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Abstract

We study the notion of “cancellation-free” circuits. This is a restriction of
XOR circuits, but can be considered as being equivalent to previously studied
models of computation. The notion was coined by Boyar and Peralta in a
study of heuristics for a particular circuit minimization problem. They asked
how large a gap there can be between the smallest cancellation-free circuit
and the smallest XOR circuit. We present a new proof showing that the
difference can be a factor Ω(n/ log2 n). Furthermore, our proof holds for
circuits of constant depth. We also study the complexity of computing the
Sierpinski matrix using cancellation-free circuits and give a tight Ω(n log(n))
lower bound.
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1. Introduction

Let F2 be the field of order 2, and let F
n
2 be the n-dimensional vector

space over F2. For n ∈ N, we let [n] = {1, . . . , n}. A Boolean function
f : Fn

2 → F
m
2 is said to be linear if there exists a Boolean m × n matrix A

such that f(x) = Ax for every x ∈ F
n
2 . This is equivalent to saying that f

can be computed using only XOR gates.
An XOR circuit (or a linear circuit) C is a directed acyclic graph. There

are n nodes with in-degree 0, called the inputs. All other nodes have in-
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degree 2 and are called gates. There are m nodes which are called the
outputs; these are labeled y1, . . . , ym. The value of a gate is the sum of
its two children (addition in F2, denoted ⊕). The circuit C, with inputs
x = (x1, . . . , xn), computes the m×n matrix A if the output vector computed
by C, y = (y1, . . . , ym), satisfies y = Ax. In other words, output yi is defined
by the ith row of the matrix. The size of a circuit C, is the number of gates
in C. The depth is the number of gates on a longest directed path from
an input to an output. For simplicity, we will let m = n unless otherwise
explicitly stated. For a matrix A, let |A| be the number of nonzero entries
in A.

Our contributions:. In this paper we deal with a restriction of XOR cir-
cuits called cancellation-free circuits, coined in [2], where the authors noticed
that many heuristics for finding small XOR circuits always produce cancella-
tion-free XOR circuits. They asked the question of how large a separation
there can be between these two models. Recently, Gashkov and Sergeev [3]
showed that the work of Grinchuk and Sergeev [4] implied a separation of

Ω
(

n
log6 n log logn

)

. An improved separation of Ω
(

n
log2 n

)

follows from Lemma

4.1 and Lemma 4.2 in [5], although this implied separation was not pub-
lished until recently [6]. We present an alternative proof of the same separa-
tion. Our proof is based on a different construction and uses communication
complexity in a novel way that might have independent interest. Like the
separation implied in the work [6], but unlike the separations demonstrated
in [3, 7], our separation holds even in the case of constant depth circuits. We
conclude that many heuristics for finding XOR circuits do not approximate

better than a factor of Θ
(

n
log2 n

)

of the optimal. We also study the com-

plexity of computing the Sierpinski matrix using cancellation-free circuits.
We show that the complexity is exactly 1

2n log n. Furthermore, our proof
holds for OR circuits. As a corollary to this we obtain an explicit matrix
where the smallest OR circuit is a factor Θ(log n) larger than the smallest
OR circuit for its complement.

We also study the complexity of computing the Sierpinski matrix (de-
scribed later), and show a tight 1

2n log n lower bound for OR circuits and
cancellation-free circuits. This results follows implicitly from the work of
Kennes [8], however our proof is simpler and more direct. Also we hope that
our proof can be strengthened to give an ω(n) lower bound for XOR circuits
for the Sierpinski matrix. A similar lower bound was shown independently
by Selezneva in [9, 10].
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2. Cancellation-Free XOR Circuits

For XOR circuits, the value computed by every gate is the parity of
a subset of the n variables. That is, the output of every gate u can be
considered as a vector κ(u) in the vector space F

n
2 , where κ(u)i = 1 if and

only if xi is a term in the parity function computed by the gate u. We call
κ(u) the value vector of u, and for input variables define κ(xi) = e(i), the unit
vector having the ith coordinate 1 and all others 0. It is clear by definition
that if a gate u has the two children w, t, then κ(u) = κ(w) ⊕ κ(t), where
⊕ denotes coordinate-wise addition in F2. We say that an XOR circuit is
cancellation-free if for every pair of gates u,w where u is an ancestor of w,
then κ(u) ≥ κ(w), where ≥ denotes the usual coordinate-wise partial order.
These are also called SUM circuits in [7, 6].

If this is satisfied, the circuit never exploits the F2-identity, a⊕ a = 0, so
things do not “cancel out” in the circuit.

Although it is not hard to see that cancellation-free circuits is equivalent
to addition chains [11, 12] and “ensemble computations” [13], we stick to the
term “cancellation-free”, since we will think of it as a special case of XOR
circuits.

For a simple example demonstrating that cancellation-free circuits indeed
are less powerful than general XOR circuits, consider the matrix

A =









1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1









.

In Figure 1, two circuits computing the matrix A are shown, the circuit on
the right uses cancellations, and the circuit on the left is cancellation-free,
and has one gate more. For this particular matrix, any cancellation-free
circuit must use at least 5 gates.

A different, but tightly related kind of circuits is OR circuits. The defini-
tion is exactly the same as for XOR circuits, but with ∨ (logical OR) instead
of ⊕, see [14, 6, 13]. Cancellation-free circuits is a special case of OR circuits
and every cancellation-free circuit can be interpreted as an OR circuit for
the same matrix, as well as an XOR circuit.

For a matrix A, we will let C⊕(A), CCF (A), C∨(A) denote the small-
est XOR circuit, the smallest cancellation-free circuit and the smallest OR
circuit computing the matrix A.

By the discussion above, the following is immediate:

Proposition 1. For every matrix, A, C∨(A) ≤ CCF (A).
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Figure 1: Two circuits computing the matrix A. The circuit on the left is cancellation-free,
and has size 5 - one more more than the circuit on to the right.

This means in particular that any lower bound for OR circuits carries
over to a lower bound for cancellation-free circuits. However, the converse
does not hold in general [7]. A simple example showing this is the matrix

B =

















0 0 1 1 0 0
0 1 1 1 0 0
1 1 1 1 0 0
0 0 1 1 1 0
0 0 1 1 1 1
1 1 1 1 1 1

















.

For this matrix, there exist an OR circuit with 6 gates, however any cancellation-
free circuit must have at least 7 gates.

Every matrix admits a cancellation-free circuit of size at most n(n− 1).
This can be obtained simply by computing each row independently. It was
shown by Nechiporuk [14] and Pippenger [11] (see also [6]) that this upper

bound can be improved to (1 + o(1)) n2

2 logn .
A Shannon-style counting argument gives that this is tight up to low

order terms. A proof of this can be found in [11]. Combining these results,
we get that for most matrices, cancellation does not help much:

Theorem 1. For every 0 < ǫ < 1, for sufficiently large n, a random n × n
matrix has CCF (A)

C⊕(A) ≤ 1 + ǫ with probability at least 1− ǫ.
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We also use the following upper bound, which also holds for cancellation-
free circuits, and hence also for OR circuits and XOR circuits.

Theorem 2 (Lupanov [15]). Any m×n matrix, admits a cancellation-free

XOR circuit of size O
(

min{ mn
logn ,

mn
logm}+ n+m

)

.

The theorem follows directly from Lupanov’s result and an application of
the “transposition principle” (see e.g. [16]).

A matrix A is k-free if it does not have an all one submatrix of size
(k+1)×(k+1). The following lemma will be used later. According to Jukna
and Sergeev [6], it was independently due to Nechiporuk [17], Mehlhorn [18],
Pippenger [19], and Wegener [20].

Lemma 1 (Nechiporuk, Mehlhorn, Pippenger, Wegener). For k-free

A, C∨(A) ∈ Ω
(

|A|
k2

)

.

3. Relationship Between Cancellation-Free XOR Circuits and Gen-
eral XOR Circuits

In [2], Boyar and Peralta exhibited an infinite family of matrices where
the sizes of the cancellation-free circuits computing them are at least 3

2−o(1)
times the corresponding sizes for smallest XOR circuits for them. We call
this ratio the cancellation ratio, ρ(n), defined as

ρ(n) = max
A∈Fn×n

2

CCF (A)

C⊕(A)
.

The following proposition on the Boolean Sylvester-Hadamard matrix was
pointed out by Edward Hirsch and Olga Melanich [21]. The n× n Boolean
Sylvester-Hadamard matrix Hn, is defined recursively:

H1 = (1),H2n =

(

Hn Hn

Hn Hn

)

Where A means the Boolean complement of the matrix A. It is known that
C⊕(Hn) ∈ O(n), but that in depth 2 it requires circuits of size Ω(n log n)
[22].

Proposition 2. The n×n Boolean Sylvester-Hadamard matrix requires can-
cellation-free circuits of size CCF (Hn) ∈ Ω(n log n).
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Since log |det(Hn)| ∈ Ω(n log n), this proposition follows from following
theorem due to Morgenstern, ([23], see also [24, Thm. 13.14]).

Theorem 3 (Morgenstern). For a Boolean matrix M ,

CCF ∈ Ω(log |det(M)|).

The statement holds more generally, namely for circuits with addition
over the complex numbers and scalar multiplication by any constant c ∈ C

with |c| ≤ 2. Cancellation-free circuits can be seen as a special case of this.
Using the recursive structure of Hn, it is not hard to show that C⊕(Hn) ∈

O(n), so this demonstrates that ρ(n) ∈ Ω(log n). It should be noted that no
n×n Boolean matrix can have determinant larger than n!, so this technique
cannot give lower a bound on ρ(n) stronger than O(log n).

As mentioned in the introduction, the ratio

λ(n) = max
A∈Fn×n

2

C∨(A)
C⊕(A)

has been studied, (see [3, 6]). Using the techniques of [5], it can be derived
(as is done in [6]) that λ(n) ∈ Ω(n/ log2 n).

We present a different construction exhibiting the same gap. The con-
struction is different, and in some sense simpler. Furthermore our proof is
quite different. More concretely we use communication complexity for the
analysis to show that certain conditional random variables are almost uni-
formly distributed in a way that might have independent interest. Also our
construction gives a similar separation for circuits of constant depth (see
Section 5).

Theorem 4. λ(n) ∈ Ω
(

n
log2 n

)

.

The proof uses the probabilistic method. We construct randomly two
matrices, and let A be their product. In order to use Lemma 1 on A, we
need to show that with high probability, the matrix A will be 2 log n-free.
We do this via Lemma 2 by showing that the marginal distribution of any
entry in a fixed 2 log n× 2 log n submatrix is almost uniformly random.

In the following, for a matrix M , we let Mi (M i) denote its ith row
(column). And for I ⊆ [n], we let MI (M I) denote the submatrix consisting
of the rows (columns) with indices in I.

Lemma 2 might seem somewhat technical. However, there is a very
simple intuition behind it: Suppose M is obtained at random as in the
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statement of the lemma. Informally we want to say that the entries do not
“depend” too much on each other. More formally we want to show that
given all but one entry in M it is not possible to guess the last entry with
significant advantage over random guessing. The proof idea is to transform
any good guess into a deterministic communication protocol for computation
of the inner product, and to use a well known limitation on how well this
can be done [25, 26].

We will say that two (partially) defined matrices are consistent if they
agree on all their defined entries.

Lemma 2. Let M be an m ×m partially defined matrix, where all entries
except M q

p are defined. Let B,C be matrices over F2 with dimensions m×7m
and 7m×m respectively, be uniformly random among all possible pairs (B,C)
such that BC is consistent with M .

Then for sufficiently large m, the conditional probability that M q
p is 1,

given all other entries, is contained in the interval (12 − 1
m , 12 +

1
m ), where the

probability is over the choices of B and C.

Before proving the lemma, we will first recall a fact from communication
complexity, due to Chor and Goldreich [27], see also [26].

Theorem 5 (Chor, Goldreich). Let x and y be independent and uniformly
random vectors, each of n bits. Suppose a deterministic communication pro-
tocol is used to compute the inner product of x and y, and the protocol is
correct with probability at least 1

2 +p. Then on some inputs, the protocol uses
n
2 − log(1/p) bits of communication.

Proof (of Lemma 2). Suppose for the sake of contradiction that there
exists a partially defined matrix M , such that when all entries but one are
revealed, the conditional probability of the last entry being a is at least 1

2+
1
m

for some a ∈ {0, 1}.
Assuming this, we will first present a randomized communication proto-

col computing the inner product of two independent and uniformly random
7m bit vectors x and y that always uses m bits of communication and is
correct with probability at least 1

2 + 2−2m

4m . We will then argue that this
protocol can be completely derandomized. This results in a deterministic
communication protocol that violates Theorem 5. From this we conclude
that such a partially defined matrix, with this large probability of the last
entry being a, does not exist.

Let Alice and Bob have as input vectors x and y, respectively, each of
length 7m. Before getting their inputs, they use their shared random bits
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to agree on a random choice of the two matrices B and C distributed as
stated in the Lemma. To compute the inner product of x and y, Alice
replaces the row Bp with x and Bob replaces the column Cq with y, let the
resulting matrices be B′ and C ′. Let M ′ = B′C ′. Notice that M and M ′ are
consistent, except possibly on row p and column q. Alice can compute the
entire pth row of M ′ (except (M ′)qp). Similarly Bob can compute the entire
qth column (except (M ′)qp). The communication in the protocol consists of
first letting Alice send the m − 1 bits in the part of the pth row she can
compute to Bob. Bob now knows all the entries in M ′, except the entry M q

p .
In order for M ′ and M to be consistent, it is only necessary that the

m− 1 defined entries in row p and the m− 1 defined entries in column q are
equal in the two matrices, since B′ and C ′ were defined such that all other
entries were equal. This occurs with probability at least 2−2m−2.

In this case, the value Alice and Bob want to compute is exactly the only
unknown entry M ′q

p . By assumption, this last entry is a with probability at
least 1

2 +
1
m , so Bob outputs a. If the known entries in M ′ are not consistent

with the known entries in M , Bob outputs a uniformly random bit. This
is correct with probability 1

2 . Thus, the probability of this protocol being
correct is at least:

2−2m−2

(

1

2
+

1

m

)

+ (1− 2−2m−2)
1

2

= 1/2 +
2−2m

4m

So when the inputs are uniformly distributed, the randomized protocol
computes the inner product of two 7m bits vectors with m bits communica-
tion, and it is correct with probability at least 1

2 + 2−2m

4m . By an averaging
argument it follows that there exist a deterministic communication protocol
with the same success probability. According to Theorem 5, any determinis-
tic algorithm for computing the inner product with this success probability
must communicate at least

7m

2
− log(1/p) =

7

2
m− log

(

4m

2−2m

)

=
3

2
m− logm− 2

Which is larger than m for sufficiently large values of m (m ≥ 16 suffices),
and we arrive at the desired contradiction. �

We now use this to prove Theorem 4. We will use following result on the
“Zarankiewicz problem” [28], see also [29].
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Theorem 6 (Kovári, Sós, Turán). Let M be an (a−1)-free n×n matrix.
Then the number of ones in M is at most (a− 1)1/an2−1/a + (a− 1)n.

Proof (of Theorem 4). We will probabilistically construct two matrices
B,C of dimensions n × 14 log n, 14 log n × n. Each entry in B and C will
be chosen independently and uniformly at random on F2. We let A = BC.
First notice that it follows directly from Theorem 2 that B and C can be
computed with XOR circuits, both of size O(n). Now we can let the outputs
of the circuit computing C be the inputs of the circuit computing B. No-
tice that this composed circuit will have many cancellations. The resulting
circuit computes the matrix A and has size O(n). We will argue that with
probability 1− o(1) this matrix will not have a 2 log n× 2 log n submatrix of
all ones, while |A| ∈ Ω(n2). By Lemma 1 the results follows.

We show that for large enough n, with high probability neither of the
following two events will happen:

1. BC has a submatrix of dimension 2 log n×2 log n consisting of all ones
or all zeros

2. |BC| ≤ 0.3n2

1). Fix a submatrix M of BC with dimensions 2 log n × 2 log n. That is,
some subset I of the rows of B, and a subset J of the columns in C so
M = BIC

J . We now want to show that the probability of this matrix
having only ones (or zeros) is so small that a union bound over all choices of
2 log n× 2 log n submatrices gives that the probability that there exists such
a submatrix goes to 0. Notice that this would be easy if all the entries in M
were mutually independent and uniformly distributed.

Although this is not case, Lemma 2 for m = 2 log n states, that this is
almost the case. More precisely, the conditional probability that a given
entry is 1 (or 0) is at most 1

2 + 1
2 logn . We can now use the union bound to

estimate the probability that A has a submatrix of dimension 2 log n×2 log n
with all the entries being either 0 or 1:

2

(

n

2 log n

)2(1

2
+

1

2 log n

)4 log2 n

≤ 2
n4 logn

(2 log n)!

(

1 + 1
logn

2

)4 log2 n

≤ 2







(

1 + 1
logn

)4 log2 n

(2 log n)!







This tends to 0, so we arrive at the desired result.
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2). Note that if one wants to show that with positive probability the number
of ones is Ω(n2), a straightforward application of Markov’s inequality suffices.
Here we will show the stronger statement that with probability 1− o(1), the

number of ones is at least n2

2 − o(n2). By the proof above, we may assume
that the Boolean complement of A, Ā, does not have a 2 log n submatrix of
all ones. By Theorem 6, the number of ones in Ā is at most

(2 log n− 1)1/2 lognn2−1/2 logn + (2 log n− 1)n

One can verify that

lim
n→∞

(2 log n− 1)1/2 lognn2−1/2 logn + (2 log n− 1)n

n2
=

1√
2

So if there is not a 2 log n × 2 log n matrix of all zeros in A, the number of
zeros in A is at most n2(1− 1√

2
) < 0.3n2. Hence the probability of |A| being

less than 0.3n2 tends to 0.

�

Remark 1: It has been pointed out by Avishay Tal that in order to show
that the matrix is O(log n)-free, a significantly simpler argument suffices.
We present it here: Let B,C be random matrices as in the construction of
Theorem 4 but with dimensions n× 5 logn and 5 log n×n, respectively, and
let A = BC. Now any 5 log n × 5 log n submatrix of A is a product of two
5 log n × 5 log n dimensional matrices, one being a submatrix of B and one
being a submatrix of C. Now recall the theorem from linear algebra:

Theorem 7 (Sylvester’s Rank Inequality). For two m×m matrices B,C

rank(BC) ≥ rank(B) + rank(C)−m

The probability that a random k × k matrix has rank less than d is at
most 2k−(k−d)2 (see e.g. the proof of Lemma 5.4 in [30]). Now a union bound
shows that the probability that there is a 5 log n × 5 log n submatrix of B
or C with rank smaller than 0.51 · 5 log n tends to 0. So for large enough
n, with high probability, every 5 log n × 5 log n of A will have rank at least
0.02 · 5 log n. A submatrix consisting of all ones or all zeros has rank 0 or 1,
which is less than 0.1 log n for large enough n. Thus, the probability of this
occurring tends to zero.

In the matrix constructed in [6, Theorem 5.8], they highlight the prop-
erty that the matrix is t-Ramsey, meaning that both the matrix and its
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complement are (t− 1)-free, and it is a somewhat interesting fact that such
matrices admit small XOR circuits. It follows immediately from the proof of
Theorem 4 that this holds as well for the matrix constructed, and we state
this a separate corollary.

Corollary 1. For large enough n, with high probability, the bipartite graph
with adjacency matrix A from Theorem 4 is t-Ramsey for t = 2 log n.

Notice that by Theorem 2, the obtained separation is at most a factor of
O(log n) from being optimal. Also, except for lower bounds based on count-
ing, all strong lower bounds we know of are essentially based on Lemma
1. Following that line of thought, one might hope to improve the separa-
tion above by coming up with a better choice of A that does not have a
O(log1−ǫ n)×O(log1−ǫ n) all 1 submatrix to get a stronger lower bound on
C∨(A), or perhaps hope that a tighter analysis than the above would give a
stronger separation. However, this direction does not seem promising. To see
this, it follows from Theorem 6 that a matrix without a log1−ǫ n × log1−ǫ n
all 1 submatrix, the lower bound obtained using Lemma 1 would be of order

O

(

n
2− 1

log1−ǫ n

(log1−ǫ n)2

)

, which is o
(

n2

log2 n

)

.

4. Smallest XOR Circuit Problem

As mentioned earlier, the notion cancellation-free was introduced by Bo-
yar and Peralta in [2]. The paper concerns shortest straight line programs
for computing linear forms, which is equivalent to the model studied in this
paper. In [13], it is shown that the Ensemble Computation Problem (re-
call that this is equivalent to cancellation-free) is NP-complete. For general
XOR circuits, the problem remains NP-complete [2]. It was observed in
[2] that several researchers have used heuristics that will always produce
cancellation-free circuits, see [31, 32, 33]. By definition, any heuristic which
only produces cancellation-free circuits cannot achieve an approximation ra-
tio better than ρ(n). By Proposition 1, ρ(n) ≥ λ(n). Thus, Theorem 4
implies that techniques which only produce cancellation-free circuits are not
guaranteed to be very close to optimal.

Corollary 2. The algorithms in [31, 32, 33] do not guarantee approximation

ratios better than Θ
(

n
log2 n

)

.

11



x1 x2 x3 x4

+ y4+y1

+y2 + y3

Figure 2: An example of a depth 2 circuit, computing the same matrix as the circuits in
Figure 1. Notice that some gates have fan-in larger than 2. This circuit has size 9.

5. Constant Depth

For unbounded depth, there is no known family of (polynomial time
computable) matrices known to require XOR circuits of superlinear size.
However, if one puts restrictions on the depth, superlinear lower bounds are
known [16]. In this case, we allow each gate to have unbounded fan-in, and
instead of counting the number of gates we count the number of wires in the
circuit. See Figure 2 for an example of a depth two circuit.

In particular, the circuit model where the depth is bounded to be at
most 2 is well studied (see e.g. [16]). Similarly to previously, an XOR circuit
in depth 2 is a circuit where each gate computes the XOR or its inputs.
When considering matrices computed by XOR circuits, the general situation
in the two circuit models is very similar. The following two results are due
to Lupanov [15], see also [16].

Theorem 8 (Lupanov). For every n× n matrix A, there exists a depth 2

cancellation-free circuit with at most O
(

n2

logn

)

wires computing A. Further-

more, almost every such matrix requires Ω
(

n2

logn

)

wires.

Let λd(n) denote λ(n) for circuits restricted to depth d (recall that now
size is defined as the number of wires). Neither the separation in [3] nor that
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in [7] seems to carry over to bounded depth circuits in any obvious way. The
separation presented in [6, Theorem 5.8] holds for any depth d ≥ 2.

By inspecting the proof of Theorem 4, the upper bound on the size of
the XOR circuit worked as follows: First construct a circuit to compute C,
and then construct a circuit for B with the outputs of C as inputs, that is, a
circuit for B that comes topologically after C. To get to an upper bound of
O(n) wires, we use Theorem 2. By using Theorem 8 twice, we get a depth 4
circuit of that size.

For depths d = 2 and d = 3, one can use arguments similar to those in
given in the proof of [6, Theorem 5.8]) to show that the separation still holds
in these two cases. We summarize this in the following theorem.

Theorem 9. Let d ≥ 2. λd(n) ∈ Ω
(

n
log2 n

)

.

6. Computing the Sierpinski Matrix

In this section we prove that the n × n Sierpinski matrix, Sn, needs
1
2n log n gates when computed by a cancellation-free circuit, and that this
suffices. The proof strategy is surprisingly simple, it is essentially gate elimi-
nation where more than one gate is eliminated in each step. Neither Theorem
3 nor Lemma 1 gives anything nontrivial for this matrix.

As mentioned previously, there is no known (polynomial time computable)
family of matrices requiring XOR circuits of superlinear size. However there
are simple matrices that are conjectured to require circuits of size Ω(n log n).
One such matrix is the Sierpinski matrix, (Aaronson, personal communica-
tion and [34]). The n×n Sierpinski (also called set disjointness) matrix, Sn,
is defined inductively

S2 =

(

1 0
1 1

)

, S2n =

(

Sn 0
Sn Sn

)

Independently of this conjecture, Jukna and Sergeev [6, Problem 7.11] have
very recently asked if the “set intersection matrix”, Kn, has C⊕(Kn) ∈ ω(n).
The motivation for this is that C∨(Kn) ∈ O(n), so if true this would give a
counterpart to Theorem 4.

If n is a power of two, the n × n set intersection matrix Kn can be
defined by associating each row and column with a subset of [log n], and
letting an entry be 1 if and only if the corresponding row and column sets
have non-empty intersection. One can also define Kn inductively:

K2 =

(

0 0
0 1

)

,K2n =

(

Kn Kn

Kn J

)

,

13



where J is the n × n matrix with 1 in each entry. It is easy to see that up
to a reordering of the columns, the complement of Kn contains exactly the
same rows as Sn. Thus, C⊕(Kn) is superlinear if and only if C⊕(Sn) is, since
either matrix can be computed from the other with at most 2n − 1 extra
XOR gates, using cancellation heavily.

To see that the set intersection matrix can be computed with OR circuits
of linear size observe that over the Boolean semiring, Kn decomposes into
Kn = B ·BT , where the ith row in B is the binary representation of i. Now
apply Theorem 2 to the n × log n matrix B and its transpose and perform
the composition.

Any lower bound against XOR circuits must hold for cancellation-free
circuits, so a first step in proving superlinear lower bounds for the set inter-
section matrix is to prove superlinear cancellation-free lower bounds for the
Sierpinski matrix. Below we show that CCF (Sn) =

1
2n log n. Our technique

also holds for OR circuits. This provides a simple example of a matrix family
where the complements are significantly easier to compute with OR circuits
than the matrices themselves.

Gate Elimination. Suppose some subset of the input variables are restricted
to the value 0. Now look at the resulting circuit. Some of the gates will
now compute the value z = 0 ⊕ w. In this case, we say that the gate is
eliminated since it no longer does any computation. The situation can be
more extreme, some gate might “compute” z = 0⊕ 0. In both cases, we can
remove the gate from the circuit, and forward the input if necessary (if z is
an output gate, w now outputs the result). In the second case, the parent
of z will get eliminated, so the effect might cascade. For any subset of the
variables, there is a unique set of gates that become eliminated when setting
these variables to 0.

In all of the following let n be a power of 2, and let Sn be the n × n
Sierpinski matrix. The following proposition is easily established.

Proposition 3. For every n, the Sierpinski matrix Sn has full rank, over
both R and F2.

We now proceed to the proof of the lower bound of the Sierpinski matrix
for cancellation-free circuits. It is our hope that this might be a step towards
proving an ω(n) lower bound for XOR circuits.

Theorem 10. For every n ≥ 2, any cancellation-free circuit that computes
the n× n Sierpinski matrix has size at least 1

2n log n.
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x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

C1 C2

Figure 3: Figure illustrating the inductive step. Due to monotinicity there is no wire
crossing from right to left. The gates on the left hand side are in C1. Notice that wires
crossing the cut are red, and that these wires become constant when x1, . . . , xn are set to
0, so the gates with one such input wire are in C3. The rest are in C2.

Proof. The proof is by induction on n. For the base case, look at the 2× 2
matrix S2. This clearly needs at least 1

22 log 2 = 1 gate.
Suppose the statement is true for some n and consider the 2n × 2n ma-

trix S2n. Denote the output gates y1, . . . , y2n and the inputs x1, . . . , x2n.
Partition the gates of C into three disjoint sets, C1, C2 and C3 (Figure 3
illustrates the situation), defined as follows:

• C1: The gates having only inputs from x1, . . . , xn and C1. Equivalently
the gates not reachable from inputs xn+1, . . . , x2n.

• C2: The gates in C−C1 that are not eliminated when inputs x1, . . . , xn
are set to 0.

• C3: C − (C1 ∪ C2). That is, the gates in C − C1 that do become
eliminated when inputs x1, . . . , xn are set to 0.

Obviously |C| = |C1| + |C2| + |C3|. We will now give lower bounds on the
sizes of C1, C2, and C3.

C1:. Since the circuit is cancellation-free, the outputs y1, . . . , yn and all their
predecessors are in C1. By the induction hypothesis, |C1| ≥ 1

2n log n.
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C2:. Since the gates in C2 are not eliminated, they compute Sn on the inputs
xn+1, . . . , x2n. By the induction hypothesis, |C2| ≥ 1

2n log n.

C3:. The goal is to prove that this set has size at least n. Let δ(C1) be
the set of wires from C1 ∪ {x1, . . . , xn} to C2 ∪ C3. We first prove that
|C3| ≥ |δ(C1)|.

By definition, all gates in C1 attain the value 0 when x1, . . . , xn are set to
0. Let (v,w) ∈ δ(C1) be arbitrary. Since v ∈ C1 ∪ {x1, . . . , xn}, w becomes
eliminated, so w ∈ C3. By definition, every u ∈ C3 can only have one child
in C1. So |C3| ≥ |δ(C1)|.

We now show that |δ(C1)| ≥ n. Let the endpoints of δ(C1) in C1 be
e1, . . . , ep and let their corresponding value vectors be v1, . . . , vp.

The circuit is cancellation-free, so coordinatewise addition corresponds to
addition in R. Now look at the value vectors of the output gates yn+1, . . . , y2n.
For each of these, the vector consisting of the first n coordinates must be
in spanR(v1, . . . , vp), but the dimension of Sn is n, so p ≥ n. We have that
|C3| ≥ |δ(C1)| ≥ n, so

|C| = |C1|+ |C2|+ |C3| ≥
1

2
n log n+

1

2
n log n+ n =

1

2
(2n) log(2n).

�

This is tight:

Proposition 4. The Sierpinski matrix can be computed by a cancellation-
free circuit using 1

2n log n gates.

Proof. This is clearly true for S2. Assume that Sn can be computed using
1
2n log n gates. Consider the matrix S2n. Construct the circuit in a divide
and conquer manner by constructing recursively on the variables x1, . . . , xn
and xn+1, . . . , x2n. This gives outputs y1, . . . , yn. After this use n operations
to finish the outputs yn+1, . . . y2n. This adds up to exactly 1

2(2n) log(2n). �

Circuits With Cancellation. In the proof of Theorem 10, we used the cancel-
lation-free property when estimating the sizes of both C1 and C3. However,
since Sn has full rank over F2, a similar dimensionality argument to that used
when estimating C3 holds even if the circuits use cancellation. Therefore we
might replace the cancellation-free assumption with the assumption that for
the 2n × 2n Sierpinski matrix, there is no path from xn+i to yj for i ≥ 1,
j ≤ n. We have not been able to show whether or not this is the case
for minimum sized circuits, although we have experimentally verified that
even for circuits where cancellation is allowed, the matrices S2, S4, S8 do not
admit circuits smaller than the lower bound from Theorem 10.
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OR circuits. In the proof of Theorem 10, the estimates for C1 and C2 hold
for OR circuits too, but when estimating C3, it does not suffice to appeal to
rank over F2 or R. However, it is not hard to see that any set of row vectors
that “spans” Sn (with the operation being coordinate-wise OR) must have
size at least n.

Theorem 11. Theorem 10 holds for OR circuits as well.

This proof strategy for Theorem 10 has recently been used by Sergeev to
prove similar lower bounds for another family of Boolean matrices in the OR
model [35]. As mentioned in the introduction, Theorem 10 can be shown
using another strategy. In [8], Kennes gives a lower bound on the additive
complexity for computing the Möbius transformation of a Boolean lattice.
It is not hard to verify that the Sierpinski matrix corresponds to the Möbius
transformation induced by the subset lattice. Combining this observation
with Kennes’ result gives the same lower bound.

Since C∨(Kn) ∈ O(n) and Kn contains the same rows as S̄n, the comple-
ment of Sn, the Sierpinski matrix is harder to compute than its complement.

Corollary 3. C∨(Sn) = Θ(log n)C∨(S̄n).

Until very recently, this was the largest gap between the OR complexity
of A and Ā for an explicit matrix. See [36] for a very recent manuscript
describing a construction greatly improving on this. [6]).

7. Conclusions and Open Problems

We show the existence of matrices, for which OR circuits and cancellation-

free XOR circuits are both a factor of Ω
(

n
log2 n

)

larger than the smallest XOR

circuit. This separation holds in unbounded depth and any constant depth
of at least 2.

This means that when designing XOR (sub)circuits, it can be important
that the methods employed can produce circuits which have cancellation.

If a cancellation-free or an OR circuit computes the Sierpinski matrix
correctly, it has size at least 1

2n log n. For this particular family of matrices,
it is not obvious to what extent cancellation can help. It would be very
interesting to determine this, since it would automatically provide a converse
to Theorem 4.
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