 of 𝐴, 𝑅(𝐼) is an instance of 𝐵
with OPT(𝑅(𝐼)) ≤ 𝛼OPT(𝐼).

(ii) There is a constant 𝛽 such that for any feasible solution 𝑠 of𝑅(𝐼), 𝑆(𝑠) is is a fea-
sible solution of 𝐼 with |OPT(𝐼) − 𝑐(𝑆(𝑠))| ≤ 𝛽 |OPT(𝑅(𝐼)) − 𝑐(𝑠)|, where 𝑐(𝑠)
and 𝑐(𝑆(𝑠)) are the costs of 𝑠 and 𝑆(𝑠), respectively.

Hoogeveen, Schuurman, and Woeginger used this reduction to show APX-hardness
of ⟨F | | ∑︀

𝐶𝑗⟩, which implies that there is no PTAS for this problem, unless P ̸= NP.
Our reduction however is a normal many-one-reduction.

The Construction. Let 𝜙 be an instance of 3-SAT’. Consider some variable 𝑥 and
its two literals 𝑥 and 𝑥̄. We create two literal jobs for each literal, say 𝑥1, 𝑥2, 𝑥̄1 and 𝑥̄2.
As each of the literals appears at most twice we will consider each of the jobs to
correspond to one occurrence of that literal. In addition we create two assignment
machines 𝑚a

𝑥,1, 𝑚a
𝑥,2 and two consistency machines 𝑚c

𝑥,1, 𝑚c
𝑥,2. For each clause 𝐶 we

create one clause machine 𝑚𝐶 . We now describe the operations of the literal jobs.
Let ℓ𝑗 , ℓ ∈ {𝑥, 𝑥̄}, 𝑗 ∈ {1, 2} be a literal job. The literal job ℓ𝑗 has 3 operations with
processing time 1: One on the assignment machine 𝑚a

𝑥,𝑗 . The second one is on a
consistency machine. If ℓ = 𝑥 then the operation is on machine 𝑚c

𝑥,𝑗 , if ℓ = 𝑥̄ then the
operation is on machine 𝑚c

𝑥,2−𝑗+1. The third operation depends on whether 𝑥𝑗 occurs
in a clause. If so, let 𝐶 be that clause and execute the operation on 𝑚𝐶 . Otherwise we
create an additional dummy machine 𝑚d

ℓ,𝑗 and three dummy jobs with one operation
of processing time 1 each, to be processed on that dummy machine. The order of the
machines is as follows: First are the assignment machines (in arbitrary order), then
the consistency machines, and last the clause machines and dummy machines.

Lemma C.11. Let 𝑚2 and 𝑚3 be the number of clauses in 𝜙 with 2 or 3 literals, respectively.
The flow shop instance admits a schedule with flow time 26𝑛+ 7𝑚2 + 12𝑚3 if and only if 𝜙
is satisfiable.

Proof. A schedule for the constructed instance is called consistent if for each vari-
able 𝑥 the machines 𝑚a

𝑥,1 and 𝑚a
𝑥,2 process either both 𝑥1 and 𝑥2 in the time inter-

val [0, 1] or both 𝑥̄1 and 𝑥̄2 in the time interval [0, 1]. A consistent schedule models a
truth assignment: The literals that are scheduled in the interval [0, 1] are considered
to be TRUE. Hoogeveen, Schuurman, and Woeginger proved that for every schedule
there is a consistent schedule with less or equal flow time.

Assume that 𝜙 is satisfiable. Choose a satisfying truth assignment. Schedule the
literal jobs corresponding to TRUE literals on the assignment machines in time [0, 1]
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and on the consistency machines in time [1, 2]. Schedule the literal jobs corresponding
to FALSE literals on the assignment machines in time [1, 2] and on the consistency
machines in time [2, 3]. Schedule the clause machines as follows: choose any TRUE

literal in the clause and schedule the corresponding operation in time [2, 3]. Schedule
the (up to two) other operations on this machine immediately after time 3. Schedule
the three dummy operations on each dummy machine in time [0, 3] and the operation
of the literal job in time [3, 4].

We calculate the flow time of this schedule. The flow time on each assignment
machine (consistency machine) is 3 (5). The flow time of a dummy machine is 10.
There are exactly 2𝑛 assignment machines and consistency machines and 𝑛 dummy
machines. thus the total flow time is 𝑓 = 26𝑛+ 7𝑚2 + 12𝑚3.

Assume now that 𝜙 is not satisfiable. Take an optimal and consistent schedule.
The schedule is similar to the one described above, except that the clause machines
of unsatisfied clauses have no operation in the time interval [2, 3]. Because there
must be at least one such machine the total flow time is at least 𝑓 + 2.

It follows immediately:

Theorem C.12. The problem ⟨F | (pmtn) | ∑︀
𝐶𝑗⟩ cannot be solved in time 2o(𝑛) × ‖𝐼‖O(1),

unless ETH fails.

Whether ⟨F𝑚 | | ∑︀
𝐶𝑗⟩ admits a solution in time 2o(𝑛) ×‖𝐼‖O(1) for any fixed𝑚> 1

remains open.

C.4.2 Open Shop.

In open shop scheduling there are no precedence constraints imposed on the opera-
tions.

Makespan Minimization. The problems ⟨O2 | |𝐶max⟩ and ⟨O | pmtm |𝐶max⟩ are
solvable in time polynomial in 𝑛 by an algorithm due to Gonzalez and Sahni [35].
They also presented a strong reduction from PARTITION to ⟨O3 | |𝐶max⟩ [35].

Theorem C.13. ⟨O3 | |𝐶max⟩ cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH
fails.

For the next result we use a strong reduction from MONOTONE-NAE-3-SAT to
⟨O | |𝐶max⟩ due to Williamson et al. [31].

Theorem C.14. For 𝛼 < 5
4 there is no 𝛼-approximate algorithm for ⟨O | |𝐶max⟩ with

running time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

We only need to verify the hardness of MONOTONE-NAE-3-SAT.
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Lemma C.15. MONOTONE-NAE-3-SAT cannot be decided in time 2o(𝑛) ×‖𝐼‖O(1), unless
the ETH fails.

Proof. We describe a strong reduction to MONOTONE-NAE-3-SAT from 3-SAT. Let
𝜙 be some formula in 3-CNF with 𝑛 variables and 𝑚 clauses. Create for each
clause 𝐶 = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∈ 𝜙 one additional variable 𝑥𝐶 , and replace the clause by
the two new clauses

𝐶 ′ = (ℓ1 ∨ ℓ2 ∨ 𝑥𝐶) ∧ (𝑥̄𝐶 ∨ ℓ3).

Call the resulting formula 𝜙′.

CLAIM 5 (Folklore). 𝜙 is satisfiable if and only if 𝜙′ is NAE-satisfiable (i.e. there is a
truth assignment such that each clause of 𝜙′ contains a TRUE and a FALSE literal).

Proof of Claim 5. Assume 𝜙 is satifiable. Chose any satisfying truth assignment.
We have to find a truth assignment for the additional variables. Consider some
clause 𝐶 = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∈ 𝜙.
Case 1: ℓ1 ∨ ℓ2 is TRUE. Set 𝑥𝐶 = FALSE, then 𝐶 ′ is NAE-satisfied.
Case 2: ℓ1 ∨ ℓ2 is FALSE. Then ℓ3 is TRUE. Set 𝑥𝐶 = TRUE to NAE-satisfy 𝐶 ′.
Repeat this procedure for each clause to get an assignment that NAE-satisfies 𝜙′.

Now assume that 𝜙 is not satisfiable. We want to show that 𝜙′ cannot be NAE-
satisfied. Chose any truth assignment for 𝜙′. When restricted to the variables of 𝜙, the
truth assignment cannot satisfy 𝜙. Therefore, there must be some clause𝐶 = (ℓ1 ∨ℓ2 ∨
ℓ3) ∈ 𝜙 that is not satisfied, i.e. ℓ1, ℓ2, and ℓ3 are all FALSE. Then𝐶 ′ ≡ (FALSE ∨ FALSE ∨
𝑥𝐶) ∧ (𝑥̄𝐶 ∨ FALSE), hence no assignment for 𝑥𝐶 can NAE-satisfy 𝐶 ′. (Claim 5)

Now replace each variable 𝑥 in 𝜙 with two new variables 𝑦 and 𝑧. Substitute each
occurrence of 𝑥 by 𝑦 and each occurrence of 𝑥̄ by 𝑧. Finally, add the clause 𝑦 ∨ 𝑧 that
forces 𝑦 and 𝑧 to have different truth values for every NAE-satisfying truth assign-
ment. The resulting formula𝜙′′ contains no negated literals, and𝜙′′ is NAE-satisfiable
if and only if 𝜙′ is. This concludes our reduction to MONOTONE-NAE-3-SAT.

The resulting formula 𝜙′′ has at most 2(𝑛 + 𝑚) variables and 2𝑚 + 𝑛 clauses.
Therefore we have a strong reduction. The lemma follows. (Lemma C.15)

Flow Time Minimization.

Theorem C.16. The problem ⟨O2 | | ∑︀
𝑤𝑗𝐶𝑗⟩ cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1),

unless the ETH fails.

Proof. The problem ⟨O2 | | ∑︀
𝐶𝑗⟩ is known to be strongly NP-hard by a reduction

from 3-PARTITION [1]. The reduction can be changed to a strong reduction from
4-PARTITION to ⟨O2 | | ∑︀

𝑤𝑗𝐶𝑗⟩ with the same techniques as in the proof of Theo-
rem C.10.
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The reduction from BOUNDEDMAX-2-SAT to ⟨F | | ∑︀
𝐶𝑗⟩ mentioned above can

be extended to ⟨O | | ∑︀
𝐶𝑗⟩ [13].

Theorem C.17. ⟨O | (pmtn) | ∑︀
𝐶𝑗⟩ cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1), unless the

ETH fails.

Proof. We can apply the same method to our modified reduction from 3-SAT’: Let
𝜙 be an instance of 3-SAT’. We require the creation of the same jobs and machines as
above. In addition there are 18𝑛+ 6𝑚 structure jobs. Each structure job has only one
operation of non-zero length, its structure operation.

On each of the 2𝑛 assignment machines there are three structure operations of
length 5. On each of the 2𝑛 consistency machine there are three structure operations
each of length 1

3 and 5. On each of the 𝑚 clause machine there are six structure
operations of length 1

3 . The idea is that the structure operations of length 1
3 are

scheduled first and the operations with length 5 are scheduled last on their machine
in any reasonable schedule.

Similar to Lemma C.11, one can verify that the resulting instance of ⟨O | | ∑︀
𝐶𝑗⟩

admits a schedule with flow time 180𝑛+14𝑚2+19𝑚3 if and only if 𝜙 is satisfiable.

It is still open whether ⟨O𝑚 | | ∑︀
𝐶𝑗⟩ can be solved in time 2o(𝑛) × ‖𝐼‖O(1) for any

fixed 𝑚 > 1.
With preemptions the situation is clearer. The problem ⟨O2 | pmtn | ∑︀

𝐶𝑗⟩ can be
linearly reduced from BALANCEDPARTITION. Corollary 2.8 implies:

Theorem C.18. ⟨O2 | pmtn | ∑︀
𝐶𝑗⟩ cannot be decided in time 2o(𝑛) × ‖𝐼‖O(1), unless the

ETH fails.

C.4.3 Job Shop.

In job shop scheduling the order in which the operations of a job must be processed
is specified on a per-job basis. This is obviously a generalization of flow shop
scheduling, thus all lower bounds mentioned for flow shop problems also apply for
job shop. In addition, there is strong reduction from PARTITION due to Gonzalez
and Sahni [11].

Theorem C.19. The problems ⟨J2 | |𝐶max⟩ and ⟨J2 | pmtn |𝐶max⟩ cannot be decided in
time 2o(𝑛) × ‖𝐼‖O(1), unless the ETH fails.

D Details for Sect. 4

D.1 Sequencing on a Constant Number of Machines

First, we describe what constraints our algorithm can handle and how different
types of scheduling problems can be incorporated with our model.
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Extension to Parallel and Malleable Tasks. To support parallel and malleable
tasks we need to change the notion of a schedule such that 𝜎m : 𝐽 → 2[𝑚], i.e. we
assign a set 𝜎m(𝑗) ⊆ [𝑚] of machines to each job. Furthermore, for a set 𝑀 ⊆ [𝑚]
of machines, t(𝑗,𝑀) is the processing time of job 𝑗 ∈ 𝐽 on 𝑀 . Other than that no
changes in notation or definitions are necessary. This increases the number of 𝑆-
outlines. Note however, that an outline still cannot contain more than 𝑚 jobs. Thus
there are at most |𝑇 |𝑚 × (|𝑆| + 1)𝑚 × 2𝑚 ≤ 𝑛𝑚2𝑛𝑚2 × (𝑛+ 1)𝑚 = 2O(𝑛) outlines.

Constraints. We now give detailed descriptions of the different constraints that
the algorithm can handle.

No overlapping jobs The standard constraint of almost all scheduling and packing
problems: The processing of two jobs must not overlap, i.e. if 𝑗1, 𝑗2 ∈ 𝐽 are
executed on 𝑀1,𝑀2 ⊆ [𝑚] with 𝑀1 ∩𝑀2 ̸= ∅, then the processing time intervals
of 𝑗1 and 𝑗2 must not intersect.

Infeasible machines/machine sets For any job, the placement on arbitrary ma-
chines (or sets of machines for parallel and malleable tasks) may be forbidden.

Release times and deadlines Each job 𝑗 has a release time r(𝑗) and a deadline d(𝑗).
It must not begin processing before r(𝑗) and must complete processing at or
before d(𝑗).

Precedence constraints There is a partial order ≺ on 𝐽 . When 𝑗1 ≺ 𝑗2 for two
jobs 𝑗1, 𝑗2 ∈ 𝐽 . Then the processing of 𝑗1 must be completed at or before the
processing of 𝑗2 begins; 𝑗2 is called a successor of 𝑗1.

Exclusion constraints There is a relation ≷ on 𝐽 . When 𝑗1 ≷ 𝑗2 for 𝑗1, 𝑗2 ∈ 𝐽 , the
processing of 𝑗1 and 𝑗2 may not intersect, i.e. one must complete at or before
the time when the other starts. This type of constraint is required for open
shop scheduling.

Shop Scheduling Problems. Our algorithm can solve shop scheduling problems,
even when we allow more than 𝑚 operations per job. A job then may have several
operations to be processed on the same machine. In this section, we handle the
operations like jobs that can only be scheduled on one machine, thus we consider 𝑛
to be the number of operations with non-zero processing time. The bounds for
⟨O3 | | 𝑓⟩, ⟨J3 | | 𝑓⟩, and ⟨F3 | | 𝑓⟩ from Sect. 3 also hold with this notation, as we
limited the number of operations to 𝑚 in Sect. 3, so the number of operations is
linear in the number of jobs.

We will now prove Lemma 4.1.
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Proof of Lemma 4.1. Consider a schedule 𝜎 for a set 𝐽 of jobs and some job 𝑗 ∈ 𝐽 that is
processed on machines 𝑀 = 𝜎m(𝑗). We assume that all jobs start as early as possible,
so 𝑗 either starts at its release time r(𝑗) and finishes at r(𝑗) + t(𝑗,𝑀), or 𝑗 starts
immediately after another job. Then, by induction there is a sequence 𝑗1, . . . , 𝑗ℓ = 𝑗

of jobs that start after each other and 𝑗1 starts at its release time r(𝑗1). Note that 𝑗𝑖,
𝑖 ∈ [ℓ] may be scheduled on a possibly different machine set 𝑀𝑖. The finishing time
of 𝑗 is r(𝑗1) + ∑︀ℓ

𝑖=1 t(𝑗𝑖,𝑀𝑖). So

𝑇 =
{︁
r(𝑗1) +

∑︁
𝑀⊆[𝑚]

t(𝑆𝑀 ,𝑀)
⃒⃒⃒
𝑗1 ∈ 𝐽, 𝑆𝑀 ⊆ 𝐽 for 𝑀 ⊆ [𝑚]

}︁

contains all possible starting and finishing times, where 𝑆𝑀 are the jobs on machine
set 𝑀 ; and |𝑇 | ≤ 𝑛× (2𝑛)2𝑚 = 𝑛× 2𝑛2𝑚 = 2O(𝑛).

Before we can prove Lemma 4.2, we need to introduce some more notations. We
also elaborate on a few notions that were introduced or used in Sect. 4.1.

Schedules and Feasibility. Let 𝑆 ⊆ 𝐽 . A schedule on 𝑆 is a pair 𝜎 of functions
𝜎m : 𝑆 → 2[𝑚], 𝜎s : 𝑆 → N0 that defines machines and starting times for the jobs in 𝑆.
Thus a schedule is also a schedule on 𝐽 . If 𝜎 is a schedule on 𝑆 and 𝑆 ′ ⊆ 𝑆, we define
the restriction 𝜎|𝑆′ = (𝜎m|𝑆′ , 𝜎t|𝑆′). Obviously, 𝜎|𝑆′ is a schedule on 𝑆 ′.

We call a schedule for 𝑆 ⊆ 𝐽 feasible, when no constraints are violated that
involve only jobs in 𝑆. For a job 𝑗 ∈ 𝐽 and a schedule 𝜎 we say that the placement
of 𝑗 is feasible, if 𝜎 does not violate any constraints that involve 𝑗. Clearly, a schedule
for 𝑆 is feasible if and only if the placement of each 𝑗 ∈ 𝑆 is feasible.

Evaluation of Schedules on Subsets and B[𝑆, 𝜏 ]. Our algorithm works by step-
wise extending schedules on subsets of 𝐽 . We need to extend our objective function 𝑓
to such schedules: if 𝜎 is a feasible schedule for 𝑆, then 𝑓(𝜎) = Op𝑗∈𝑆 𝑔𝑗(𝜎m(𝑗), 𝜎s(𝑗)).
The schedule 𝜎 is optimal with outline 𝜏 if there is no better schedule for 𝑆 with
outline 𝜏 , i.e.

𝑓(𝜎) = Op’{𝑓(𝜎′) | 𝜎′ is feasible schedule for 𝑆 with outline 𝜏}. (2)

The right hand side of (2) is also the definition of the value B[𝑆, 𝜏 ]. We use the
convention B[𝑆, 𝜏 ] = ±∞ (depending on whether we minimize or maximize 𝑓 ) to
denote that no feasible schedule for 𝑆 with outline 𝜏 exists.

Outlines and 𝑆-outlines. The outline 𝜏 of a schedule 𝜎 is the information that can
be observed when looking at 𝜎 from above, see Fig. 4. The key observation is that,
since ℓ(𝜎) is a job that starts last, all jobs of 𝑆 whose processing time overlaps that
of ℓ(𝜎) are contained in the set 𝐿(𝜎). This inspires the notion of 𝑆-outlines: When
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(a) A schedule 𝜎 of
parallel jobs. The job ℓ(𝜎)
is highlighted in yellow.

(b) The outline 𝜏 of 𝜎.

(c) The outline 𝜏 ′ ∈ 𝑂𝑆(𝜏)
that helps to construct 𝜎.

(d) An outline that is not
in 𝑂𝑆(𝜏), because the
highlighted job uses a
machine not used by 𝜏 .

Figure 4: Illustration of outlines and related notions.

the placement of ℓ(𝜏) = ℓ(𝜎) is feasible with respect to 𝜏 and no successor of ℓ(𝜏) is
contained in 𝑆, then the placement of ℓ(𝜏) is feasible with respect to 𝜎.

Proof of Lemma 4.2. Set ℓ = ℓ(𝜏), 𝑀 = 𝜏m(ℓ) ⊆ [𝑚], 𝑡 = 𝜏t(ℓ) ∈ 𝑇 , and 𝑆 ′ = 𝑆 ∖ {ℓ}.
Assume that we want to minimize 𝑓 (the proof for maximization works analog).
Here is a restatement of the proposed recurrence equation:

B[𝑆, 𝜏 ] = min
𝜏 ′∈𝑂𝑆(𝜏)

Op{B[𝑆 ′, 𝜏 ′], 𝑔ℓ(𝑀, 𝑡)}.

Let 𝜏 ′ ∈ 𝑂𝑆(𝜏) be some outline. Consider an optimal (and thus feasible) sched-
ule 𝜎′ for 𝑆 ′ with outline 𝜏 ′, i.e. 𝑓(𝜎′) = B[𝑆 ′, 𝜏 ′]. We can extend 𝜎′ with ℓ to a
schedule 𝜎 for 𝑆 with outline 𝜏 and 𝜎 is feasible. Then

B[𝑆, 𝜏 ] ≤ 𝑓(𝜎)
= Op{𝑓(𝜎′), 𝑔ℓ(𝑀, 𝑡)}
= Op{B[𝑆 ′, 𝜏 ′], 𝑔ℓ(𝑀, 𝑡)}.

Since 𝜏 ′ was chosen arbitrarily, we have

B[𝑆, 𝜏 ] ≤ min
𝜏 ′∈𝑂𝑆(𝜏)

Op{B[𝑆 ′, 𝜏 ′], 𝑔ℓ(𝑀, 𝑡)}.

We now show that there is an outline 𝜏 ′ such that equality holds. Consider an
optimal schedule 𝜎* for 𝑆 with outline 𝜏 , i.e. 𝑓(𝜎*) = B[𝑆, 𝜏 ]. When we remove the
job ℓ we obtain a feasible schedule 𝜎*

|𝑆′ for 𝑆 ′ with an outline 𝜏 ′. Clearly, 𝜏 ′ ∈ 𝑂𝑆(𝜏)
because 𝜎*

|𝑆′ is feasible. Now take some optimal schedule 𝜎′ for 𝑆 ′ with outline 𝜏 ′,
i.e. 𝑓(𝜎′) = B[𝑆 ′, 𝜏 ′]. Again we can extend 𝜎′ to a schedule 𝜎 for 𝑆 with outline 𝜏 .
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Then we have

B[𝑆, 𝜏 ] ≤ 𝑓(𝜎) = Op{𝑓(𝜎′), 𝑔ℓ(𝑀, 𝑡)}
= Op{B[𝑆 ′, 𝜏 ′], 𝑔ℓ(𝑀, 𝑡)}

≤ Op
{︁
𝑓

(︁
𝜎|𝑆′

)︁
, 𝑔ℓ(𝑀, 𝑡)

}︁
= 𝑓(𝜎*) = B[𝑆, 𝜏 ],

hence we have equality.

The algorithm. We use a dynamic program to calculate the value B[𝑆, 𝜏 ] for each
set 𝑆 ⊆ 𝐽 and 𝑆-outline 𝜏 . The full procedure for minimizing 𝑓 is given in Algo-
rithm 1. For maximization change ∞ to −∞ in lines 1 and 3 and < to > in lines 2
and 4.

for 𝑗 ∈ 𝐽 do # Special handling of |𝑆| = 1
foreach {𝑗}-outline 𝜏 do

B[{𝑗}, 𝜏 ] = 𝑔𝑗(𝜏m(𝑗), 𝜏s(𝑗))

for 𝑐 = 2 to 𝑛 do
foreach 𝑆 ⊆ 𝐽 with |𝑆| = 𝑐 do

foreach 𝑆-outline 𝜏 do
1 B[𝑆, 𝜏 ] = ∞

for 𝜏 ′ ∈ 𝑂𝑆(𝜏) do
𝑉 = Op

{︁
B[𝑆 ′, 𝜏 ′], 𝑔ℓ(𝜏)(𝜏m(ℓ(𝜏)), 𝜏s(ℓ(𝜏)))

}︁
2 if 𝑉 < B[𝑆, 𝜏 ] then

B[𝑆, 𝜏 ] = 𝑉
E[𝑆, 𝜏 ] = 𝜏 ′

3 𝐵 = ∞
foreach 𝐽-outline 𝜏 do # Find optimum

4 if B[𝐽, 𝜏 ] < 𝐵 then
𝐵 = B[𝐽, 𝜏 ]
𝜏 * = 𝜏

return 𝐵
Algorithm 1: Find optimum

In addition, Algorithm 1 tracks some information in the field E[𝑆, 𝜏 ]. This is used
by Algorithm 2 to construct an optimal schedule.

Analysis of Running Time Let 𝑘 = |𝑇 |𝑚(|𝑆| + 1)𝑚2𝑚 a bound on the number of
outlines. Algorithm 1 needs at most 𝑛𝑘 + 2𝑛𝑘2 + 𝑘 = 2O(𝑛) iterations, and each
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𝜎m : 𝐽 → 2[𝑚], 𝜎t : 𝐽 → N0 # Initialization: empty schedule

𝜏 = 𝜏 *

𝑆 = 𝐽 # Unscheduled jobs
while 𝑆 ̸= ∅ do

𝑗 = ℓ(𝜏)
𝜎(𝑗) = 𝜏(𝑗)
𝜏 = E[𝑆, 𝜏 ]
𝑆 = 𝑆 ∖ {𝑗}

return 𝜎
Algorithm 2: Find schedule

iteration requires time ‖𝐼‖O(1). Thus the total running time is 2O(𝑛) × ‖𝐼‖O(1). The
running time of Algorithm 2 is polynomial in ‖𝐼‖.

D.2 Scheduling on an Arbitrary Number of Machines

The procedure minimize 𝑓 is given in Algorithm 3, modifying it for maximization
works analog as for Algorithm 1. Algorithm 3 also uses the field E[𝑘, 𝑆] to allow the
construction of an optimal schedule, see Algorithm 4 for details.

for 𝑆 ⊆ 𝐽 do # Special handling of first machine
𝜎(1) = sequence(𝑆, 1)
B[1, 𝑆] = 𝑔1

(︁
𝑆, 𝜎(1)

)︁
E[1, 𝑆] = 𝜎(1)

for 𝑘 = 2 to 𝑚 do
for 𝑆 ⊆ 𝐽 do

B[𝑘, 𝑆] = ∞
for 𝑆 ′ ⊆ 𝑆 do

𝜎(𝑘) = sequence(𝑆 ′, 𝑘)
𝑉 = Op

{︁
B[𝑘 − 1, 𝑆 ∖ 𝑆 ′], 𝑔𝑘

(︁
𝑆 ′, 𝜎(𝑘)

)︁}︁
if 𝑉 < B[𝑘, 𝑆] then

B[𝑘, 𝑆] = 𝑉

E[𝑘, 𝑆] = 𝜎(𝑘)

return B[𝑚, 𝐽 ]
Algorithm 3: Find optimum

D.3 Packing Problems

Packing problems with multiple containers can also be handled by the algorithm
from Sect. 4.2. For bin packing problems we can minimize 𝑓(𝜎) = ∑︀

𝑘∈[𝑚] 𝑔𝑘(J𝜎,𝑘, 𝜎
(𝑘))

37



𝜎m : 𝐽 → [𝑚], 𝜎t : 𝐽 → N0 # Initialization: empty schedule

𝑆 = 𝐽 # Unscheduled jobs
for 𝑘 = 𝑚 to 1 do

𝜎(𝑘) = E[𝑘, 𝑆]
foreach 𝑗 ∈ dom(𝜎(𝑘)) do

𝜎m(𝑗) = 𝑘

𝜎t(𝑗) = 𝜎(𝑘)(𝑗)
𝑆 = 𝑆 ∖ 𝑆 ′

return (𝜎m, 𝜎t)
Algorithm 4: Find schedule

with

𝑔𝑘(𝑆, 𝜎𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑆 = ∅
∞ if 𝑆 cannot be packed in bin 𝑘

𝑐𝑘 otherwise,

where 𝑐𝑘 denotes the cost of using bin 𝑘. For knapsack-type problems we need to
add an additional container 𝑚 + 1 that holds all unpacked items and maximize
𝑓(𝜎) = ∑︀

𝑘∈[𝑚+1] 𝑔𝑘(J𝜎,𝑘, 𝜎
(𝑘)) with

𝑔𝑘(𝑆, 𝜎𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑘 = 𝑚+ 1
−∞ if 𝑆 cannot be packed in knapsack 𝑘

p(𝑆, 𝑘) otherwise,

where p(𝑆, 𝑘) denotes the profit of the items 𝑆 in knapsack 𝑘.

E Deferred Proofs from Sect. 5

E.1 Proof of Lemma 5.3

Let 𝐴 be an instance of PARTITION-𝜙′ We can assume that 𝑛 = |𝐴| and s(𝐴) are even,
otherwise we can return some trivial no-instance. Choose 𝐶 = 1

2 s(𝐴) and add 𝐶

to the size of all items, i.e. for each item 𝑎 ∈ 𝐴 we create a new item 𝑎′ with s(𝑎′) =
s(𝑎) + 𝐶 and the instance 𝐴′ = {𝑎′ | 𝑎 ∈ 𝐴}. Now 𝐴′ is an instance of PARTITION-𝜓:
Let 𝑎 ∈ 𝐴, then we have 𝐶 ≤ s(𝑎) + 𝐶 = s(𝑎′) and s(𝑎′) = s(𝑎) + 𝐶 ≤ s(𝐴) + 𝐶 = 3𝐶.
The number of items does not increase, i.e. the construction is linear. It remains
to show that it is a reduction. Extend the notation such that for each 𝑆 ⊆ 𝐴 we
have 𝑆 ′ = {𝑎′ | 𝑎 ∈ 𝑆} ⊆ 𝐴′ and vice-versa.

Now let 𝐴 be a yes-instance. There is a partition 𝐴 = 𝐴1 ∪̇ 𝐴2 with s(𝐴1) =
s(𝐴2) = 1

2 s(𝐴). Because 𝜓 is true, we also get |𝐴1| = |𝐴2| = 𝑛
2 . Thus, for 𝑖 ∈ {1, 2} we
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have s(𝐴′
𝑖) = s(𝐴𝑖) + |𝐴𝑖|𝐶 = 1

2(s(𝐴) + 𝑛𝐶) = 1
2 s(𝐴′), i.e. 𝐴′ is a yes-instance.

Let now 𝐴′ have a partition 𝐴′ = 𝐴′
1 ∪̇ 𝐴′

2 with s(𝐴′
1) = 1

2 s(𝐴′) = 1
2(s(𝐴) + 𝑛𝐶).

Furthermore we have s(𝐴′
1) = s(𝐴1) + |𝐴′

1|𝐶. It follows that

1
2 s(𝐴) − s(𝐴1) =

(︁
|𝐴′

1| − 𝑛
2

)︁
𝐶,

So 𝐶 divides 1
2 s(𝐴) − s(𝐴1). Since ∅ ≠ 𝐴1 ( 𝐴 we have 0 < s(𝐴1) < s(𝐴), hence⃒⃒⃒

1
2 s(𝐴) − s(𝐴1)

⃒⃒⃒
< 1

2 s(𝐴) = 𝐶 also holds. This implies 1
2 s(𝐴) − s(𝐴1) = 0. It follows

that s(𝐴1) = 1
2 s(𝐴), so 𝐴 is a yes-instance.

E.2 Proof of Theorem 5.4

There is a reduction 𝑅 from SIZEDSUBSETSUM to 2D-KNAPSACK due to Kulik
and Shachnai [19] with the following property: For any instance 𝐼 = (𝐴,𝐵, 𝑘) of
SIZEDSUBSETSUM we have OPT(𝑅(𝐼)) ≥ 𝑘 if and only if 𝐼 is a yes-instance.

Assume there is an approximation scheme for 2D-KNAPSACK with running
time 𝑛o( 1

𝜀 ) × ‖𝐼‖O(1). Then we can solve the subset sum problem with the following
procedure. Let 𝐼 = (𝐴,𝐵, 𝑘) be an instance with 𝑛 numbers of O(𝑘 log 𝑛) bits each
and 𝑘 ≤ 𝑛0.99. We can assume that ‖𝐵‖ = O(log 𝑘 × 𝑘 log 𝑛), otherwise 𝐼 is a no-
instance. Therefore

‖𝐼‖ = O(𝑛𝑘 log 𝑛+ log 𝑘 × 𝑘 log 𝑛+ log 𝑘) = O
(︁
𝑛3

)︁
= 𝑛O(1)

and also ‖𝑅(𝐼)‖ = ‖𝐼‖O(1) = 𝑛O(1).
Now set 𝜀 = 1

𝑘
and compute an (1 + 𝜀)-approximate solution of 𝑅(𝐼) by using the

approximation scheme. If OPT(𝑅(𝐼)) ≥ 𝑘 the approximate solution has a profit of at
least

1
1 + 𝜀

× OPT(𝑅(𝐼)) = 1
𝑘+1

𝑘

× 𝑘 = 𝑘

𝑘 + 1 × 𝑘 >
𝑘2 − 1
𝑘 + 1 = 𝑘 − 1.

Since the solution must be integral, the profit is at least 𝑘. If on the other hand
OPT(𝑅(𝐼)) < 𝑘, the found solution has profit at most 𝑘 − 1.

Thus we can correctly decide if 𝐼 is a yes-instance by comparing the profit of
the approximate solution to 𝑘. The running time for this procedure is bounded
by 𝑛o( 1

𝜀 ) × ‖𝑅(𝐼)‖O(1) + ‖𝐼‖O(1) = 𝑛o(𝑘) ×𝑛O(1) = 𝑛o(𝑘). It has been proven by Pătraşcu
and Williams [28] that this implies an algorithm for 3-SAT with running time 2o(𝑛), a
contradiction to the ETH.
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