
ar
X

iv
:1

30
3.

61
29

v1
 [

cs
.F

L
]

 2
5

M
ar

 2
01

3

Real-Time Vector Automata

Özlem Salehi1, Abuzer Yakaryılmaz2,⋆, and A. C. Cem Say1

1 Boǧaziçi University, Department of Computer Engineering, Bebek 34342 Istanbul,
Turkey

ozlem.salehi@boun.edu.tr, say@boun.edu.tr,
2 University of Latvia, Faculty of Computing, Raina bulv. 19, R̄ıga, LV-1586, Latvia

abuzer@lu.lv

Abstract. We study the computational power of real-time finite au-
tomata that have been augmented with a vector of dimension k, and
programmed to multiply this vector at each step by an appropriately
selected k × k matrix. Only one entry of the vector can be tested for
equality to 1 at any time. Classes of languages recognized by deter-
ministic, nondeterministic, and “blind” versions of these machines are
studied and compared with each other, and the associated classes for
multicounter automata, automata with multiplication, and generalized
finite automata.

Keywords: vector automata, counter automata, automata with multi-
plication, generalized automata

1 Introduction

There have been numerous generalizations of the standard deterministic finite
automaton model. In this paper, we introduce the vector automaton, which is
linked to many such generalizations like counter automata, automata with mul-
tiplication, and generalized stochastic automata [FMR68,Gre78,ISK76,Tur69].
A vector automaton is a finite automaton endowed with a k-dimensional vec-
tor, and the capability of multiplying this vector with an appropriately selected
matrix at every computational step. Only one of the entries of the vector can
be tested for equality to 1 at any step. Since equipping these machines with a
“one-way” input head, which is allowed to pause on some symbols during its
left-to-right traversal of the input, would easily make them Turing-equivalent,
we focus on the case of real-time input, looking at the deterministic and nonde-
terministic versions of the model. We make a distinction between general vector
automata and “blind” ones, where the equality test can be performed only at
the end of the computation. We examine the effects of restricting k to 1, and
the input alphabet to be unary. The related language classes are compared with
each other, and classes associated with other models in the literature. The de-
terministic blind version of the model turns out to be equivalent to Turakainen’s

⋆ Yakaryılmaz was partially supported by FP7 FET-Open project QCS.

http://arxiv.org/abs/1303.6129v1

2

generalized stochastic automata in one language recognition mode, whereas real-
time nondeterministic blind vector automata are shown to recognize some NP-
complete languages.

2 Background

2.1 Notation

Throughout the paper, the following notation will be used: Q is the set of states,
where q0 ∈ Q denotes the initial state, Qa ⊂ Q denotes the set of accept states,
and Σ is the input alphabet. An input string w is placed between two endmarker
symbols on an infinite tape in the form ¢w$. The set {↓,→,←} represents the
possible head directions. The tape head can stay in the same position (↓), move
one square to the right (→), or move one square to the left (←) in one step.

For a machine model A, L(A) denotes the class of languages recognized by
automata of type A.

Let Ei
k(c) denote the matrix obtained by setting the i’th entry of the first

column of the k × k identity matrix to c. For a vector v, the product vEi
k(c) is

the vector obtained by adding c times the i’th entry of v to the first entry when
i > 1, and the vector obtained by multiplying the first entry of v by c when
i = 1.

2.2 Machine definitions

Multicounter Automata. A real-time deterministic multicounter automaton
(rtDkCA) [FMR68] is a 5-tuple

M = (Q,Σ, δ, q0, Qa).

The transition function δ ofM is specified so that δ(q, σ, θ) = (q′, c) means
that M moves the head to the next symbol, switches to state q′, and updates
its counters according to the list of increments represented by c ∈ {−1, 0, 1}k, if
it reads symbol σ ∈ Σ, when in state q ∈ Q, and with the counter values having
signs as described by θ ∈ {0,±}k. At the beginning of the computation, the tape
head is placed on the symbol ¢, and the counters are set to 0. At the end of the
computation, that is, after the right endmarker $ has been scanned, the input is
accepted ifM is in an accept state.

A real-time deterministic blind multicounter automaton (rtDkBCA) [Gre78]
M is a rtDkCA which can check the value of its counters only at the end of
the computation. Formally, the transition function is now replaced by δ(q, σ) =
(q′, c). The input is accepted at the end of the computation ifM enters an accept
state, and all counter values are equal to 0.

3

Finite Automata With Multiplication. A one-way deterministic finite au-
tomaton with multiplication (1DFAM) [ISK76] is a 6-tuple

M = (Q,Σ, δ, q0, Qa, Γ),

where Γ is a finite set of rational numbers (multipliers). The transition function
δ is defined as δ : Q × Σ × Ω → Q × {↓,→}× Γ, where Ω = {=, 6=}.M has a
register which can store any rational number, and is initially set to 1. Reading
input symbol σ in state q, M compares the current value of the register with
1, thereby calculating the corresponding value ω ∈ Ω, and switches its state
to q′, “moves” its head in “direction” d, and multiplies the register by γ, in
accordance with the transition function value δ(q, σ, ω) = (q′, d, γ). The input
string is accepted ifM enters an accept state with the register value equaling 1
after it scans the right endmarker symbol.

A 1DFAM without equality (1DFAMW) is a 1DFAM which can not check
whether or not the register has value 1 during computation. The transition func-
tion δ is replaced by δ(q, σ) = (q′, d, γ). The accept condition of the 1DFAMW
is the same with the 1DFAM.

Generalized Finite Automata. A generalized finite automaton (GFA) [Tur69]
is a 5-tuple

G = (Q,Σ, {Aσ∈Σ}, v0, f),

where the Aσ∈Σ ’s are |Q| × |Q| are real valued transition matrices, and v0
and f are the real valued initial row vector and final column vector, respec-
tively. The acceptance value for an input string w ∈ Σ∗ is defined as fG(w) =
voAw1

. . . Aw|w|
f .

A GFA whose components are restricted to be rational numbers is called a
Turakainen finite automaton (TuFA) in [Yak12].

Let G′ be a Turakainen finite automaton. Languages of the form

L = (G′,=λ) ≡ {w ∈ Σ∗ | fG′(w) = λ}

for any λ ∈ Q constitute the class S=Q .

3 Vector Automata

A real-time deterministic vector automaton of dimension k (rtDVA(k)) is a 6-
tuple

V = (Q,Σ, δ, q0, Qa, v),

where v is a k-dimensional initial row vector, and the transition function δ is
defined as

δ : Q×Σ ×Ω → Q× S,

where S is the set of k × k rational-valued matrices, and Ω = {=, 6=}, as in the
definition of 1DFAM’s.

4

Specifically, δ(q, σ, ω) = (q′,M) means that when V is in state q reading
symbol σ ∈ Σ, and the first entry of its vector corresponds to ω ∈ Ω (with ω
having the value = if and only if this entry is equal to 1), V moves to state q′,
multiplying its vector with the matrix M ∈ S. As in the definition of 1DFAM’s,
ω is taken to be = if the first entry of the vector equals 1, and 6= otherwise. The
string is accepted if V enters an accept state, and the first entry of the vector is
1, after processing the right end-marker symbol $.

Remark 1. The designer of the automaton is free to choose the initial setting v
of the vector.

In the definition, it is stated that the machine can only check the first entry of
the vector for equality to 1. Sometimes we find it convenient to design programs
that check for equality to some number other than 1. One may also wish that
it were possible to check not the first, but some other entry of the vector. In
the following theorem, we show that we can assume our rtDVA(k)’s have that
flexibility. For the purposes of that theorem, let a rtDVA(k)ic be a machine
similar to a rtDVA(k), but with a generalized definition that enables it to check
the i’th entry, for equality to the number c.

Theorem 1. i. Given a rtDVA(k)i1 recognizing a language L, one can construct
a rtDVA(k) that recognizes L. ii. For any c ∈ Q, given a rtDVA(k)1c recognizing
a language L, one can construct a rtDVA(k+1) that recognizes L.

Proof. i. Suppose that we are given a rtDVA(k)i1 V = (Q,Σ, δ, q0, Qa, v). We
will construct an equivalent rtDVA(k) V ′ = (Q,Σ, δ′, q0, Qa, v

′). Let J denote
the matrix obtained from the k×k identity matrix by interchanging the first and
i’th rows. We will use multiplications with J repeatedly to swap the first and
i’th entries of the vector when it is time for that value to be checked, and then to
restore the vector back to its original order, so that the rest of the computation
is not affected. The initial vector of V ′ has to be a reordered version of v to let
the machine check the correct entry at the first step, so v′ = vJ . We update the
individual transitions so that if V has the move δ(q, σ, ω) = (q′,M), then V ′ has
the move δ′(q, σ, ω) = (q′, JMJ) for every q ∈ Q, σ ∈ Σ, and ω ∈ Ω.

ii. Suppose that we are given a rtDVA(k)1c V = (Q,Σ, δ, q0, Qa, v). We con-
struct an equivalent rtDVA(k+1) V ′ = (Q,Σ, δ′, q0, Qa, v

′). The idea is to re-
peatedly subtract (c − 1) from the first entry of the vector when it is time
for that value to be checked, and then add (c − 1) to restore the original vec-
tor. We will use the additional entry (which will always equal 1 throughout
the computation) in the vector of V ′ to perform these additions and subtrac-
tions, as will be explained soon. Let v′′ be a (k+1)-dimensional vector equaling
[v1, v2, ..., vk, 1], where v = [v1, v2, ..., vk]. The initial vector of V ′ has to be a
modified version of v′′ to accommodate the check for equality to 1 in the first
step, so v′ = v′′Ek+1

k+1 (−c+1). For every individual transition δ(q, σ, ω) = (q′,M)

of V , V ′ has the move δ′(q, σ, ω) = (q′, Ek+1
k+1 (c − 1)NEk+1

k+1 (−c + 1)), where the
(k+1)× (k+1) matrix N has been obtained by adding a new row-column pair

5

to M , i.e. Ni,j = Mi,j for i, j = 1, ..., k, N(k+1)j = 0 for j = 1, ..., k, Ni(k+1) = 0
for i = 1, ..., k and N(k+1)(k+1) = 1.

Note that when c 6= 0, there is an alternative method for constructing an
equivalent rtDVA(k) which does not require an extra entry in the vector, where
the first entry is modified simply by repeated multiplications with E1

k(1/c) and
E1

k(c) when necessary. ⊓⊔

We conclude this section with two examples that will familiarize us with the
programming of rtDVA(k)’s.

Example 1 UFIBONACCI= {an | n is a Fibonacci number} ∈ L(rtDVA(5)).

Proof. We construct a rtDVA(5) V recognizing UFIBONACCI as follows: We let
the initial vector equal [0, 1, 0, 0, 1]. Reading each a, we multiply the vector with
the matrix M1 if the first entry of the of the vector is equal to 0, and with M2

otherwise.

M1 =

0 0 0 0 0
1 1 1 0 0
1 1 0 0 0
−1 0 0 1 0
−1 0 0 1 1

M2 =

0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
−1 0 0 1 0
−1 0 0 1 1

.

After reading the i’th a, the fourth entry of the vector equals i. The second and
third entries of the vector hold consecutive Fibonacci numbers. The first entry is
equal to 0 whenever i equals the second entry, which triggers the next Fibonacci
number to be computed and assigned to the second entry in the following step.
Otherwise, the second and third entries remain unchanged until i reaches the
second entry. V accepts if the computation ends with the first entry equaling 0,
which occurs if and only if the input length n is a Fibonacci number. ⊓⊔

Theorem 2. UGAUSS = {an
2+n | n ∈ N} ∈ L(rtDVA(2)).

Proof. We construct a rtDVA(2) V with initial vector [1, 1]. If the input is the
empty string, V accepts. Otherwise, V increments the first entry of the vector
by multiplying it by 2 on reading the first a which is performed by multiplying
the vector with the matrix M1 = E1

2(2).

M1 =

[

2 0
0 1

]

It then repeats the following procedure for the rest of the computation: Decre-
ment the first entry of the vector by multiplying it by 1/2 until it reaches one,
while parallelly incrementing the second entry of the vector by multiplying it by
2 with the help of matrix M2. The second entry stops increasing exactly when
the first counter reaches 1. Then the directions are swapped, with the second
entry now being decremented, and the first entry going up by multiplying the
vector with the matrix M3.

M2 =

[

1
2 0
0 2

]

M3 =

[

2 0
0 1

2

]

6

When the second entry of the vector reaches 1, the first entry of the vector
is multiplied by 2 one more time with the help of matrix M1. Throughout this
loop, the accept state is entered only when the first entry of the vector is equal
to 1.

Suppose that at some step, the value of the vector is [1, 2c]. If the input is
sufficiently long, 2c + 2 steps will pass before the first counter reaches 1 again,
with the vector having the value [1, 2c+1]. On an infinite sequence of a’s, the
accept state will be entered after reading the second a, and then again with
intervals of 2c+2 symbols between subsequent entrances, for c = 1, 2, 3.... Doing
the sum, we conclude that strings of the form an

2+n, n ∈ N, are accepted. ⊓⊔

4 Deterministic vector automata

We start by specializing a fact stated by Ibarra et al. in [ISK76] in the context of
1DFAM’s to the case of rtDVA(1)’s. For this purpose, we will use the following
well-known fact about counter machines.

Fact 1 [FMR68] Given any k-counter automaton A with the ability to alter the
contents of each counter independently by any integer between +c and −c in a
single step (for some fixed integer c), one can effectively construct a k-counter
automaton which can modify each counter by at most one unit at every step, and
which recognizes the same language as A in precisely the same number of steps.

Fact 2 rtDVA(1)’s are equivalent in language recognition power to real-time
deterministic multicounter automata which can only check if all counters are
equal to 0 simultaneously.

Proof. Let us simulate a given rtDVA(1) V by a real-time deterministic mul-
ticounter automaton M. Let S = {m1,m2, ...,mt} be the set of numbers the
single-entry “vector” can be multiplied with during the computation. Let P =
{p1, p2, ..., pk} be the set of prime factors of the denominators and the numer-
ators of the numbers in S. M will have k counters c1, ..., ck to represent the
current value of the vector. When V multiplies the vector with ni =

a
b
, where

a = px1

1 px2

2 . . . pxk

k and b = py1

1 py2

2 . . . pyk

k , the counters of M are updated by
the values (x1 − y1, x2 − y2, ..., xk − yk). As stated in Fact 1, we can update
the counter values by any integer between c and −c, where c here is equal to
the largest exponent in the prime decomposition of the numbers in S. When V
checks if the value of the vector is equal to 1, M checks if the current value
of the counters is (0, 0, ..., 0), since the value of the vector is equal to 1 exactly
when all the counters are equal to 0.

For the other direction, we should simulate a rtDkCAM that can only check
if all counters are equal to 0 simultaneously with a rtDVA(1) V . For each counter
ci of V , we assign a distinct prime number pi for i = 1, ..., k. We multiply the
“vector” with pi and 1

pi

, when the i’th counter ci is incremented and decre-
mented, respectively. Whenever M has all counters equal to 0, V ’s vector has
value 1, so it can mimicM as required. ⊓⊔

7

We now prove a fact about rtDkCA’s that will be helpful in the separation
of the classes of languages associated with these machines and rtDVA(1)’s.

Theorem 3. UGAUSS = {an
2+n | n ∈ N} ∈ L(rtD2CA).

Proof. We construct a real-time deterministic automatonM with two counters
recognizing UGAUSS. The idea of the proof is the same with the proof of Theorem
2. If the input is the empty string,M accepts. Otherwise,M increments the first
counter on reading the first a. It then repeats the following procedure for the
rest of the computation: Decrement the first counter until it reaches zero, while
parallelly incrementing the second counter. The second counter stops increasing
exactly when the first counter reaches 0. The counters then swap directions,
with the second counter now being decremented, and the first counter going up.
When the second counter reaches 0, the first counter is incremented one more
time.

Throughout this loop, the accept state is entered only when the first counter
is zero.

Suppose that at some step, the value of the counter pair is (0, c). If the input
is sufficiently long, 2c + 2 steps will pass before the first counter reaches zero
again, with the pair having the value (0, c + 1). On an infinite sequence of a’s,
the accept state will be entered after reading the second a, and then again with
intervals of 2c+2 symbols between subsequent entrances, for c = 1, 2, 3.... Doing
the sum, we conclude that strings of the form an

2+n, n ∈ N, are accepted. ⊓⊔

For k ≥ 1, let LNGk = {w ∈ {a0, a1, ..., ak}
∗ | |w|a0

= |w|a1
= ... = |w|ak

},
where |w|x denotes the number of occurrences of symbol x in w.

Fact 3 [Lai67] LNGk ∈ L(rtDkCA), and LNGk /∈ L(rtD(k-1)CA), for every k ≥
1.

Fact 4 [ISK76] 1DFAM’s can only recognize regular languages on unary alpha-
bets.

We are now able to state several new facts about the computational power
of rtDVA(k)’s:

Theorem 4. For any fixed k > 0, L(rtDVA(1)) and L(rtDkCA) are incompa-
rable.

Proof. From Fact 3, we know that LNGk+1 can not be recognized by any rtDkCA.
We can construct a rtDVA(1) V recognizing LNGk+1 as follows: We choose k+1
distinct prime numbers p1, ..., pk, pk+1, each corresponding to a different symbol
ai in the input alphabet, where i ∈ {1, ..., k + 1}. When it reads an ai with i in
that range, V multiplies its single-entry vector with pi. When it reads an a0, V
multiplies the vector with 1

p1·p2·...·pkpk+1
. The input string w is accepted if the

value of the vector is equal to 1 at the end of the computation, which is the case
if and only if w ∈ LNGk+1. We conclude that LNGk+1 ∈ L(rtDVA(1)).

8

From Theorem 3, we know that rtDkCA’s can recognize some nonregular
languages on a unary alphabet. By Fact 4, we know that rtDVA(1)’s, which are
additionally restricted 1DFAM’s, can only recognize regular languages in that
case. Hence, we conclude that the two models are incomparable. ⊓⊔

Theorem 5. L(rtDVA(1)) (
⋃

k L(rtDkCA).

Proof. By the argument in the proof of Fact 2, any rtDVA(1) can be simulated
by a rtDkCA for some k. The inclusion is proper, since we know that a rtD2CA
can recognize a nonregular language on a unary alphabet (Theorem 3), a feat
that is impossible for rtDVA(1)’s by Fact 4. ⊓⊔

Theorem 6. L(rtDVA(2)) *
⋃

k L(rtDkCA).

Proof. Let GEQ = {ambn|m ≥ n ≥ 1}, and let GEQ∗ be the Kleene closure of GEQ.
It is known that no rtDkCA can recognize GEQ∗ for any k, due to the inability
of these machines to set a counter to 0 in a single step [FMR67].

We will construct a rtDVA(2) V that recognizes GEQ∗. The idea is to use
the first entry of the vector as a counter, and employ matrix multiplication to
set this counter to 0 quickly when needed. V rejects strings that are not in the
regular set (a+b+)∗ easily. The vector starts out as [0, 1]. When it reads an a,
V multiplies the vector with the “incrementation” matrix Ma to increment the
counter. When reading a b, V rejects if the first entry is zero, since this indicates
that there are more b’s than there were a’s in the preceding segment. Otherwise,
it multiplies the vector with the “decrementation” matrix Mb.

Ma =

[

1 0
1 1

]

Mb =

[

1 0
−1 1

]

When an a is encountered immediately after a b, the counter has to be reset to
0, so the Ma in the processing of such a’s is preceded by the ”reset” matrix M0.

M0 =

[

0 0
1 1

]

V accepts if it reaches the end of the input without rejecting. ⊓⊔

We are now able to compare the power of rtDVA(1)’s with their one-way
versions, namely, the 1DFAM’s of Ibarra et al. [ISK76]

Theorem 7. L(rtDVA(1)) (L(1DFAM).

Proof. We construct a 1DFAMM recognizing the language GEQ∗ that we saw in
the proof of Theorem 6.M uses its register to simulate the counter of a one-way
single-counter automaton. When it reads an a, M multiplies the register by 2.
When reading a new b,M rejects if the register has value 1, and multiplies with
1
2 otherwise. When a new block of a is seen to start, M pauses its input head
while repeatedly multiplying the register with 1

2 to set its value back to 1 before
processing the new block.M accepts if it has processed the whole input without
rejecting.

By the already mentioned fact that no rtDkCA for any k can recognize GEQ∗,
and Theorem 5, we conclude that GEQ∗ /∈ L(rtDVA(1)). ⊓⊔

9

The same reasoning also allows us to state

Corollary 1. L(rtDVA(1)) (L(rtDVA(2)).

Note that Fact 4 and Theorem 2 let one conclude that rtDVA(2)’s outperform
rtDVA(1)’s when the input alphabet is unary.

It is easy to state the following simultaneous Turing machine time-space
upper bound on the power of deterministic real-time vector automata:

Theorem 8.
⋃

k L(rtDVA(k)) ⊆ TISP(n3, n).

Proof. A Turing machine that multiplies the vector with the matrices corre-
sponding to the transitions of a given rtDVA(k) requires only linear space, since
the numbers in the vector can grow by at most a fixed number of bits for each
one of the O(n) multiplications in the process. Using the primary-school algo-
rithm for multiplication, this takes O(n3) overall time. ⊓⊔

If one gave the capability of one-way traversal of the input tape to vector au-
tomata of dimension larger than 1, one would gain a huge amount of compu-
tational power. Even with vectors of dimension 2, such machines can simulate
one-way 2-counter automata, and are therefore Turing equivalent [ISK76]. This
is why we focus on real-time vector automata.

5 Blind vector automata

A real-time deterministic blind vector automaton (rtDBVA(k)) is a rtDVA(k)
which is not allowed to check the entries of the vector until the end of the
computation. Formally, a rtDBVA(k) is a 6-tuple

V = (Q,Σ, δ, q0, Qa, v),

where the transition function δ is defined as δ : Q × Σ → Q × S, with S as
defined earlier. δ(q, σ) = (q′,M) means that when V reads symbol σ ∈ Σ in
state q, it will move to state q′, multiplying the vector with the matrix M ∈ S.
The acceptance condition is the same as for rtDVA(k)’s.

Remark 2. Let us start by noting that L(rtDBVA(1)) =
⋃

k L(rtDkBCA), unlike
the general case considered in Theorem 5: Since blind counter automata only
check if all counters are zero at the end, the reasoning of Fact 2 is sufficient to
conclude this.

Theorem 9. L(rtDBVA(1)) = L(1DFAMW).

Proof. A rtDBVA(1) is clearly a 1DFAMW, so we look at the other direction
of the equality. Given a 1DFAMW V1, we wish to construct a rtDBVA(1) Vr
which mimics V1, but without spending more than one computational step on
any symbol. When V1 scans a particular input symbol σ for the first time in a
particular state q, whether it will ever leave this symbol, and if so, after which

10

sequence of moves, are determined by its program. This information can be
precomputed for every state/symbol pair by examining the transition function
of V1. We program Vr so that it rejects the input if it ever determines during
computation that V1 would have entered an infinite loop. Otherwise, upon seeing
the simulated V1 moving on a symbol σ while in state q, Vr simply retrieves the
aforementioned information from a lookup table, moves the head to the right,
entering the state that V1 would enter when it moves off that σ, and multiplies
its single-entry vector with the product of the multipliers corresponding to the
transitions V1 executes while the head is pausing on σ. ⊓⊔

We now give a full characterization of the class of languages recognized by
real-time deterministic blind vector automata.

Theorem 10.
⋃

k L(rtDBVA(k)) = S=Q .

Proof. For any language L ∈ S=Q , we can assume without loss of generality that
L = (G,=1) [Tur69] for some TuFA G with, say, m states. Let us construct a
rtDBVA(k) V simulating G. We let k = m, so that the vector is in Qk. The initial
vector values of V and G are identical. V has only one state, and the vector is
multiplied with the corresponding transition matrix of G when an input symbol
is read. When processing the right endmarker, V multiplies the vector with a
matrix whose first column is the final vector f of G. V accepts input string w if
the first entry of the vector is 1 at the end of the computation, which happens
only if the acceptance value fG(w) = 1.

For the other direction, let us simulate a rtDBVA(k) V recognizing some
language L by a TuFA G. If V has m states, then G will have km states. For any
symbol a, the corresponding transition matrix A is constructed as follows. View
A as being tiled to m2 k × k submatrices called Ai,j , for i, j ∈ {1, 2, ...,m}. If V
moves from qi to qj by multiplying the vector with the matrix Mi when reading
symbol a, then Ai,j will be set to equal Mi. All remaining entries of A are zeros.
The initial vector v′ of G will be a row vector with km entries, viewed as being
segmented to m blocks of k entries. The first k entries of v′, corresponding to the
initial state of V , will equal v, and the remaining entries of v′ will equal 0. The
km entries of the final column vector f of G will again consist of m segments
corresponding to the states of V . The first entry of every such segment that
corresponds to an accept state of V will equal 1, and all remaining entries will
equal 0. G imitates the computation of V by keeping the current value of the
vector of V at any step within the segment that corresponds to V ’s current state
in the vector representing the portion of G’s own matrix multiplication up to
that point. We therefore have that L = (G,=1). ⊓⊔

We can also give a characterization for the case where the alphabet is unary,
thanks to the following fact, which is implicit in the proof of Theorem 7 in
[Diê77]:

Fact 5 All languages on a unary alphabet in S=Q are regular.

11

We can say the following about the effect of increasing k on the power of
rtDBVA(k)’s:

Theorem 11. L(rtDBVA(1)) (L(rtDBVA(2)).

Proof. Let us construct a rtDBVA(2) V recognizing the marked palindrome lan-
guage MPAL = {wcwr|w ∈ {a, b}∗}, where wr stands for the reverse of string
w. We let the initial vector equal [0, 1]. While reading the input string, V first
encodes the string w in the first entry of the vector using the matrices Ma1

and
Mb1 .

Ma1
=

[

10 0
1 1

]

Mb1 =

[

10 0
2 1

]

Each time it reads an a and a b, V multiplies the vector with Ma1
and Mb1 ,

respectively. In the encoding, each a is represented by an occurrence of the digit 1,
and each b is represented by a 2. Upon reading the symbol c, V finishes reading
w and starts reading the rest of the string. V now makes a reverse encoding
and multiplies the vector with Ma2

and Mb2 each time it reads an a and a b,
respectively.

Ma2
=

[

1
10 0
− 1

10 1

]

Mb2 =

[

1
10 0
− 2

10 1

]

When the computation ends, the first entry of the vector is equal to 0 iff the
string read after the symbol c is the reverse of the string w so that the input
string is in MPAL.

Now, we are going to prove that MPAL /∈ 2PFA, that is, the class of languages
accepted by two-way probabilistic finite automata with bounded error. Suppose
for a contradiction that there exists a two-way probabilistic finite automaton
(2pfa)M recognizing MPAL with bounded error. Then it is not hard show that
PAL can be recognized by a 2pfa M′ such that M′ sees the input, say w, as
u = wcw and then executesM on u. Note thatM accepts u if and only if w is
a member of PAL. Since PAL /∈ 2PFA [DS92], we get a contradiction. Hence, we
conclude that MPAL can not be in 2PFA.

It is known [Rav92] that 2PFA includes all languages recognized by one-way
deterministic blind multicounter automata, and we already stated that rtD-
BVA(1) and rtDkBCA are equivalent models in Remark 2. Since MPAL /∈ 2PFA,
MPAL cannot be in L(rtDBVA(1)). Having proven that MPAL ∈ L(rtDBVA(2)),
we conclude that L(rtDBVA(1)) (L(rtDBVA(2)). ⊓⊔

For an m-state rtDBVA(k) V , we define the size of V to be the product
mk. For all i ≥ 1, let L(rtDBVASIZE(i)) denote the class of languages that are
recognized by real-time deterministic blind vector automata whose size is i. We
use the following fact to prove a language hierarchy on this metric.

Fact 6 [Diê71] (Recurrence Theorem) Let L be a language belonging to S=
Q in

the alphabet Σ. Then there exists a natural number n ≥ 1 such that for any
words x, y, z ∈ Σ∗, if yz, yxz, ..., yxn−1z ∈ L, then yxmz ∈ L for any m ≥ 0.

12

Theorem 12. For every i > 1, L(rtDBVASIZE(i− 1))(L(rtDBVASIZE(i)).

Proof. We first establish a hierarchy of complexity classes for TuFA’s based on
the number of states, and use this fact to conclude the result.

It is obvious that the language MODk = {ai | i 6= 0 mod k} ∈ S=
Q . We claim

that any TuFA G recognizing MODk should have at least k states. Let n be the
number of states of G and let us suppose that n < k. We are going to use Fact
6 as follows: Let x = a, y = a and let z be the empty string. Since the strings
a, a2, ..., an−1 are in MODk, we see that the strings of the form a+ are also in MODk

and we get a contradiction. Hence, we conclude that n ≥ k should hold, and
that G should have at least k states.

By Theorem 10, there exists a real-time blind deterministic vector automaton
with size k (a rtDBVA(k) with just one state) recognizing the same language.
Suppose that there exists another real-time blind vector automaton V with size
k′ such that k′ < k. Then by Theorem 10, there exists a TuFA with k′ states
recognizing MODk. Since we know that any TuFA recognizing MODk should have
at least k states, we get a contradiction. ⊓⊔

6 Nondeterministic vector automata

We now define the real-time nondeterministic vector automaton (rtNVA(k)) by
adding the capability of making nondeterministic choices to the rtDVA(k). The
transition function δ is now replaced by δ : Q×Σ×Ω → P(Q×S), where P(A)
denotes the power set of the set A. We will also study blind versions of these
machines: A real-time nondeterministic blind vector automaton (rtNBVA(k)) is
just a rtNVA(k) which does not check the vector entries until the end of the
computation.

We start by showing that it is highly likely that rtNVA(k)’s are more powerful
than their deterministic versions.

Theorem 13. If
⋃

k L(rtNVA(k)) =
⋃

k L(rtDVA(k)), then P = NP.

Proof. We construct a rtNBVA(3) V recognizing the NP-complete language
SUBSETSUM, which is the collection of all strings of the form t#a1#...#an#,
such that t and the ai’s are numbers in binary notation (1 ≤ i ≤ n), and there
exists a set I ⊆ {1, ..., n} satisfying

∑

i∈I ai = t, where n > 0. The main idea
of this construction is that we can encode the numbers appearing in the input
string to certain entries of the vector, and perform arithmetic on them, all in
real time. We use a similar encoding given in [Yakar]. V ’s initial vector is [0, 0, 1].
When scanning the symbols of t, V multiplies the vector with the matrix M0

(resp. M1) for each scanned 0 (resp. 1).

M0 =

2 0 0
0 1 0
0 0 1

M1 =

2 0 0
0 1 0
1 0 1

 .

13

When V finishes reading t, the vector equals [t, 0, 1]. In the rest of the compu-
tation, V nondeterministically decides which ai’s to subtract from the second
entry. Each selected ai is encoded in a similar fashion to the fourth entry of the
vector, using the matrices

N0 =

1 0 0
0 2 0
0 0 1

N1 =

1 0 0
0 2 0
0 1 1

 .

After encoding the first selected ai, the vector equals [t, ai, 1]. V subtracts the
second entry from the first entry by multiplying the vector with the matrix
E2

3(−1). After this subtraction, the second entry is reinitialized to 0. V chooses
another aj if it wishes, and the same procedure is applied. At the end of the input,
V accepts if the first entry of the vector is equal to 0, and rejects otherwise.

If
⋃

k L(rtNVA(k))=
⋃

k L(rtDVA(k)), then SUBSETSUMwould be in P by The-
orem 8, and we would have to conclude that P = NP. ⊓⊔

When we restrict consideration to blind automata, we can prove the fol-
lowing unconditional separation between the deterministic and nondeterministic
versions.

Theorem 14. L(rtNBVA(2)) *
⋃

k L(rtDBVA(k)).

Proof. Let us construct a rtNBVA(2) V recognizing the language POW = {ak+2k |
k > 0}. The initial value of V ’s vector is [1, 1]. V ’s computation consists of two
stages. In the first stage, V doubles the value of the first entry for each a that
it scans, by multiplying the vector with the matrix M1. At any step, V may
nondeterministically decide to enter the second stage. In the second stage, V
decrements the first entry by 1, for each a that is scanned, using the matrix M2,
and accepts if the first entry equals 0 at the end.

M1 =

[

2 0
0 1

]

M2 =

[

1 0
−1 1

]

If the input length is n, and if V decides to enter the second stage right after the
k’th a, the vector value at the end of the computation equals [2k − (n − k), 1].
We see that 2k − (n− k) = 0 if and only if n = k + 2k for some k.

Having proven that the nonregular language POW ∈ L(rtNBVA(2)), we note
that POW can not be in

⋃

k L(rtDBVA(k)), by Theorem 10, and Fact 5. ⊓⊔

7 Open Questions

– Can we show a hierarchy result similar to Theorem 12 for general determin-
istic vector automata, or for nondeterministic vector automata?

– Are general nondeterministic real-time vector automata more powerful than
rtNBVA(k)’s?

– Would properly defined bounded-error probabilistic versions of vector au-
tomata correspond to larger classes? Would quantum vector automata out-
perform the probabilistic ones?

14

Acknowledgements

We thank Oscar Ibarra and Holger Petersen for their helpful answers to our
questions.

References

Diê71. Phan Dinh Diêu. On a class of stochasic languages. Mathematical Logic
Quarterly, 17(1):421–425, 1971.

Diê77. Phan Dinh Diêu. Criteria of representability of languages in probabilistic au-
tomata. Cybernetics and Systems Analysis, 13(3):352–364, 1977. Translated
from Kibernetika, No. 3, pp. 39–50, May–June, 1977.

DS92. Cynthia Dwork and Larry Stockmeyer. Finite state verifiers I: The power of
interaction. Journal of the ACM, 39(4):800–828, 1992.

FMR67. Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Real time
counter machines. In Proceedings of the 8th Annual Symposium on Switching
and Automata Theory (SWAT 1967), FOCS ’67, pages 148–154, Washington,
DC, USA, 1967. IEEE Computer Society.

FMR68. Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter
machines and counter languages. Mathematical Systems Theory, 2(3):265–
283, 1968.

Gre78. S. A. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theoretical Computer Science, 7:311–324, 1978.

ISK76. Oscar H. Ibarra, Sartaj K. Sahni, and Chul E. Kim. Finite automata with
multiplication. Theoretical Computer Science, 2(3):271 – 294, 1976.

Lai67. R. Laing. Realization and complexity of commutative events. Technical
report, University of Michigan, 1967.

Rav92. Bala Ravikumar. Some observations on 2-way probabilistic finite automata.
In Proceedings of the 12th Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 392–403. Springer-Verlag, 1992.

Tur69. Paavo Turakainen. Generalized automata and stochastic languages. Proceed-
ings of the American Mathematical Society, 21:303–309, 1969.

Yak12. Abuzer Yakaryılmaz. Superiority of one-way and realtime quantum machines.
RAIRO - Theoretical Informatics and Applications., 46(4):615–641, 2012.

Yakar. Abuzer Yakaryılmaz. Quantum alternation. In Proceedings of the 8th Inter-
national Computer Science Symposium in Russia, 2013 (to appear).

	Real-Time Vector Automata

