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Abstract. Let G be a graph. The independence-domination number γi(G)

is the maximum over all independent sets I in G of the minimal number

of vertices needed to dominate I. In this paper we investigate the compu-

tational complexity of γi(G) for graphs in several graph classes related to

cographs. We present an exact exponential algorithm. We also present a

PTAS for planar graphs.

1 Introduction

Let G = (V ,E) be a graph. A set A of vertices dominates a set B if

B ⊆
⋃

x∈A

N[x].

The minimal cardinality of a set of vertices needed to dominate a set B is denoted

by γG(B). The domination number γ(G) of the graph G is thus defined as γG(V),
where V is the set of vertices of G. When the graph G is clear from the context

we omit the subscript G.

Definition 1. The independence-domination number γi(G) is

γi(G) = max { γ(A) | A is an independent set in G }.

Obviously, γ(G) > γi(G). In [1] it was shown that γ(G) = γi(G) for chordal
graphs. Using this result Aharoni and Szabó showed that Vizing’s conjecture on

the domination number of the Cartesian product of graphs is true for chordal

graphs, ie,

γ(G�H) > γ(G) · γ(H) when G and H are chordal [2].

The Cartesian product G�H is the graph which has pairs (g,h), g ∈ V(G)

and h ∈ V(H) as its vertices. Two pairs (g1,h1) and (g2,h2) are adjacent in G�H
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if either g1 = g2 and {h1,h2} ∈ E(H) or {g1,g2} ∈ E(G) and h1 = h2 [34]. Vizing

conjectured in 1968 [60] that

for all graphs G and H γ(G�H) > γ(G) · γ(H).

In 1994 Fisher proved that

for all connected graphs G and H γ(G�H) > γf(G) · γ(H), (1)

where γf(G) is the fractional domination number [25] (see also [12]). The frac-

tional domination number is, by linear programming duality equal to the frac-
tional 2-packing number (see, eg, [52]). For strongly chordal graphs γf(G) =

γ(G) [53] and, therefore, Vizing’s conjecture is true for strongly chordal graphs.

Recently, more progress was made by Suen and Tarr [55]. They proved that

for all graphs G and H γ(G�H) >
1

2
· γ(G) · γ(H) +

1

2
· min { γ(G), γ(H) }.

Actually, in [2] the authors show that for all graphs G and H

γ(G�H) > γi(G) · γ(H) and γi(G�H) > γi(G) · γi(H).

These result prompted us to investigate the computational complexity of

γi(G) for some classes of graphs. We find that especially cographs, and related
classes of graphs, deserve interest since they are completely decomposable by

joins and unions and they are therefore susceptible to proofs by induction. As far
as we know, the computational complexity of γ(G�H) is still open for cographs.

Computing the domination number is NP-complete for chordal graphs [7,11],

and this implies the NP-completeness for the independence domination. A sim-
ilar proof as in [7] shows that independence domination is NP-complete for bi-

partite graphs. It is NP-complete to decide whether γi(G) > 2 for weakly chordal

graphs [44]. The problem is polynomial for strongly chordal graphs [23].

2 Cographs

In this section we present our results for the class of cographs.

Definition 2. A cograph is a graph without induced P4.

Cographs are the graphs G that either have only one vertex, or for which

either G or Ḡ is disconnected [16]. Obviously, the class of graphs is hereditary in
the induced subgraph order. It follows that a graph is a cograph if it is completely

decomposable by joins and unions. We write G = G1 ⊕ G2 when G is the union

of two smaller cographs G1 and G2 and we write G = G1 ⊗ G2 when G is the
join of two smaller cographs G1 and G2.
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Theorem 1. When G is a cograph with at least two vertices then

γ(G) =

{

min { γ(G1), γ(G2), 2} if G = G1 ⊗G2,

γ(G1) + γ(G2) if G = G1 ⊕G2.

Proof. When G is the union of two graphs G1 and G2 then γ(G) = γ(G1)+γ(G2),
since no vertex of G1 dominates a vertex of G2 and vice versa.

Assume that G = G1 ⊗ G2. Any pair of vertex x ∈ V(G1) and y ∈ V(G2) is

a dominating set. When one of G1 or G2 has a universal vertex then that is a

universal vertex for G. This proves the formula for the join. ⊓⊔

Remark 1. In [6] a graph G is called decomposable if its clique cover number is
γ(G), that is, if

χ(Ḡ) = γ(G).

The “A-class” is the collection of graphs that can be made decomposable by
adding edges to it without changing the domination number. It is shown that

graphs with domination number two, such as complete multi-partite graphs, be-
long to the A-class [6]. According to [6] Vizing’s conjecture holds true for graphs

in A-class (see also [13, Theorem 2]). In [2] the authors raise the interesting

question whether chordal graphs are A-class graphs.

Theorem 2. Let G be a cograph. Then γi(G) is the number of components of G.

Proof. When G has only one vertex then γi(G) = 1.

Assume that G = G1 ⊗ G2. Any maximal independent set is contained in G1 or
in G2. To dominate it, one needs only one vertex, from the other constituent.

Assume that G = G1 ⊕ G2. Then any maximal independent set is the union of
a maximal independent set in G1 and G2. For the independence domination we

have
γi(G) = γi(G1) + γi(G2).

By induction, γi(Gj) is the number of components in Gj for j ∈ {1, 2}. ⊓⊔

3 Distance-hereditary graphs

Distance-hereditary graphs were introduced by Howorka as those graphs in

which for every pair of nonadjacent vertices all the chordless paths that con-

nect them have the same length [32]. This class of graphs properly contains the
class of cographs.

Distance-hereditary graphs G have a decomposition tree (T , f) which is de-
scribed as follows (see [46] or, eg, [39]). Here, T is a rooted binary tree and f is
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a bijection from the vertices of G to the leaves of T . Let e be an edge of T and let

We be the set of vertices that are mapped to the leaves in the subtree rooted at

e. The “twinset” Qe ⊆ We is the set of vertices that have neighbors in V \We.

Each internal node p in the tree is labeled as ⊗ or ⊕. Let e1 and e2 be the

two edges that connect p with its children. Write Q1 and Q2 for the twinsets at

e1 and e2. If the label of p is ⊗ then all vertices of Q1 are adjacent to all vertices
of Q2. If the label is ⊕ then no vertex of Q1 is adjacent to any vertex of Q2.

Let e be the edge that connects p with its parent. The twinset Qe is either

Q1 or Q2 or Q1 ∪Q2 or ∅.

The distance-hereditary graphs are exactly the graphs of rankwidth one. The

decomposition tree above describes a rank-decomposition of width one.

Theorem 3. There exists an O(n3) algorithm that computes the independence

domination number for distance-hereditary graphs.

Proof. The decomposition tree can be computed in linear time [19]. Let e be an

edge in the decomposition tree. Let We be the set of vertices that are mapped to
the leaves in the subtree and let Qe be the twinset, ie, the set of vertices in We

that have neighbors in V \We.

The algorithm computes a table for each edge e in the decomposition tree. We
write H = G[We]. For every pair of integers a,g ∈ {1, . . . ,n} the table stores

a boolean value which is TRUE if there exists an independent set A in H with
|A| = a of which every vertex is dominated by a collection D vertices in H with

|D| = g, except, possibly, some vertices in A ∩ Qe (which are not dominated).

The same table entry contains a boolean parameter which indicates whether
there are vertices in A∩Qe that are not dominated by the set D. A third boolean

parameter indicates whether D ∩ Qe is empty or not. Finally, a fourth boolean

parameter stores whether some vertices of D ∩ Qe dominate some vertices in
A ∩ (We \Qe).

The information is conveniently stored in a symmetric 6 × 6 matrix. The rows

and columns are partitioned according to the subsets

A, D, A ∩Qe, D ∩Qe, A ∩ (We \Qe) and D ∩ (We \Qe).

The diagonal entries indicate whether the subset is empty or not, and the off-

diagonal entries indicate whether the subset of D either completely dominates

all the vertices, or partly dominates some of the vertices, or does not dominate
any vertex of the subset of A.

We describe shortly some cases that illustrate how a table for an edge e is com-

puted. Consider a join operation at a node p. Let e1 and e2 be the two edges that
connect p with its children. An independent set A in G[We] can have vertices
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only in one of the two twinsets Q1 and Q2. Consider the case where Qe = Q2.

When Q1 has vertices in the independent set A which are not dominated by

vertices in D1, then these vertices have to be dominated by a vertex from Q2. In
case of a join operation, any (single) vertex of Q2 can do the job. When a domi-

nating set D2 has vertices in Q2 then this vertex dominates A ∩Q1. Otherwise,
a new vertex of Q2 needs to be added to the dominating set.

It is easy to check that a table as described above can be computed for each edge

e from similar tables stored at the two children of e. For brevity we omit further
details. The independence number can be read from the table at the root. ⊓⊔

Remark 2. It is easy to see that this generalizes to graphs of bounded rankwidth.
As above, let (T , f) be a decomposition tree. Each edge e of T partitions the

vertices of G into two sets. The cutmatrix of e is the submatrix of the adjacency

matrix that has its rows indexed by the vertices in one part of the partition
and its columns indexed by the vertices in the other part of the partition. A

graph has rankwidth k if the rank over GF[2] of every cutmatrix is at most k. For
example, when G is distance hereditary, then every edge in the decomposition

tree has a cutmatrix with a shape
(

J 0
0 0

)

where J is the all-ones matrix. Thus

every cutmatrix has rank one. When a graph has bounded rankwidth then the
twinset Qe of every edge e has a partition into a bounded number of subsets.

The vertices within each subset have the same neighbors in V \ We [36]. A

rank-decomposition tree of bounded width can be obtained in O(n3) time [46].

4 Permutation graphs

Another class of graphs that contains the cographs is the class of permutation
graphs [27].

A permutation diagram consists of two horizontal lines in the plane and a

collection of n line segments, each connecting a point on the topline with a

point on the bottom line. A graph is a permutation graph if it is the intersection
graph of the line segments in a permutation diagram.

In their paper Baker, Fishburn and Roberts characterize permutation graphs

as follows [5]. (See also [21]; in this paper the authors characterize permutation
graphs as interval containment graphs).

Theorem 4. A graph G is a permutation graph if and only if G and Ḡ are compa-

rability graphs.

Assume that G and Ḡ are comparability graphs. Let F1 and F2 be transitive

orientations of G and Ḡ. A permutation diagram for G is obtained by ordering
the vertices on the topline by the total order F1∪F2 and on the bottom line by the
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total order F−1
1 ∪ F2. Permutation graphs can be recognized in linear time. The

algorithm can be used to produce a permutation diagram in linear time [56].

Consider a permutation diagram for a permutation graph G. An independent

set M in G corresponds with a collection of parallel line segments. The line

segments of vertices in M are, therefore, linearly ordered, say left to right.

Definition 3. Consider a permutation diagram. An independent set M ends in x if

the line segment of x is the right-most line segment of vertices in M.

Definition 4. For x ∈ V and k ∈ N, let M(x;k) be the collection of independent

sets M that end in x and for which γ(M) = k.

Definition 5. Let Γ(x;k) be the collection of minimum dominating sets for inde-
pendent sets M that end in x with γ(M) = k.

The line segments of the neighbors of a vertex x are crossing the line segment

of x. We say that z is a rightmost neighbor of x satisfying a certain condition, if
the endpoint of z on either the topline or the bottom line is rightmost among all

neighbors of x that satisfy the condition. Here, we allow that z = x.

Let x ∈ V and let z ∈ N[x]. Define

γx(z) = { k | z is a right-most neighbor of x and z ∈ Γ for some Γ ∈ Γ(x;k) }

(2)

Lemma 1. Let G be a permutation graph and consider a permutation diagram for

G. Then

γi(G) = max { k | k ∈ γx(z) x ∈ V z ∈ N[x] }. (3)

Proof. Consider an independent set M ⊆ V for which

γ(M) = γi(G).

Assume that M ends in x. Any set Γ that dominates M has a vertex z ∈ N[x]∩ Γ .

Let z be a right-most neighbor of x which is in a dominating set Γ for M with

|Γ | = γ(M). Then

γi(G) = γ(M) ∈ γx(z). (4)

This proves the lemma. ⊓⊔

Theorem 5. There exists a polynomial-time algorithm that computes γi(G) for

permutation graphs.
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Proof. We describe the algorithm to compute γx(z). We assume that for every

non-neighbor y of x that is to the left of x, the sets γy(z
′) for z′ ∈ N[y] have

been computed.

Consider an independent set M ∈ M(x;k). Let z ∈ N[x] be a rightmost neighbor

of x such that there is a dominating set Γ ∈ Γ(x;k) with z ∈ Γ . Let y ∈ M lie

immediately to the left of x. When z ∈ N(y) then z must be a rightmost neighbor
of y. In that case

k ∈ γx(z) ⇔ k ∈ γy(z). (5)

Now assume that z /∈ N(y). Then z dominates only one vertex of M, namely x.
In that case z must be a right-most neighbor of x which is not in N(y) and, if

that is the case,

k ∈ γx(z) ⇔ ∃z′∈N[y]\N(x) k − 1 ∈ γy(z
′). (6)

This proves the theorem. ⊓⊔

5 Bounded treewidth

Graphs of bounded treewidth were introduced by Halin [29]. They play a major

role in the research on graph minors [51]. Problems that can be formulated in
monadic second-order logic can be solved in linear time for graphs of bounded

treewidth. Graphs of bounded treewidth can be recognized in linear time [9,35].

Actually, bounded treewidth itself can be formulated in monadic second-order
logic via a finite collection of forbidden minors [17].

Definition 6. Let k ∈ N. A graph G has treewidth at most k if G is a subgraph of

a chordal graph H with ω(H) 6 k + 1.

Theorem 6. Let k ∈ N. There exists an O(n3) algorithm to compute γi(G) when

the treewidth of G is at most k.

Proof. Consider a tree-decomposition for G with bags of size at most k+1 [35,39].
Consider a subtree rooted at a node i. Denote the bag at node i by Si. Denote

the subgraph of G induced by the vertices that appear in bags in the subtree

rooted at i by Gi. We use a technique similar to the one used in, eg, [57,58].

For all the subsets A ⊆ Si, and for all pairs of integers p and q, let b(p,q,A)

denote a boolean value which is true if there exists an independent set M in Gi

with p vertices with M∩ Si = A. The vertices of A have a status, which is either
white or gray. The white vertices of A are dominated by a set of q vertices in Gi

and the gray vertices are not dominated by vertices in Gi.

It is easy to see that the boolean values can be computed in O(n2) time by
dynamic programming for each node in the decomposition tree. ⊓⊔
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6 An exact exponential algorithm

In this section we describe an exact, exponential algorithm to compute the inde-
pendence domination number [26,39].

Theorem 7. There exists an O∗(1.7972n) algorithm to compute the independence

domination number.

Proof. Moon and Moser proved that a graph with n vertices has at most 3n/3

maximal independent sets [45]. Tsukiyama et al. showed that all the indepen-
dent sets can be listed with polynomial delay [59].

First assume that there is a maximal independent set with at most β ·n vertices.

We determine the constant β later. Then γi(G) 6 γ(G) 6 β · n.

For each maximal independent set M of size at most β · n, we find the smallest

set that dominates it as follows. Remove all edges except those that connect M
and V \M. Assume that every vertex of V \M has at most two neighbors in M.

Then we can easily find γ(M) in polynomial time via maximum matching. To see
that, construct a graph H on the vertices of M where two vertices are adjacent

if they have a common neighbor in V \M. Let W be the set of vertices in M that

are endpoints of edges in a maximum matching. Let ν(H) be the cardinality of a
maximum matching in H. Then a solution is given by

γ(M) = ν(H) + |M \W|. (7)

Otherwise, when at least some vertex of V \ M has at least three neighbors in

M, choose a vertex x of maximal degree at least three in V \ M and branch

as follows. In one branch the algorithm removes x and all its neighbors. In the
other branch only the vertex x is removed. This gives a recurrence relation

T(n) 6 T(n − 1) + T(n − 4).

Since the depth of the search tree is bounded by β ·n, this part of the algorithm
can be solved in O∗(1.3803β·n).

Assume that every maximal independent set has cardinality at least β · n. In
that case, we try all subsets of V \M. The optimal value for β follows from the

equation

1.3803β = 21−β ⇒ β = 0.6827.

For the timebound we find that it is polynomially equivalent to

3n/3 · 2(1−β)n = 1.7972n.

⊓⊔
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7 A PTAS for planar graphs

In this section we show that there is a polynomial-time approximation scheme

for planar graphs. We use the well-known technique of Baker [4].

Consider a plane embedding of a planar graph G. Partition the vertices of

G into layers L1, . . . as follows. The outerface are the vertices of L1. Remove
the vertices of L1. Then the new outerface are the vertices of L2. Continue this

process until all vertices are in some layer.

If there are only k layers then the graph is called k-outerplanar.

Lemma 2 ([10]). The treewidth of k-outerplanar graphs is at most 3k − 1.

Theorem 8. Let G be a planar graph. For every ǫ > 0 there exists a linear-time

algorithm that computes an independence dominating set of cardinality at least

(1 − ǫ) · γi(G).

Proof. Let k ∈ N. Let ℓ ∈ {1, . . . , k} and consider removing layers

Lℓ,Lℓ+k,Lℓ+2k, . . . .

Let G(ℓ, k) be the remaining graph. Then every component of G has at most

k layers, and so G(ℓ, k) has treewidth at most 3k − 1. Using the algorithm of
Section 5 we can compute the independence domination numbers of G(ℓ, k), for

ℓ ∈ {1, . . . , k}.

Let M be an independent set in G with γ(M) = γi(G). If we sum over ℓ ∈
{1, . . . , k}, the vertices of M are counted k − 1 times. Each γi(G(ℓ, k)) is at least

as big as the dominating set that is needed to dominate the remaining vertices
of M. Therefore, the sum over γi(G(ℓ, k)) is at least (k− 1) ·γi(G). Therefore, if

we take the maximum of γiG(ℓ, k)) over ℓ ∈ {1, . . . , k} we find an approximation

of size at least (1 − 1
k
) · γi(G). ⊓⊔

8 Concluding remarks

One of our motivations to look into the independence domination number for

classes of perfect graphs is the domination problem for edge-clique graphs of
cographs. The main reason to look into this are the recent complexity results on

edge-clique covers [18,33].

Let G = (V ,E) be a graph. The edge-clique graph Ke(G) is the graph which
has E as its vertices and in which two elements of E are adjacent when they are

contained in a clique of G [3,15,28,49,50].

Let G and H be two graphs. The strong product G ⊠ H is the subgraph of

Ke(G ⊗ H) induced by the edges that have one endpoint in G and the other in
H. In other words, the vertices of G ⊠ H are pairs (g,h) with g ∈ V(G) and
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h ∈ V(H). Two vertices (g1,h1) and (g2,h2) are adjacent when g1 ∈ N[g2] and

h1 ∈ N[h2]. It is well-known [40,41,48,54] that, when G and H are perfect,

α(G⊠H) = α(G) · α(H).

Notice however that G⊠H itself is not necessarily perfect. For example C4 ⊠C4

contains an induced C5. The determination of α(G ⊠ G) is very hard when G

is not perfect. Lovász proved that α(C5 ⊠ C5) =
√

5 but, as far as we know,
α(C7 ⊠ C7) is open [41].

The independence number of the strong product has been investigated a

lot due to its applications in data compression and coding theory. Very little
is known about the (independent) domination number of strong products, al-

though some investigations were made in [8,14,20,22,23,24,25,30,31,37,42,43,47,52,53].

As far as we know, the domination number for the edge-clique graphs of com-
plete multipartite graphs is open. For simplicity, we call this the edge-domination

number.3 A minimum edge-domination set is not necessarily realized by the

complete bipartite subgraph induced by the two smallest color classes. For exam-
ple, K(2, 2, 2) has edge-domination number three while the complete bipartite

K(2, 2) has four edges. The edge-clique cover for complete multipartite graphs

seems to be a very hard problem [38,42,47].

References

1. Aharoni, R., E. Berger and R. Ziv, A tree version of Kőnig’s theorem, Combinatorica
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